JP3369148B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3369148B2
JP3369148B2 JP2000159447A JP2000159447A JP3369148B2 JP 3369148 B2 JP3369148 B2 JP 3369148B2 JP 2000159447 A JP2000159447 A JP 2000159447A JP 2000159447 A JP2000159447 A JP 2000159447A JP 3369148 B2 JP3369148 B2 JP 3369148B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
positive electrode
battery
negative electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000159447A
Other languages
Japanese (ja)
Other versions
JP2000353542A (en
Inventor
博昭 小野
博美 玉腰
浩 福永
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2000159447A priority Critical patent/JP3369148B2/en
Publication of JP2000353542A publication Critical patent/JP2000353542A/en
Application granted granted Critical
Publication of JP3369148B2 publication Critical patent/JP3369148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
関し、さらに詳しくは、偏析相を有する水素吸蔵合金を
負極活物質として用いたアルカリ蓄電池に関する。
TECHNICAL FIELD The present invention relates to an alkaline storage battery, and more specifically to an alkaline storage battery using a hydrogen storage alloy having a segregation phase as a negative electrode active material.

【0002】[0002]

【従来の技術】携帯用電子機器の小型化に伴い安全でよ
り高容量な二次電池が求められており、負極活物質とし
て水素吸蔵合金を用いたアルカリ蓄電池(ニッケル−水
素蓄電池)においてもさらなる高容量化のための検討が
続けられている。この電池の負極活物質である水素吸蔵
合金としては、Mm(ミッシュメタル)、Ni(ニッケ
ル)、Co(コバルト)、Mn(マンガン)およびAl
(アルミニウム)などから構成されたミッシュメタル系
合金や、Zr(ジルコニウム)、Ni、V(バナジウ
ム)およびMnなどから構成されたラーベス系合金がよ
く知られているが、一般的にはミッシュメタル系合金が
広く用いられている。
2. Description of the Related Art With the miniaturization of portable electronic devices, safer and higher capacity secondary batteries are required, and alkaline storage batteries (nickel-hydrogen storage batteries) using a hydrogen storage alloy as a negative electrode active material are further required. Investigations for higher capacity are continuing. As the hydrogen storage alloy which is the negative electrode active material of this battery, Mm (Misch metal), Ni (nickel), Co (cobalt), Mn (manganese) and Al
A misch metal alloy composed of (aluminum) or the like, and a Laves alloy composed of Zr (zirconium), Ni, V (vanadium), Mn, or the like are well known, but generally a misch metal alloy. Alloys are widely used.

【0003】このミッシュメタル系合金の組成は、特公
平5−15774号公報、特公平5−86029号公
報、特開平1−162741号公報などに開示されてい
るが、これらの公報に記載のミッシュメタル系合金は、
微粉化を防ぎ電解液に対する耐食性を向上させるため
に、Coを比較的多く含有させたほぼ化学量論組成の合
金であることが特徴である。
The composition of this misch metal alloy is disclosed in Japanese Examined Patent Publication No. 5-15774, Japanese Examined Patent Publication No. 5-86029, Japanese Unexamined Patent Publication No. 1-162741 and the like. Metal alloys are
In order to prevent pulverization and improve the corrosion resistance to the electrolytic solution, the alloy is characterized by having a substantially stoichiometric composition containing a relatively large amount of Co.

【0004】また、化学量論組成よりも希土類元素の含
有量を多くした非化学量論組成の水素吸蔵合金を用いる
ことも特開平2−277737号公報や特開平2−22
0356号公報などに提案されている。
It is also possible to use a hydrogen storage alloy having a non-stoichiometric composition in which the content of the rare earth element is larger than that in the stoichiometric composition, as disclosed in JP-A-2-277737 and JP-A-2-22.
It is proposed in Japanese Patent No. 0356.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記化
学量論組成の合金でCo含有量が多いものは、放電容量
が比較的小さいため、電池の高容量化に対して障害にな
っている。また、Coは高価な金属であるため、コスト
の面からもCo含有量の少ない水素吸蔵合金の出現が要
望されている。
However, alloys having a large Co content in the above stoichiometric composition have a relatively small discharge capacity, which is an obstacle to increasing the capacity of the battery. Further, since Co is an expensive metal, the appearance of a hydrogen storage alloy having a low Co content is demanded in terms of cost.

【0006】一方、非化学量論組成の合金としては、例
えば、希土類元素を化学量論組成より過剰に加えること
によって容量を大きくすることが可能であるという利点
を有するが、通常、希土類元素を多く含む数十μm程度
の偏析相が合金中に不均一に析出するため、前記の化学
量論組成の合金に比べて耐食性が劣るという問題があ
る。そのため、特開平2−220356号公報では、急
冷凝固法を用いて合金の単一相化を行っているが、単一
相化により合金の活性化が遅くなったり、水素の吸蔵お
よび放出におけるヒステリシスが大きくなり、特に低温
での放電特性が低下するという問題があった。
On the other hand, an alloy having a non-stoichiometric composition has the advantage that it is possible to increase the capacity by adding a rare earth element in excess of the stoichiometric composition. Since a segregated phase containing a large amount of about several tens of μm is nonuniformly precipitated in the alloy, there is a problem that the corrosion resistance is inferior to that of the alloy having the above stoichiometric composition. Therefore, in JP-A-2-220356, the alloy is made into a single phase by using the rapid solidification method. However, the activation of the alloy is delayed due to the single phase formation, and the hysteresis in the absorption and desorption of hydrogen. Is large, and there is a problem that the discharge characteristics are deteriorated especially at low temperatures.

【0007】また、非化学量論組成の別の例として、特
開平7−286225号公報には、Co含有量を抑え水
素吸蔵に関与しない第二相を析出させた複数相よりなる
水素吸蔵合金が提案されているが、この第二相の割合が
多くなると水素吸蔵量が大幅に減少することから、単に
第二相を析出させるだけでは高容量化を達成することが
できない。さらに、そのような水素吸蔵合金でも、合金
中の第二相が数十μmと大きく、また、その第二相が合
金中に不均一に析出するため、合金を粉砕した場合、こ
の相を多く含む粒子径の大きな粉末や、逆にこの相を含
まない粒子径の小さな粉末ができてしまい、合金粉末の
粒度分布が広くなり均一性が損なわれ、Coを多く含む
合金に比べて耐食性が劣り、特に70℃以上の高温下で
長期間保持した後の電池特性が低下するという問題もあ
った。
As another example of the non-stoichiometric composition, Japanese Patent Laid-Open No. 7-286225 discloses a hydrogen storage alloy composed of a plurality of phases in which a Co content is suppressed and a second phase not involved in hydrogen storage is deposited. However, when the proportion of the second phase is increased, the hydrogen storage amount is significantly reduced, and therefore simply increasing the capacity of the second phase cannot achieve high capacity. Further, even in such a hydrogen storage alloy, the second phase in the alloy is as large as several tens of μm, and the second phase precipitates unevenly in the alloy. A powder containing a large particle size or a powder containing a small particle size that does not contain this phase, on the contrary, is formed, and the particle size distribution of the alloy powder is widened and the uniformity is impaired, resulting in poor corrosion resistance compared to an alloy containing a large amount of Co. In particular, there is also a problem that the battery characteristics deteriorate after being kept at a high temperature of 70 ° C. or higher for a long time.

【0008】また、電池の内圧を低く抑えサイクル寿命
を良好にするためには、水素吸蔵での平衡圧が比較的低
い合金、すなわち、例えば45℃での平衡圧が0.1〜
0.6気圧程度の合金を用いるのが一般的であるが、本
発明者らの検討によれば、上記のようなCo含有量を低
減した非化学量論組成の水素吸蔵合金は−15℃以下の
低温では高率での放電が充分に行えないことが判明し
た。
Further, in order to keep the internal pressure of the battery low and to improve the cycle life, an alloy having a relatively low equilibrium pressure in hydrogen storage, that is, an equilibrium pressure at 45 ° C. of 0.1 to 0.1 is used.
Although it is general to use an alloy of about 0.6 atm, according to the study by the present inventors, a hydrogen storage alloy having a non-stoichiometric composition with a reduced Co content as described above has a temperature of −15 ° C. It was found that the discharge at a high rate could not be sufficiently performed at the following low temperatures.

【0009】水素吸蔵合金を用いたアルカリ蓄電池の低
温での高率放電特性を改善する方法としては、従来から
も負極の作製時にアルカリまたは酸溶液で負極を処理
し、その後、不活性雰囲気で電池を組み立てることなど
が提案されているが(特開平8−279356号公報な
ど)、これらの方法によってもCo含有量を低減した非
化学量論組成の水素吸蔵合金を負極活物質とするアルカ
リ蓄電池では、低温での高率放電特性を充分に改善する
ことができなかった。
As a method of improving the high rate discharge characteristics at low temperature of an alkaline storage battery using a hydrogen storage alloy, a negative electrode has been conventionally treated with an alkali or acid solution at the time of preparation of the negative electrode, and then the battery is treated in an inert atmosphere. Is proposed (for example, Japanese Patent Laid-Open No. 8-279356), but in these methods as well, an alkaline storage battery using a non-stoichiometric hydrogen storage alloy having a reduced Co content as a negative electrode active material is also used. However, the high rate discharge characteristics at low temperatures could not be sufficiently improved.

【0010】また、正極のサイクル劣化を防止する目的
で正極中に亜鉛化合物を含有させることも提案されてい
るが、そのような正極を用いた電池では、低温での放電
特性の低下がより著しくなるという問題があった。その
ため、従来の水素吸蔵合金を負極活物質とするアルカリ
蓄電池は、カドミウム(Cd)を負極活物質とするアル
カリ蓄電池(ニッケル−カドミウム蓄電池)に比べて低
温での放電特性が大幅に劣っていた。
Further, it has been proposed to incorporate a zinc compound into the positive electrode for the purpose of preventing cycle deterioration of the positive electrode. However, in a battery using such a positive electrode, the deterioration of discharge characteristics at low temperature is more remarkable. There was a problem of becoming. Therefore, the conventional alkaline storage battery using the hydrogen storage alloy as the negative electrode active material is significantly inferior in discharge characteristics at low temperature as compared with the alkaline storage battery (nickel-cadmium storage battery) using cadmium (Cd) as the negative electrode active material.

【0011】しかも、ここ数年で急速に普及してきた携
帯電話などでは、幅広い温度下で使用できることが前提
になるため、上記のような高温下での長期間保持後に低
温下でも確実に作動することができる電池が求められて
おり、平衡圧が低くかつ低温下でも高率での放電が可能
な水素吸蔵合金を負極活物質とする電池の開発が切望さ
れている。
In addition, since it is premised that mobile phones and the like, which have been rapidly popularized in the last few years, can be used under a wide range of temperatures, they can reliably operate even at low temperatures after being held at high temperatures for a long time as described above. There is a demand for a battery that can be used, and development of a battery that uses a hydrogen storage alloy that has a low equilibrium pressure and that can discharge at a high rate even at low temperatures as a negative electrode active material has been earnestly desired.

【0012】本発明は、上記事情に鑑み、高容量で、低
温での高率放電が可能な水素吸蔵合金を負極活物質とす
るアルカリ蓄電池を提供することを第一の目的とする。
また、本発明は、高温貯蔵特性が優れたアルカリ蓄電
池、すなわち、高温で長期間保持後にも、低温での高率
放電が可能なアルカリ蓄電池を提供することを第二の目
的とする。
In view of the above circumstances, it is a first object of the present invention to provide an alkaline storage battery having a high capacity and capable of performing a high rate discharge at a low temperature, using a hydrogen storage alloy as a negative electrode active material.
A second object of the present invention is to provide an alkaline storage battery having excellent high temperature storage characteristics, that is, an alkaline storage battery capable of high rate discharge at a low temperature even after being held at a high temperature for a long time.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため、アルカリ蓄電池の負極活物質として用
いる水素吸蔵合金について種々研究を重ねた結果、Mm
(Mmは30重量%以上のLaを含む2種類以上の希土
類元素の混合物を表す)と、少なくともNi、Co、M
nおよびAlを構成元素とする水素吸蔵合金であって、
上記水素吸蔵合金中にNiを主体とする偏析相を有し、
かつ合金断面の任意の15μm平方の領域に露出する偏
析相の数(ただし、偏析相に最小直径で外接する円の直
径が0.05μm以上の偏析相の数)が1〜40である
水素吸蔵合金を負極活物質として用い、かつ正極中のM
n含有量が正極の容量に対して0.6〜6mg/Ahで
あるときは、高容量で、低温での高率放電が可能であ
り、かつ高温貯蔵特性が優れたアルカリ蓄電池が得られ
ることを見出した。また、本発明は、上記水素吸蔵合金
の偏析相に最小直径で外接する円の直径が0.05〜1
0μmであることや、正極中に亜鉛イオンまたは亜鉛化
合物を含有させることを好ましい態様としている。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted various studies on hydrogen storage alloys used as negative electrode active materials for alkaline storage batteries, and as a result, Mm
(Mm represents a mixture of two or more kinds of rare earth elements containing 30% by weight or more of La), and at least Ni, Co, M
A hydrogen storage alloy containing n and Al as constituent elements,
The hydrogen storage alloy has a segregation phase mainly composed of Ni,
And the number of segregated phases exposed in an arbitrary 15 μm square area of the alloy cross section (however, the number of segregated phases in which the diameter of the circle circumscribing the segregated phase with the minimum diameter is 0.05 μm or more) is 1 to 40 Using an alloy as a negative electrode active material and M in the positive electrode
When the n content is 0.6 to 6 mg / Ah with respect to the capacity of the positive electrode, it is possible to obtain an alkaline storage battery having high capacity, capable of high rate discharge at low temperature, and excellent in high temperature storage characteristics. Found. In the present invention, the diameter of the circle circumscribing the segregation phase of the hydrogen storage alloy with the minimum diameter is 0.05 to 1.
A preferable mode is that it is 0 μm and that the positive electrode contains zinc ions or a zinc compound.

【0014】[0014]

【発明の実施の形態】本発明において用いる水素吸蔵合
金は、例えば、以下のように作製される。まず、Mm
(Mmは30重量%以上のLaとCe、Ndなどの他の
希土類元素との混合物を表す)と、Ni、Co、Mnお
よびAlの各金属元素を高周波溶解炉などで溶解し、合
金の溶湯とした後、これを回転ロールなどを用いておよ
そ300〜1000℃/secの冷却速度で急冷凝固さ
せる方法により、CaCu5 型結晶構造を有する相(以
下、これを「主相」と呼ぶ)を主体とし、さらにNiを
主体とし希土類元素をほとんど含んでいない偏析相を有
する水素吸蔵合金を得る。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy used in the present invention is produced, for example, as follows. First, Mm
(Mm represents a mixture of 30 wt% or more of La and other rare earth elements such as Ce and Nd) and each metal element of Ni, Co, Mn, and Al in a high-frequency melting furnace or the like to melt the alloy. After that, a phase having a CaCu 5 type crystal structure (hereinafter, referred to as “main phase”) is formed by a method of rapidly solidifying this by using a rotating roll or the like at a cooling rate of about 300 to 1000 ° C./sec. A hydrogen storage alloy having a segregated phase mainly containing Ni and almost no rare earth element is obtained.

【0015】本発明においては、Mm(ミッシュメタ
ル)がLaを30重量%以上含むものであることを要件
としているが、これはLaが30重量%より少ない場合
は、平衡圧が高くなり、また水素吸蔵合金の水素吸蔵量
が減少して、容量が低下してしまうという理由によるも
のである。このLaのMm中の含有量が多くなるほど、
容量や低温での高率放電特性が向上するが、Laが多く
なりすぎると、水素吸蔵合金の耐食性が低下し、電池の
サイクル寿命が短くなるおそれがあるため、Mm中のL
aの含有量は70重量%以下であることが好ましい。ま
た、上記水素吸蔵合金の製造にあたって、Mm(ミッシ
ュメタル)以外の金属元素の組成割合を、水素吸蔵合金
を一般組成式MmNiX CoY MnS AlT で表すと
き、原子比率で、Mm(ミッシュメタル)1に対して
5.03〜5.4(すなわち 5.03≦X+Y+S+
T≦5.4)にし、かつNi、Co、MnおよびAlの
組成割合をNiが3.8〜4.3(すなわち、3.8≦
X≦4.3)、Coが0.2〜0.7(すなわち、0.
2≦Y≦0.7)、Mnが0.1〜0.5(すなわち、
0.1≦S≦0.5)、Tが0.1〜0.4(すなわ
ち、0.1≦T≦0.4)にすることが好ましい。
In the present invention, Mm (Misch metal) is required to contain La in an amount of 30% by weight or more. However, when La is less than 30% by weight, the equilibrium pressure becomes high and the hydrogen storage capacity is high. This is because the hydrogen storage capacity of the alloy decreases and the capacity decreases. As the content of La in Mm increases,
Although the capacity and the high rate discharge characteristics at low temperature are improved, if the amount of La is too much, the corrosion resistance of the hydrogen storage alloy may be deteriorated and the cycle life of the battery may be shortened.
The content of a is preferably 70% by weight or less. Further, in the production of the hydrogen-absorbing alloy, the composition ratio of the metal elements other than Mm (misch metal), to represent a hydrogen storage alloy by the general formula MmNi X Co Y Mn S Al T , in atomic ratio, Mm (misch 5.03 to 5.4 (ie 5.03 ≦ X + Y + S +) for 1)
T ≦ 5.4) and the composition ratio of Ni, Co, Mn and Al is 3.8 to 4.3 (ie 3.8 ≦).
X ≦ 4.3), Co is 0.2 to 0.7 (that is, 0.
2 ≦ Y ≦ 0.7), Mn is 0.1 to 0.5 (that is,
It is preferable that 0.1 ≦ S ≦ 0.5) and T is 0.1 to 0.4 (that is, 0.1 ≦ T ≦ 0.4).

【0016】Mm(ミッシュメタル)に対するそれ以外
の金属元素の比率は偏析相の析出に関係し、この値が
5.03より小さい場合は(すなわち、5.03>X+
Y+S+Tの場合は)、合金(本明細書において、単に
「合金」と記載しているところも本発明に関する部分は
「水素吸蔵合金」を意味する)は単一相に近づきNiを
主体とする偏析相の形成が困難になる。一方、Mm(ミ
ッシュメタル)に対するそれ以外の金属元素の比率が
5.4より大きい場合は(すなわち、X+Y+S+T>
5.4の場合は)、偏析相の数が多くなりすぎて高容量
の合金が得られない上に、電池を構成した際に、偏析相
から電解液中に溶出する金属元素の総量が多くなり、こ
れが低温での放電特性を低下させる一因になる。すなわ
ち、合金断面の任意の15μm平方の領域に露出する偏
析相の数が1〜40である条件を満足させるためには、
このMm(ミッシュメタル)以外の金属元素のMm(ミ
ッシュメタル)1に対する比率が5.03〜5.4であ
ることが好ましい。また、Ni、Co、Mn、Alの各
割合も合金の融点や主相の固溶限界などを変化させ、偏
析相の析出形態に影響する。すなわち、Ni、Co、M
n、AlのMm(ミッシュメタル)1に対する比率がそ
れぞれ3.8〜4.3(すなわち、3.8≦X≦4.
3)、0.2〜0.7(すなわち、0.2≦Y≦0.
7)、0.1〜0.5(すなわち、0.1≦S≦0.
5)、0.1〜0.4(すなわち、0.1≦T≦0.
4)であるときに、本発明における偏析相の条件を満足
する合金が得られやすい。なお、本発明における水素吸
蔵合金では、前記Ni、Co、Mn、Alなどのうちの
少量(通常10原子%以下)をCu、Crなどの他の金
属で置換した組成にすることもできる。
The ratio of other metal elements to Mm (Misch metal) is related to the precipitation of the segregated phase, and when this value is smaller than 5.03 (that is, 5.03> X +).
In the case of Y + S + T), the alloy (in the present specification, the portion related to the present invention, which is simply referred to as “alloy”, means “hydrogen storage alloy”), is a segregation mainly composed of Ni because it approaches a single phase. Phase formation becomes difficult. On the other hand, when the ratio of the other metal elements to Mm (Misch metal) is larger than 5.4 (that is, X + Y + S + T>
In the case of 5.4), the number of segregated phases becomes too large to obtain a high capacity alloy, and when the battery is constructed, the total amount of metal elements eluted from the segregated phase into the electrolytic solution is large. This is one of the causes of deterioration of discharge characteristics at low temperature. That is, in order to satisfy the condition that the number of segregated phases exposed in an arbitrary 15 μm square area of the alloy cross section is 1 to 40,
The ratio of metal elements other than Mm (Misch metal) to Mm (Misch metal) 1 is preferably 5.03 to 5.4. Further, the respective proportions of Ni, Co, Mn, and Al also change the melting point of the alloy, the solid solution limit of the main phase, and the like, and affect the precipitation morphology of the segregated phase. That is, Ni, Co, M
n and Al to Mm (Misch metal) 1 are 3.8 to 4.3 (that is, 3.8 ≦ X ≦ 4.
3), 0.2 to 0.7 (that is, 0.2 ≦ Y ≦ 0.
7), 0.1-0.5 (that is, 0.1 ≦ S ≦ 0.
5), 0.1-0.4 (that is, 0.1 ≦ T ≦ 0.
When it is 4), it is easy to obtain an alloy satisfying the condition of the segregation phase in the present invention. The hydrogen storage alloy of the present invention may have a composition in which a small amount (usually 10 atomic% or less) of Ni, Co, Mn, Al, etc. is replaced with another metal such as Cu, Cr.

【0017】また、合金の溶湯を冷却する速度は前記の
ように300〜1000℃/secの範囲にすることが
好ましい。溶湯の冷却速度が上記範囲より遅い場合に
は、偏析相が大きくなりすぎ、また偏析相の分布も不均
一になるため、合金の均質性が損なわれ、耐食性に問題
が生じるおそれがある。また、粗大な偏析相の存在によ
り、粉砕された合金の粒度分布がブロードになり、粗大
な粒子径の粉末の割合が多くなるため、歩留りも低下す
るおそれがある。一方、冷却速度が上記範囲より速くな
ると、合金が単一相化されるため、後述するように活性
化が遅くなったり、低温での放電特性が低下するなどの
問題が生じるおそれがある。
The cooling rate of the molten alloy is preferably in the range of 300 to 1000 ° C./sec as described above. If the cooling rate of the molten metal is slower than the above range, the segregation phase becomes too large and the distribution of the segregation phase becomes non-uniform, which may impair the homogeneity of the alloy and cause a problem in corrosion resistance. In addition, the presence of the coarse segregation phase causes the crushed alloy to have a broad particle size distribution, and the proportion of powder having a coarse particle size increases, which may reduce the yield. On the other hand, if the cooling rate is faster than the above range, the alloy is made into a single phase, and there is a possibility that problems such as slow activation and deterioration of discharge characteristics at low temperature may occur as described later.

【0018】上記のようにして得られた水素吸蔵合金
は、熱処理を施すことにより結晶中のひずみを低減する
ことが可能であり、それによって、水素の吸蔵、放出特
性をより良好なものにすることができる。熱処理の温度
としては、およそ800〜1000℃の範囲であること
が好ましい。熱処理温度が上記範囲より低くなると、ひ
ずみの低減効果が少なくなり、また、上記範囲より高く
なると、偏析相が消失したり、偏析相が粗大化してしま
うおそれがある。
The hydrogen storage alloy obtained as described above can be subjected to a heat treatment to reduce the strain in the crystal, thereby improving the storage and release characteristics of hydrogen. be able to. The heat treatment temperature is preferably in the range of approximately 800 to 1000 ° C. If the heat treatment temperature is lower than the above range, the effect of reducing strain is reduced, and if it is higher than the above range, the segregation phase may disappear or the segregation phase may become coarse.

【0019】ここで、本発明における偏析相の好適な析
出形態について説明する。合金断面を研磨し走査型電子
顕微鏡(SEM)により調べると、図1に示すように偏
析相21の切断面が島状あるいは紐(ひも)状などの形
態で合金断面に点在するのが観察される。この個々の偏
析相は合金断面に均一に分布していることが好ましく、
任意に15μm平方の領域を設定したときに、いずれの
領域においてもその中に1〜40個の偏析相を有してい
る必要がある。ただし、この1〜40個の中に数えられ
る偏析相は、該偏析相に最小直径で外接する円の直径が
0.05μm以上のものを対象としている。上記のよう
に、本発明において、合金断面の任意の15μm平方の
領域内に偏析相を1〜40個有していることを要件とし
ているのは、偏析相が上記領域内にまったくない場合
は、水素吸蔵合金の活性化が遅くなり、低温での放電が
困難になるためであり、偏析相が上記領域内に40個よ
り多く存在するようになると、水素吸蔵合金の耐食性が
低下し、また、主相の割合が減少して、容量が低下する
という理由によるものである。
Here, a preferable precipitation form of the segregation phase in the present invention will be described. When the alloy cross section was polished and examined by a scanning electron microscope (SEM), it was observed that the cut surface of the segregation phase 21 was scattered in the alloy cross section in the form of islands or strings as shown in FIG. To be done. This individual segregation phase is preferably distributed uniformly in the alloy cross section,
When the area of 15 μm square is arbitrarily set, it is necessary to have 1 to 40 segregated phases in any area. However, the segregated phase counted from 1 to 40 is intended to have a diameter of a circle circumscribing the segregated phase with a minimum diameter of 0.05 μm or more. As described above, the present invention requires that 1 to 40 segregated phases are present in an arbitrary 15 μm square area of the alloy cross section when the segregated phases are not in the area at all. The reason is that the activation of the hydrogen storage alloy becomes slow and the discharge at low temperature becomes difficult, and when there are more than 40 segregated phases in the above region, the corrosion resistance of the hydrogen storage alloy decreases, and The reason is that the proportion of the main phase is reduced and the capacity is reduced.

【0020】また、本発明における水素吸蔵合金は、そ
の個々の偏析相について、図1に示すようなそれに最小
直径で外接する円22を描くとき、その直径は0.05
〜10μmであることが好ましく、特に0.2〜7μm
であることがより好ましい。本発明者らの検討によれ
ば、上記直径が0.05μmよりも小さいかまたは上記
直径が10μmより大きい偏析相は、低温での特性向上
には寄与しにくいことが判明した。
Further, in the hydrogen storage alloy of the present invention, when a circle 22 circumscribing each segregated phase with the minimum diameter is drawn as shown in FIG. 1, the diameter is 0.05.
10 to 10 μm is preferable, and 0.2 to 7 μm is particularly preferable.
Is more preferable. According to the study by the present inventors, it has been found that the segregated phase having the diameter smaller than 0.05 μm or larger than 10 μm hardly contributes to the improvement of the characteristics at low temperature.

【0021】また、偏析相はNiを主体とする組成であ
ることが低温での放電特性を向上させるために好まし
い。すなわち、透過型電子顕微鏡(TEM)のエネルギ
ー分散型X線分光器(EDS)による測定で偏析相のN
i含有量は50重量%以上、特に55重量%以上である
ことが好ましく、他の構成元素では、Mnが28重量%
以下、特に20重量%以下であることが好ましい。
Further, it is preferable that the segregation phase has a composition mainly composed of Ni in order to improve discharge characteristics at a low temperature. That is, N of the segregation phase is measured by an energy dispersive X-ray spectrometer (EDS) of a transmission electron microscope (TEM).
The i content is preferably 50% by weight or more, and particularly preferably 55% by weight or more, and in other constituent elements, Mn is 28% by weight.
It is particularly preferable that the content is 20% by weight or less.

【0022】本発明の形態の偏析相を有する水素吸蔵合
金を用いることにより、容量が大きく、低温での放電特
性が優れたアルカリ蓄電池が得られるようになる理由
は、現在のところ必ずしも明らかではないが、次のよう
に考えられる。すなわち、第一に本発明の水素吸蔵合金
は、偏析相が任意の15μm平方の小さな領域のいずれ
においても均一に分布しているため、水素吸蔵合金の微
粉化が均一に進み、しかも水素吸蔵合金を粉砕する際に
粒子径のそろった水素吸蔵合金粉末を得ることができ
る。第二に水素吸蔵合金表面に露出した偏析相を構成す
る金属元素の一部が電解液中に溶出しやすいので、水素
吸蔵合金の活性化が容易になる。さらに、第三として前
記偏析相の構成元素であるNiは水素吸蔵合金表面に残
存して触媒として機能することや、水素吸蔵合金内部に
偏析相と主相との界面が多数形成されることなどにより
低温での放電特性が向上するものと考えられる。従っ
て、水素吸蔵合金表面に露出した偏析相の数や大きさが
上記範囲より小さい場合、偏析相を構成する金属元素の
電解液中の溶出が充分に生じないことなどのため活性化
が遅くなり、また上記範囲より大きい場合は主相との界
面の形成割合が少なくなってしまうため、いずれの場合
も低温での放電特性を向上させるまでには至らない。
The reason why an alkaline storage battery having a large capacity and excellent discharge characteristics at low temperatures can be obtained by using the hydrogen storage alloy having a segregated phase according to the present invention is not always clear at present. However, it is considered as follows. That is, firstly, in the hydrogen storage alloy of the present invention, since the segregation phase is uniformly distributed in any small area of 15 μm square, the hydrogen storage alloy is uniformly pulverized, and further, the hydrogen storage alloy is It is possible to obtain a hydrogen storage alloy powder having a uniform particle size when pulverized. Secondly, since a part of the metal elements constituting the segregation phase exposed on the surface of the hydrogen storage alloy is easily eluted into the electrolytic solution, the activation of the hydrogen storage alloy is facilitated. Thirdly, Ni, which is a constituent element of the segregation phase, remains on the surface of the hydrogen storage alloy and functions as a catalyst, and a large number of interfaces between the segregation phase and the main phase are formed inside the hydrogen storage alloy. It is believed that this improves the discharge characteristics at low temperatures. Therefore, when the number and size of the segregated phases exposed on the surface of the hydrogen storage alloy are smaller than the above range, the activation is delayed because the elution of the metal element forming the segregated phase in the electrolytic solution does not occur sufficiently. On the other hand, if it is larger than the above range, the formation ratio of the interface with the main phase becomes small, and in any case, the discharge characteristics at low temperature cannot be improved.

【0023】上記のような水素吸蔵合金を負極活物質と
して用いることにより、高容量で、低温での高率放電特
性の優れたアルカリ蓄電池が得られる。しかし、上記水
素吸蔵合金も、合金組成によっては、高温下で長期間保
持した後の放電特性、特に低温で放電させた場合に、放
電容量が保持前に比べて低下することも明らかになっ
た。
By using the above hydrogen storage alloy as the negative electrode active material, it is possible to obtain an alkaline storage battery having high capacity and excellent high rate discharge characteristics at low temperature. However, it was also clarified that, depending on the alloy composition, the above hydrogen storage alloy also has a discharge characteristic after being held at high temperature for a long time, particularly when discharged at low temperature, the discharge capacity is lower than that before holding. .

【0024】本発明者らは、上記問題についても検討し
たところ、正極中のMn量を正極の容量に対して0.6
〜6mg/Ahにすることにより解決できることを見出
した。すなわち、本発明のようなアルカリ蓄電池では、
一般に電池組立後に活性化処理および化成処理が行わ
れ、前者の活性化処理では50〜80℃程度の加温下で
保存されるので、そのような加温によって、本発明の偏
析相を有する水素吸蔵合金は、偏析相または主相から電
解液中に溶出した金属元素が正極に移動し、その金属元
素の種類や量により電池の特性が影響を受けると考えら
れる。また、上記現象は化成処理後、使用時に電池を高
温で保持(貯蔵)した場合にも同様に起こり得る。この
高温貯蔵時の溶出金属元素のうち特にMnは、正極にお
いて電池を充電した際に、例えば活物質表面で酸化物と
して析出しやすく、その析出量によっては充放電反応の
障害になり、低温での放電特性の低下を引き起こす原因
になると考えられる。特に高温で電池を貯蔵した場合に
は、上記のような正極へのMnの移動が顕著になり、特
性低下を招きやすい。そのため、本発明者らは、少なく
とも数回の充放電の後に正極に含有されるMnの量を正
極の容量に対して0.6〜6mg/Ah、好ましくは
0.6〜5mg/Ahにすることにより、高温貯蔵後の
低温放電での容量が低下する問題も解決できることを見
出した。なお、本発明にいうMnの含有量は原子吸光分
析により測定される値であり、上記正極の容量とは、電
池を20℃のもとで0.25C(実施例では170m
A)で6時間充電し、1時間休止後、0.2C(実施例
では140mA)で1.0Vまで放電を行った時の放電
容量値(実測値)である。
The inventors of the present invention also examined the above problem and found that the amount of Mn in the positive electrode was 0.6 with respect to the capacity of the positive electrode.
It was found that the problem can be solved by adjusting the amount to 6 mg / Ah. That is, in the alkaline storage battery like the present invention,
In general, an activation treatment and a chemical conversion treatment are performed after the battery is assembled, and the former activation treatment is stored under heating at about 50 to 80 ° C. Therefore, by such heating, hydrogen having a segregation phase of the present invention is obtained. It is considered that in the storage alloy, the metal element eluted from the segregation phase or the main phase into the electrolyte moves to the positive electrode, and the type and amount of the metal element affect the characteristics of the battery. Further, the above phenomenon can similarly occur when the battery is held (stored) at a high temperature during use after the chemical conversion treatment. Of the metal elements eluted during the high temperature storage, Mn, in particular, tends to precipitate as an oxide on the surface of the active material when the battery is charged in the positive electrode, and depending on the amount of the precipitation, it interferes with the charge / discharge reaction, and at low temperature. It is considered that this causes the deterioration of the discharge characteristics of. Particularly when the battery is stored at a high temperature, the above-described migration of Mn to the positive electrode becomes remarkable, and the characteristics are likely to be deteriorated. Therefore, the present inventors set the amount of Mn contained in the positive electrode after charging / discharging at least several times to 0.6 to 6 mg / Ah, preferably 0.6 to 5 mg / Ah with respect to the capacity of the positive electrode. It was found that the problem that the capacity decreases at low temperature discharge after high temperature storage can be solved. The Mn content referred to in the present invention is a value measured by atomic absorption spectrometry, and the capacity of the above-mentioned positive electrode means that the battery has a capacity of 0.25 C at 20 ° C. (170 m in the example).
It is a discharge capacity value (actual measurement value) when the battery is charged in A) for 6 hours, rested for 1 hour, and then discharged up to 1.0 V at 0.2 C (140 mA in the example).

【0025】正極中のMn量を上記範囲内にするために
は、水素吸蔵合金の組成、製造条件を適宜変更し、偏析
相のMn量を低くする方法もあるが、正極中に亜鉛イオ
ンまたは亜鉛化合物を含有させることにより正極中のM
n量を少なくさせることができる。従って、偏析相のM
n量を低減した合金で、正極中に亜鉛イオンまたは亜鉛
化合物を含有させる方法を併用することが好ましい。
In order to keep the amount of Mn in the positive electrode within the above range, there is also a method of appropriately changing the composition of the hydrogen storage alloy and the manufacturing conditions to lower the amount of Mn in the segregation phase. M in the positive electrode by containing a zinc compound
The amount of n can be reduced. Therefore, the segregation phase M
It is preferable to use a method of incorporating zinc ions or a zinc compound in the positive electrode together with an alloy having a reduced n amount.

【0026】上記の亜鉛イオンまたは亜鉛化合物が正極
中に存在することにより、高温貯蔵後の低温放電での特
性が改善できる理由は、現在のところ必ずしも明確では
ないが、以下のように考えられる。すなわち、電池内に
亜鉛化合物を添加すると、その一部または全部が亜鉛イ
オンになり、このイオンが充放電反応によってMnと同
様に電池内を移動し、水素吸蔵合金から電解液中に溶解
したMnイオンの正極への移動を抑制して、正極中のM
n量を正極の容量当たり0.6〜6mg(つまり、0.
6〜6mg/Ah)の範囲に抑制し、また、正極または
正極活物質の表面にMn酸化物が形成されるのを防止
し、それらが相乗的に働いて高温貯蔵後の低温放電特性
を改善できるものと考えられる。
The reason why the presence of the above zinc ion or zinc compound in the positive electrode can improve the characteristics in low temperature discharge after high temperature storage is not always clear at present, but it is considered as follows. That is, when a zinc compound is added to the inside of the battery, a part or all of it becomes zinc ions, and these ions move in the battery in the same manner as Mn by a charge / discharge reaction, and Mn dissolved in the electrolytic solution from the hydrogen storage alloy. It suppresses the migration of ions to the positive electrode, and
The amount of n is 0.6 to 6 mg (that is, 0.
6 to 6 mg / Ah), and also prevents Mn oxides from being formed on the surface of the positive electrode or the positive electrode active material, and they work synergistically to improve low temperature discharge characteristics after high temperature storage. It is considered possible.

【0027】本発明において、亜鉛化合物としては、例
えば、亜鉛酸化物、亜鉛水酸化物、亜鉛塩化物、亜鉛錯
体などが挙げられ、その正極中への含有のさせ方として
は、正極中から電解液中に亜鉛イオンとして溶解できる
状態であれば、任意の方法を採用することができる。ま
た、上記のように亜鉛イオンが充放電反応によって電池
内を移動し得るので、正極、負極、電解液、セパレータ
の少なくとも1つに含有させればよい。すなわち、それ
らの少なくとも1つに亜鉛化合物を含有させれば、その
含有させた亜鉛化合物が亜鉛イオンとなり、その亜鉛イ
オンが充放電反応によって移動し、正極中に亜鉛イオン
または亜鉛化合物として存在するようになるとともに、
Mnの移動を抑制し、かつ正極表面でのMnの析出を抑
制するものと考えられる。ただし、効率を考えると、正
極または電解液中に亜鉛化合物を含有させることが好ま
しく、少なくとも電解液中に含有させることが好まし
い。
In the present invention, examples of the zinc compound include zinc oxide, zinc hydroxide, zinc chloride, zinc complex, and the like. Any method can be adopted as long as it can be dissolved as zinc ions in the liquid. Further, as described above, zinc ions can move in the battery due to the charge / discharge reaction, and therefore, they may be contained in at least one of the positive electrode, the negative electrode, the electrolytic solution, and the separator. That is, when a zinc compound is contained in at least one of them, the zinc compound contained therein becomes zinc ions, and the zinc ions are moved by charge / discharge reaction, and are present as zinc ions or zinc compounds in the positive electrode. As
It is considered that it suppresses the movement of Mn and also suppresses the precipitation of Mn on the surface of the positive electrode. However, in consideration of efficiency, it is preferable that the zinc compound is contained in the positive electrode or the electrolytic solution, and at least in the electrolytic solution.

【0028】正極に亜鉛化合物を含有させる場合、その
亜鉛化合物の含有量としては酸化亜鉛換算で水酸化ニッ
ケル100重量部に対して0.5〜10重量部が好まし
く、1〜5重量部がより好ましい。負極に亜鉛化合物を
含有させる場合、その亜鉛化合物の含有量としては酸化
亜鉛換算で水素吸蔵合金100重量部に対して0.01
〜2重量部が好ましく、0.05〜0.7重量部がより
好ましい。また、電解液に亜鉛化合物を含有させる場
合、亜鉛化合物が電解液中の濃度として酸化亜鉛換算で
30〜65g/lが好ましく、40〜55g/lがより
好ましい。セパレータに亜鉛化合物を含有させる場合、
その亜鉛化合物の含有量としては酸化亜鉛換算でセパレ
ータ1m2 当たりの重さ(つまり、g/m2 )で0.0
15〜0.3g/m2 が好ましく、0.03〜0.15
g/m2 がより好ましい。亜鉛化合物の含有量を上記の
範囲にすることにより、Mnの正極への移動を充分に抑
制することができるとともに、正極表面でのMn酸化物
の析出による影響を少なくすることができ、活物質であ
る水酸化ニッケルの電気化学的反応を良好に維持するこ
とができ、それによって、高温貯蔵後の低温放電特性を
向上させることができるようになる。
When the zinc compound is contained in the positive electrode, the content of the zinc compound is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of nickel hydroxide in terms of zinc oxide. preferable. When the negative electrode contains a zinc compound, the content of the zinc compound is 0.01 in terms of zinc oxide based on 100 parts by weight of the hydrogen storage alloy.
Is preferably 2 to 2 parts by weight, more preferably 0.05 to 0.7 parts by weight. When the electrolytic solution contains a zinc compound, the concentration of the zinc compound in the electrolytic solution is preferably 30 to 65 g / l in terms of zinc oxide, and more preferably 40 to 55 g / l. When containing a zinc compound in the separator,
The content of the zinc compound is 0.00 in terms of weight per 1 m 2 of separator (that is, g / m 2 ) in terms of zinc oxide.
15-0.3 g / m 2 is preferable, 0.03-0.15
g / m 2 is more preferable. By setting the content of the zinc compound in the above range, it is possible to sufficiently suppress the movement of Mn to the positive electrode, and it is possible to reduce the influence of the precipitation of Mn oxide on the positive electrode surface. The electrochemical reaction of nickel hydroxide can be well maintained, and thereby the low temperature discharge characteristics after high temperature storage can be improved.

【0029】本発明において、負極は、例えば、前記の
ようにして得られた水素吸蔵合金を粉砕し、要すれば、
バインダー、導電助剤などを適宜添加し、水または溶剤
の存在下で、ペースト状にし、そのペーストを支持体に
塗布、充填し、乾燥した後、圧縮成形することによって
作製される。ただし、負極の作製方法は上記例示の場合
のみに限られることはない。正極は、水酸化ニッケルを
活物質とし、要すれば、バインダー、導電助剤などを適
宜添加し、焼結式またはペースト式で作製される。そし
て、それらの正極と負極はセパレータを介して巻回して
巻回構造の電極体などにされ、その巻回構造の電極体な
どを電池缶に挿入し、電解液を注入した後、電池缶の開
口部を封口することによりアルカリ蓄電池を得ることが
できる。
In the present invention, for the negative electrode, for example, the hydrogen storage alloy obtained as described above is crushed, and if necessary,
It is prepared by adding a binder, a conductive auxiliary agent, etc. as appropriate, forming a paste in the presence of water or a solvent, coating and filling the paste on a support, drying and then compression-molding. However, the method for producing the negative electrode is not limited to the above-mentioned case. The positive electrode is manufactured by a sintering method or a paste method by using nickel hydroxide as an active material, and if necessary, a binder, a conductive auxiliary agent, etc. are appropriately added. Then, the positive electrode and the negative electrode are wound via a separator into an electrode body or the like having a winding structure, and the electrode body or the like having the winding structure is inserted into a battery can, and after injecting an electrolytic solution, the battery can An alkaline storage battery can be obtained by sealing the opening.

【0030】上記バインダーとしては、例えば、ポリテ
トラフルオロエチレン、ポリアクリル酸ナトリウム、ポ
リビニルアルコール、スチレンとアクリル系化合物との
共重合体などが挙げられる。それらの中でも、スチレン
と2−エチルヘキシルアクリレートを主成分とする単量
体混合物との共重合体は、本発明の水素吸蔵合金との親
和性が高く、少量でも良好な分散性が得られるので、特
に好適に用いられる。このバインダーの使用量として
は、水素吸蔵合金粉末100重量部に対して0.5〜5
重量部にするのが好ましい。
Examples of the binder include polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol, and a copolymer of styrene and an acrylic compound. Among them, a copolymer of styrene and a monomer mixture containing 2-ethylhexyl acrylate as a main component has a high affinity with the hydrogen storage alloy of the present invention, and good dispersibility can be obtained even in a small amount. Particularly preferably used. The amount of the binder used is 0.5 to 5 with respect to 100 parts by weight of the hydrogen storage alloy powder.
It is preferable to use parts by weight.

【0031】本発明の負極には、さらにカルボキシメチ
ルセルロース、メチルセルロース、ヒドロキシプロピル
セルロース、ポリオキシエチレンなどの増粘剤を含有さ
せてもよい。上記増粘剤の中でも、ポリオキシエチレン
は、ペースト化した場合の粘度増加が少ないので、特に
好適に用いられる。この増粘剤の含有量は、水素吸蔵合
金粉末100重量部に対して1〜5重量部にするのが好
ましい。
The negative electrode of the present invention may further contain a thickener such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, polyoxyethylene and the like. Among the above-mentioned thickeners, polyoxyethylene is particularly preferably used because it does not increase the viscosity when formed into a paste. The content of the thickener is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.

【0032】なお、本発明のアルカリ蓄電池において
は、前記巻回構造の電極体の負極のほぼ最内周部とほぼ
最外周部には支持体の片面のみに活物質含有層を形成す
ることが好ましい。この理由は実施例において詳細に説
明するように、そのような巻回構造の電極体にすること
により、負極のほぼ最内周部とほぼ最外周部の余剰部分
の活物質含有層を低減することができ、そのぶん、正極
活物質を増加させ、電気容量の大きな電池が得られると
ともに、低コスト化をも図ることができるからである。
In the alkaline storage battery of the present invention, the active material-containing layer may be formed on only one surface of the support at substantially the innermost and outermost peripheral portions of the negative electrode of the wound electrode body. preferable. The reason for this is, as will be described in detail in Examples, that the electrode body having such a winding structure reduces the active material-containing layer in the surplus portions of the substantially innermost peripheral portion and the substantially outermost peripheral portion of the negative electrode. This is because the positive electrode active material can be increased, a battery having a large electric capacity can be obtained, and the cost can be reduced.

【0033】[0033]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て溶液や分散液の濃度を示す%は重量%である。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples. In the following examples and the like,% indicating the concentration of a solution or dispersion is% by weight.

【0034】実施例1〜6 市販のMm(30〜70重量%のLaと10〜50重量
%のCeと0〜30重量%のNdと0〜6重量%のPr
とを含む、それらの割合はそれぞれの実施例で異なる
が、上記の範囲内にあり、特性においては大差はな
い)、Ni、Co、MnおよびAlの各原材料を組成割
合を変えて高周波溶解炉によりアルゴンガス雰囲気中に
おいて溶解したのち、約800℃/secの冷却速度で
急冷し、得られた各合金をさらに真空中で800〜10
00℃で3〜10時間熱処理して後記の表1に示す組成
の6種類の水素吸蔵合金(水素吸蔵合金A〜F)を作製
した。これらの水素吸蔵合金A〜Fは後に詳しく説明す
るようにそれぞれ実施例1〜6のモデルセルおよび密閉
形アルカリ蓄電池の負極活物質として用いるものであ
る。
Examples 1-6 Commercially available Mm (30-70% by weight La, 10-50% by weight Ce, 0-30% by weight Nd and 0-6% by weight Pr).
And their proportions differ in each embodiment, but they are within the above range and there is no great difference in characteristics), the raw materials of Ni, Co, Mn and Al are changed in composition ratio and the high frequency melting furnace is used. After being melted in an argon gas atmosphere, the alloy is rapidly cooled at a cooling rate of about 800 ° C./sec.
Six types of hydrogen storage alloys (hydrogen storage alloys A to F) having the compositions shown in Table 1 below were manufactured by heat treatment at 00 ° C. for 3 to 10 hours. These hydrogen storage alloys A to F are used as the negative electrode active materials of the model cells and sealed alkaline storage batteries of Examples 1 to 6, respectively, as described later in detail.

【0035】上記水素吸蔵合金A〜Fのうち、水素吸蔵
合金Aについてその断面の金属組織を図1(倍率:約2
000倍)に模式的に示す。図1において、偏析相21
の断面は黒色で表示され、それ以外の部分は主相を示し
ている。この水素吸蔵合金Aの断面の任意の15μm平
方の領域を5カ所設定し、その領域内に存在する偏析相
の数を測定したところ、いずれの領域においてもその数
は15〜25の範囲内にあった。また、これらの偏析相
に最小直径で外接する円の直径は0.3〜4μmであ
り、透過型電子顕微鏡(TEM)のエネルギー分散型X
線分光器(EDS)を用いて電子線加速電圧:200k
eV、ビーム径:1nm、試料電流200pAの条件下
で偏析相の組成分析を行うと、偏析相には57重量%の
Niと26重量%のMnのほかAl、Coが含有されて
いた。他の水素吸蔵合金B〜Fについても同様に調べる
と、いずれも偏析相の数は1〜40の範囲内にあり、偏
析相に最小直径で外接する円の直径は0.2〜7μmの
範囲にあり、偏析相のNi含有量は50重量%以上であ
り、Mn含有量は28重量%以下であった。
Of the hydrogen storage alloys A to F, the hydrogen storage alloy A is shown in FIG. 1 (magnification: about 2).
000 times). In FIG. 1, the segregation phase 21
The cross section of is shown in black, and the other parts show the main phase. Five areas of arbitrary 15 μm square of the cross section of this hydrogen storage alloy A were set, and the number of segregated phases existing in the area was measured. The number was 15 to 25 in any area. there were. Further, the diameter of the circle circumscribing these segregated phases with the minimum diameter is 0.3 to 4 μm, and the energy dispersive X of a transmission electron microscope (TEM) is used.
Electron beam accelerating voltage: 200k using line spectrometer (EDS)
When the compositional analysis of the segregated phase was performed under the conditions of eV, beam diameter: 1 nm, and sample current of 200 pA, the segregated phase contained 57 wt% Ni and 26 wt% Mn, as well as Al and Co. When the other hydrogen storage alloys B to F are also examined in the same manner, the number of segregation phases is in the range of 1 to 40, and the diameter of the circle circumscribing the segregation phase with the minimum diameter is in the range of 0.2 to 7 μm. The Ni content of the segregated phase was 50% by weight or more, and the Mn content was 28% by weight or less.

【0036】これらの水素吸蔵合金A〜Fの組成、偏析
相の数(断面の任意の5カ所の15μm平方のそれぞれ
の領域に存在する偏析相の数、最小値〜最大値の範囲で
示す)および偏析相に最小直径で外接する円の直径(上
記任意の5カ所の15μm平方のそれぞれの領域に存在
する個々の偏析相に最小直径で外接するそれぞれの円の
直径、最小値〜最大値の範囲で示す)を表1に示す。ま
た、これらの水素吸蔵合金A〜Fを負極活物質として用
いてそれぞれ実施例1〜6のモデルセルおよび密閉形ア
ルカリ蓄電池を作製し、モデルセルでは合金(水素吸蔵
合金)の容量(mAh/g)を調べ、密閉形アルカリ蓄
電池では低温高率放電での放電容量および高温貯蔵後の
低温高率放電での放電容量を測定した。ただし、その詳
細は後記の比較例1の場合とまとめて説明し、その結果
については後記の表2に示す。
The composition of these hydrogen storage alloys A to F, the number of segregated phases (the number of segregated phases existing in each of 15 arbitrary square areas of 15 μm in the cross section, indicated by the range from the minimum value to the maximum value) And the diameter of the circle circumscribing the segregation phase with the minimum diameter (the diameter of each circle circumscribing the segregation phase with the minimum diameter present in each of the above 5 arbitrary areas of 15 μm square, from the minimum value to the maximum value). The values are shown in Table 1). Further, using these hydrogen storage alloys A to F as negative electrode active materials, model cells and sealed alkaline storage batteries of Examples 1 to 6 were produced, respectively, and the capacity (mAh / g) of the alloy (hydrogen storage alloy) was used in the model cells. ) Was measured, and the discharge capacity of the sealed alkaline storage battery at low temperature and high rate discharge and the discharge capacity at low temperature and high rate discharge after high temperature storage were measured. However, the details will be described together with the case of Comparative Example 1 described later, and the results are shown in Table 2 described later.

【0037】比較例1 Mm、Ni、Co、MnおよびAlの組成割合を変えた
以外は、実施例1と同様にして、表1に示す組成の水素
吸蔵合金Gを作製した。この水素吸蔵合金Gは、偏析相
の数が40を超える水素吸蔵合金である。なお、表1で
は、スペース上の関係で水素吸蔵合金を簡略化して「合
金」で示す。
Comparative Example 1 A hydrogen storage alloy G having the composition shown in Table 1 was produced in the same manner as in Example 1 except that the composition ratios of Mm, Ni, Co, Mn and Al were changed. This hydrogen storage alloy G is a hydrogen storage alloy in which the number of segregation phases exceeds 40. In addition, in Table 1, a hydrogen storage alloy is simplified and shown as "alloy" because of space considerations.

【0038】また、水素吸蔵合金Gを用いて比較例1の
モデルセルおよび密閉形アルカリ蓄電池を作製し、実施
例1と同様にモデルセルでは合金(水素吸蔵合金)の容
量(mAh/g)を調べ、密閉形アルカリ蓄電池では低
温高率放電での放電容量および高温貯蔵後の低温高率放
電での放電特性を測定した。それらについては後に詳し
く説明する。
Further, a model cell and a sealed alkaline storage battery of Comparative Example 1 were produced using the hydrogen storage alloy G, and in the same manner as in Example 1, the capacity (mAh / g) of the alloy (hydrogen storage alloy) was determined in the model cell. For the sealed alkaline storage batteries, the discharge capacity at low temperature and high rate discharge and the discharge characteristics at low temperature and high rate discharge after high temperature storage were measured. They will be described in detail later.

【0039】[0039]

【表1】 [Table 1]

【0040】上記表1に示す組成の各水素吸蔵合金A〜
Gをそれぞれ平均粒子径が約30μmになるように粉砕
し、その水素吸蔵合金粉末を負極活物質として用いてモ
デルセルおよび密閉形アルカリ蓄電池を作製した。
Each hydrogen storage alloy A to the composition shown in Table 1 above
G was pulverized to have an average particle size of about 30 μm, and the hydrogen storage alloy powder was used as a negative electrode active material to prepare a model cell and a sealed alkaline storage battery.

【0041】モデルセルは以下のようにして作製した。
上記の水素吸蔵合金A〜Gをそれぞれ0.25gずつ採
取し、その水素吸蔵合金粉末をCu粉末0.75gと混
合した後、加圧成形して直径15mmのペレットにし、
それをリード線の付いたNi網ではさみ負極とした。こ
の負極を80℃の30%水酸化カリウム水溶液中に1時
間浸漬した後、ポリプロピレン不織布からなるセパレー
タを介して上記負極より充分に大きい容量を有する公知
の焼結式ニッケル正極を上記負極の両側に配置し、全体
を固定した後、充分な量の30%水酸化カリウム水溶液
からなる電解液に浸漬して負極容量規制のモデルセルを
作製した。
The model cell was manufactured as follows.
0.25 g of each of the above hydrogen storage alloys A to G was sampled, the hydrogen storage alloy powder was mixed with 0.75 g of Cu powder, and then pressure-molded into pellets having a diameter of 15 mm,
This was used as a negative electrode with a Ni net having a lead wire. This negative electrode was immersed in a 30% aqueous potassium hydroxide solution at 80 ° C. for 1 hour, and a known sintered nickel positive electrode having a capacity sufficiently larger than that of the negative electrode was placed on both sides of the negative electrode via a separator made of a polypropylene nonwoven fabric. After arranging and fixing the whole, it was immersed in an electrolytic solution composed of a sufficient amount of a 30% potassium hydroxide aqueous solution to prepare a model cell of negative electrode capacity regulation.

【0042】このモデルセルの各水素吸蔵合金の容量を
測定するため、それらのモデルセルに対して25mA×
5時間の充電、0.5時間の休止、25mAの放電(終
止電圧:Hg/HgO参照電極に対し−0.65V)を
10サイクル繰り返し、10サイクル目の放電での放電
容量を測定して、それを水素吸蔵合金の容量とした。そ
の結果を後記の表2に示す。
In order to measure the capacity of each hydrogen storage alloy of this model cell, 25 mA × for those model cells was measured.
Charging for 5 hours, resting for 0.5 hours, discharging of 25 mA (final voltage: −0.65 V with respect to Hg / HgO reference electrode) was repeated 10 cycles, and the discharge capacity at the discharge of the 10th cycle was measured, It was defined as the capacity of the hydrogen storage alloy. The results are shown in Table 2 below.

【0043】また、密閉形アルカリ蓄電池は以下のよう
にして作製した。まず、負極を以下のようにして作製し
た。前記の水素吸蔵合金粉末100重量部に対して、ニ
ッケル粉末2重量部、6%ポリエチレンオキサイド水溶
液20重量部および40%スチレン−2−エチルヘキシ
ルアクリレート共重合体分散液1.7重量部を添加し混
合して、負極用のペーストを調製した。このペーストを
パンチングメタルからなる支持体の両面に塗布し、乾燥
して活物質含有層を形成した後、その一方の面の活物質
含有層の一部を取り去ることにより、支持体の一方の面
に活物質含有層を有しない部分を設け、その後、加圧し
切断して、図2に示すような長さ69mm×幅36mm
×厚さ0.33mm(一部の厚さは0.20mm)のシ
ート状の負極に仕上げた。負極中の水素吸蔵合金の重量
は約3.4gであった。
The sealed alkaline storage battery was manufactured as follows. First, the negative electrode was manufactured as follows. To 100 parts by weight of the above hydrogen storage alloy powder, 2 parts by weight of nickel powder, 20 parts by weight of 6% polyethylene oxide aqueous solution and 1.7 parts by weight of 40% styrene-2-ethylhexyl acrylate copolymer dispersion were added and mixed. Then, a paste for the negative electrode was prepared. This paste is applied on both sides of a support made of punching metal, dried to form an active material-containing layer, and then a part of the active material-containing layer on one surface of the support is removed to obtain one surface of the support. A portion having no active material-containing layer is provided on the substrate, and then the sheet is pressed and cut to have a length of 69 mm and a width of 36 mm as shown in FIG.
× A sheet-like negative electrode having a thickness of 0.33 mm (a part of the thickness is 0.20 mm) was finished. The weight of the hydrogen storage alloy in the negative electrode was about 3.4 g.

【0044】この図2に示す負極について詳細に説明す
ると、図2の(a)は負極の一方の側面図で、図2の
(b)は負極の他方の側面図であり、図2の(c)は上
記(a)の長手方向の切断面図(D−D線における切断
面図)である。なお、図2の(a)および(b)におい
ては、活物質含有層2bおよび2cを設けた部分をわか
りやすくするため、2bおよび2cには十字状に斜線を
入れている。ここで、活物質含有層とは、上記の記載か
らも明らかなように、負極活物質である水素吸蔵合金の
みならずバインダーなども含む層のことである。
The negative electrode shown in FIG. 2 will be described in detail. FIG. 2A is one side view of the negative electrode, FIG. 2B is another side view of the negative electrode, and FIG. c) is a longitudinal sectional view (sectional view taken along the line D-D) of (a). In FIGS. 2A and 2B, in order to make it easy to understand the portions where the active material containing layers 2b and 2c are provided, 2b and 2c are hatched in a cross shape. Here, as is clear from the above description, the active material-containing layer is a layer containing not only the hydrogen storage alloy that is the negative electrode active material but also the binder and the like.

【0045】負極2の支持体2aとしては厚さ70μm
のパンチングメタルが用いられ、上記支持体2aの両面
には活物質含有層2bおよび2cがそれぞれ厚さ130
μmで形成されている。ただし、負極2の一部には、支
持体2aの一方の面にしか活物質含有層が形成されてい
ない部分があり、具体的には、負極2の全長は69mm
であるが、支持体2aの一方の面には、その一方の端部
Eから他方の端部Fに向かって29mmのところまでは
活物質含有層が形成されておらず、それ以後は端部Fま
で連続的に活物質含有層2bが形成され、支持体2aの
他方の面には、一方の端部Eから他方の端部Fに向かっ
て60mmのところまで活物質含有層2cが形成され、
残り9mmについては活物質含有層が形成されていな
い。上記の端部F側で活物質含有層の形成されていない
部分が巻回構造の電極体にした時に負極のほぼ最内周部
になり、端部Eから端部F側に向かって29mmのとこ
ろまでの活物質含有層が形成されていない部分が巻回構
造の電極体にした時に負極のほぼ最外周部になる。な
お、上記でほぼ最内周部やほぼ最外周部にしているの
は、真正に最内周部や最外周部であることが好ましい
が、巻回手段などにより若干ずれが生じることがあり、
設定通りに最内周部や最外周部にすることができない場
合があるのと、そのように若干ずれが生じても特性に大
きな影響を与えないからである。また、この図2は模式
的に示したものであり、例えば、負極2の長さに対して
支持体2aの厚みや活物質含有層2bおよび2cの厚み
を大きく図示したり、負極2の活物質含有層の形成され
ていない部分の位置やその幅なども必ずしも寸法通りに
は図示していない。
The thickness of the support 2a for the negative electrode 2 is 70 μm.
Punching metal is used, and active material-containing layers 2b and 2c each having a thickness of 130 are formed on both surfaces of the support 2a.
It is formed in μm. However, a part of the negative electrode 2 has a part in which the active material-containing layer is formed only on one surface of the support 2a, and specifically, the total length of the negative electrode 2 is 69 mm.
However, the active material-containing layer is not formed on one surface of the support 2a from the one end E to the other end F of the support 2a, and thereafter the end portion is not formed. The active material containing layer 2b is continuously formed up to F, and the active material containing layer 2c is formed on the other surface of the support 2a from the one end E to the other end F up to 60 mm. ,
The active material-containing layer is not formed for the remaining 9 mm. When the active material containing layer is not formed on the end portion F side, it becomes the innermost peripheral portion of the negative electrode when the electrode body having the wound structure is formed. The portion where the active material-containing layer is not formed up to this point becomes almost the outermost peripheral portion of the negative electrode when the electrode body having the wound structure is formed. It is preferable that the innermost peripheral portion and the substantially outermost peripheral portion are genuinely the innermost peripheral portion and the outermost peripheral portion in the above.
It may not be possible to set the innermost peripheral portion or the outermost peripheral portion as set, because even if such a slight deviation occurs, the characteristics are not significantly affected. In addition, FIG. 2 is a schematic diagram, and for example, the thickness of the support 2a and the thicknesses of the active material-containing layers 2b and 2c are illustrated in a large manner with respect to the length of the negative electrode 2, or the activity of the negative electrode 2 is illustrated. The position of the portion where the substance-containing layer is not formed, the width thereof, and the like are not necessarily shown according to the dimensions.

【0046】負極2を上記のような構造にしたのは、巻
回構造の電極体を作製した時に、負極の両端部は正極と
片面でのみ対向することになるため、その部分の負極活
物質を低減することにより、正極活物質を増量すること
ができ、電池を高容量化することができるからである。
ただし、このような構造の負極では、全面に均一に活物
質含有層を有する通常の負極に比べて、正極活物質量に
対する負極活物質量の比率が小さくなるため、負極活物
質である水素吸蔵合金はより高容量であることが要求さ
れ、サイクル寿命の長い電池を得るためには、水素吸蔵
合金は少なくとも300mAh/g以上の容量を有して
いることが必要である。
The structure of the negative electrode 2 is as described above, because both ends of the negative electrode face the positive electrode only on one side when the electrode body having the wound structure is manufactured, and therefore the negative electrode active material in that part is formed. This is because the amount of the positive electrode active material can be increased and the capacity of the battery can be increased by reducing.
However, in the negative electrode having such a structure, the ratio of the amount of the negative electrode active material to the amount of the positive electrode active material is smaller than that of a normal negative electrode having an active material-containing layer uniformly over the entire surface, so that the hydrogen storage material that is the negative electrode active material is absorbed. The alloy is required to have a higher capacity, and the hydrogen storage alloy must have a capacity of at least 300 mAh / g or more in order to obtain a battery having a long cycle life.

【0047】また、正極は以下のようにして作製した。
水酸化ニッケル100重量部に対して、ニッケル粉末5
重量部、酸化コバルト(CoO)6重量部、10%カル
ボキシメチルセルロース水溶液10重量部、60%ポリ
テトラフルオロエチレン(PTFE)分散液5重量部お
よびイオン交換水40重量部を添加し混合して、正極用
ペーストを調製した。このペーストをニッケル発泡体よ
りなる支持体に塗布、充填し、乾燥した後、加圧し切断
して、長さ48mm×幅36mm×厚さ0.59mmの
シート状の正極〔容量(理論値):680mAh〕に仕
上げた。そして、この正極は末端部にニッケルのリード
体を取り付けて使用した。
The positive electrode was prepared as follows.
Nickel powder 5 against 100 parts by weight of nickel hydroxide
Parts by weight, 6 parts by weight of cobalt oxide (CoO), 10 parts by weight of 10% carboxymethyl cellulose aqueous solution, 5 parts by weight of 60% polytetrafluoroethylene (PTFE) dispersion and 40 parts by weight of deionized water, and mixed to obtain a positive electrode. A paste was prepared. This paste is applied to a support made of nickel foam, filled, dried, pressed and cut to obtain a sheet-like positive electrode having a length of 48 mm, a width of 36 mm and a thickness of 0.59 mm [capacity (theoretical value): 680 mAh]. Then, this positive electrode was used with a nickel lead body attached to the end portion.

【0048】セパレータには、親水処理したポリプロピ
レン不織布を用い、上記負極と正極をこのセパレータを
介して渦巻状に巻回して図3に示す巻回構造の電極体を
作製した。この電極体の最内周部と最外周部の負極は、
片面のみ活物質含有層を有する部分となるように巻回さ
れている。
A hydrophilic polypropylene non-woven fabric was used as a separator, and the negative electrode and the positive electrode were spirally wound with the separator interposed therebetween to produce an electrode body having a winding structure shown in FIG. The innermost and outermost negative electrodes of this electrode assembly are
It is wound so that only one side has a portion having an active material-containing layer.

【0049】ここで、図3に示す渦巻状巻回構造の電極
体について説明すると、上記巻回構造の電極体は、その
作製にあたってセパレータ3をその中央部で折り返し、
負極2の両面を覆うように配置し、端部F(図2参照)
側を渦巻の中心側になるようにしつつ、正極1と負極2
とをセパレータ3を介して渦巻状に巻回した。そして、
図3には図示していないが、この渦巻状巻回構造の電極
体において、負極2は少なくともその活物質含有層2b
または2cがセパレータ3を介して正極1と対向してい
る。また、図3において、負極2の最内周部と最外周部
の厚みが他の部分に比べて薄く図示されているのは、前
記のように、電池反応に関与しない部分の活物質含有層
を除去して支持体の一方の面に活物質含有層を有しない
部分を設けたからである。前記の図2もそうである
が、、この図3も模式的に示したものであり、例えば、
正極1、負極2、セパレータ3などをそれらの長さに対
して厚く図示したり、各部材を必ずしも寸法通りに図示
していない。また、この図3に示す巻回構造の電極体に
関し、図3に図示していない部分について説明すると、
負極2の最内周部では活物質含有層2b(図2参照)の
みがセパレータ3を介して正極1と対向し、負極2の最
外周部では活物質含有層2c(図2参照)のみがセパレ
ータ3を介して正極1と対向し、最内周部と最外周部以
外の部分では、活物質含有層2bと2cがセパレータ3
を介して正極1と対向している。また、同様に図3には
示されていないが、負極2の最外周部の外面側には支持
体が露出していて、その支持体が電池缶5の内壁に接触
している。
Here, the electrode body having the spiral winding structure shown in FIG. 3 will be described. In the production of the electrode body having the spiral structure, the separator 3 is folded back at its central portion,
It is arranged so as to cover both surfaces of the negative electrode 2, and the end portion F (see FIG. 2)
The positive electrode 1 and the negative electrode 2 while making the side closer to the center of the spiral.
And were spirally wound via the separator 3. And
Although not shown in FIG. 3, in the spirally wound electrode body, the negative electrode 2 has at least the active material-containing layer 2b.
Alternatively, 2c faces the positive electrode 1 via the separator 3. In addition, in FIG. 3, the thickness of the innermost peripheral portion and the outermost peripheral portion of the negative electrode 2 is shown to be smaller than that of the other portions, as described above. Is removed to provide a portion having no active material-containing layer on one surface of the support. This is also the case with FIG. 2 described above, but this FIG. 3 is also schematically shown, for example,
The positive electrode 1, the negative electrode 2, the separator 3 and the like are not shown thicker than their lengths, and the respective members are not necessarily shown according to the dimensions. Further, regarding the electrode body having the winding structure shown in FIG. 3, a part not shown in FIG. 3 will be described.
In the innermost peripheral portion of the negative electrode 2, only the active material-containing layer 2b (see FIG. 2) faces the positive electrode 1 via the separator 3, and in the outermost peripheral portion of the negative electrode 2, only the active material-containing layer 2c (see FIG. 2) is formed. The active material-containing layers 2b and 2c are opposed to the positive electrode 1 with the separator 3 interposed therebetween, and the active material-containing layers 2b and 2c are provided in the separator 3 at portions other than the innermost peripheral portion and the outermost peripheral portion.
It faces the positive electrode 1 via. Similarly, although not shown in FIG. 3, a support is exposed on the outer surface side of the outermost peripheral portion of the negative electrode 2, and the support is in contact with the inner wall of the battery can 5.

【0050】そして、図3において、20は正極1の集
電部(タブ)であり、正極1の最外周部に設けられてい
る。この集電部20は、正極1の支持体の空孔の一部を
潰して水酸化ニッケルを含有するペーストが空孔に入り
込まないようにして金属体のみにし、そこに正極リード
体となるニッケルリボンの一端を溶接して構成されるも
のである。前記したように、この図3も模式的に図示し
たものであり、電池缶5は内周面のみ細線で示してい
る。また、この図3では、電極体4と電池缶5との間に
大きな空隙があるように図示されているが、これは、実
際には厚みの薄い部材を一定の厚みを持たせて図示して
いるからであり、現実には図示のような大きな空隙はで
きない。
In FIG. 3, reference numeral 20 denotes a current collecting portion (tab) of the positive electrode 1, which is provided on the outermost peripheral portion of the positive electrode 1. The current collector 20 is formed by crushing a part of the pores of the support of the positive electrode 1 so that the paste containing nickel hydroxide does not enter the pores, leaving only a metal body, and nickel serving as a positive electrode lead body is formed therein. It is constructed by welding one end of the ribbon. As described above, FIG. 3 is also schematically shown, and the battery can 5 is shown only by the thin line on the inner peripheral surface. Further, in FIG. 3, a large gap is shown between the electrode body 4 and the battery can 5, but this is actually shown by showing a thin member with a certain thickness. In reality, a large void as shown in the figure cannot be made.

【0051】この電極体を電池缶に挿入し、電解液とし
て水酸化リチウムを17g/l含む30%水酸化カリウ
ム水溶液に酸化亜鉛の濃度を種々に変えて含有させたも
のを注入し、さらに電池缶の封口を行うことにより単4
サイズで図4に示す構造の密閉形アルカリ蓄電池を得
た。すなわち、実施例1および実施例6の電池に用いる
電解液は酸化亜鉛濃度を65mg/lにし、実施例2お
よび実施例3および比較例1の電池に用いる電解液は酸
化亜鉛濃度を30mg/lにし、実施例4および実施例
5に用いる電解液は酸化亜鉛濃度を45mg/lにして
密閉形アルカリ蓄電池を作製した。
This electrode body was inserted into a battery can, and a 30% aqueous solution of potassium hydroxide containing 17 g / l of lithium hydroxide containing various concentrations of zinc oxide was injected as an electrolytic solution. AA can be closed by closing the can
A sealed alkaline storage battery having a size shown in FIG. 4 was obtained. That is, the electrolytes used in the batteries of Examples 1 and 6 had a zinc oxide concentration of 65 mg / l, and the electrolytes used in the batteries of Examples 2 and 3 and Comparative Example 1 had a zinc oxide concentration of 30 mg / l. Then, the electrolytic solution used in Examples 4 and 5 had a zinc oxide concentration of 45 mg / l to prepare sealed alkaline storage batteries.

【0052】ここで、図4に示す電池について説明する
と、正極1は前記のように水酸化ニッケルを活物質とし
て作製されたペースト式ニッケル電極からなり、負極2
は前記のように水素吸蔵合金を活物質として作製された
ペースト式水素吸蔵合金電極からなるが、この図4では
正極1や負極2はその詳細について示しておらず、支持
体などを省略して、単一構造のものとして示している。
そして、セパレータ3はポリプロピレン不織布からなる
ものであり、上記正極1と負極2はこのセパレータ3を
介して重ね合わせられ、渦巻状に巻回して巻回構造の電
極体4として電池缶5内に挿入され、その上部には絶縁
体14が配置されている。また、電池缶5の底部には上
記電極体4の挿入に先立って絶縁体13が配設されてい
る。
Now, the battery shown in FIG. 4 will be described. The positive electrode 1 is a pasty nickel electrode produced by using nickel hydroxide as an active material as described above, and the negative electrode 2 is used.
Is composed of a paste-type hydrogen storage alloy electrode prepared by using a hydrogen storage alloy as an active material as described above. However, the details of the positive electrode 1 and the negative electrode 2 are not shown in FIG. , Shown as a single structure.
The separator 3 is made of polypropylene non-woven fabric, and the positive electrode 1 and the negative electrode 2 are superposed on each other with the separator 3 interposed therebetween and are spirally wound and inserted into the battery can 5 as an electrode body 4 having a spiral structure. The insulator 14 is disposed on the top of the insulator 14. An insulator 13 is provided on the bottom of the battery can 5 prior to the insertion of the electrode body 4.

【0053】環状ガスケット6はナイロン66で作製さ
れ、電池蓋7は正極端子板8と封口体9とそれらで形成
される内部空間に配置された金属バネ10と弁体11と
で構成され、電池缶5の開口部はこの電池蓋7などで封
口されている。つまり、電池缶5内に巻回構造の電極体
4や絶縁体13、14などを挿入した後、電池缶5の開
口端近傍部分に底部が内周側に突出した環状の溝5aを
形成し、その溝5aの内周側突出部で環状ガスケット6
の下部を支えさせて環状ガスケット6と電池蓋7とを電
池缶5の開口部に配置し、電池缶5の溝5aから先の部
分を内方に締め付けて電池缶5の開口部を封口してい
る。上記正極端子板8にはガス排出孔8aが設けられ、
封口板9にはガス検知孔9aが設けられ、正極端子板8
と封口板9との間には金属バネ10と弁体11とが配置
されている。そして、封口板9の外周部を折り曲げて正
極端子板8の外周部を挟み込んで正極端子板8と封口板
9とを固定している。
The annular gasket 6 is made of nylon 66, and the battery lid 7 is composed of the positive electrode terminal plate 8, the sealing body 9 and the metal spring 10 and the valve body 11 arranged in the internal space formed by them. The opening of the can 5 is sealed with the battery lid 7 or the like. That is, after inserting the wound electrode body 4 and the insulators 13 and 14 into the battery can 5, the bottom of the battery can 5 is formed into an annular groove 5a in the vicinity of the open end. , The annular gasket 6 at the inner peripheral projection of the groove 5a.
The annular gasket 6 and the battery lid 7 are placed in the opening of the battery can 5 by supporting the lower part of the battery can 5, and the portion of the battery can 5 from the groove 5a is tightened inward to seal the opening of the battery can 5. ing. The positive electrode terminal plate 8 is provided with a gas discharge hole 8a,
The sealing plate 9 is provided with a gas detection hole 9a, and the positive electrode terminal plate 8
The metal spring 10 and the valve body 11 are arranged between the sealing plate 9 and the sealing plate 9. Then, the outer peripheral portion of the sealing plate 9 is bent to sandwich the outer peripheral portion of the positive electrode terminal plate 8 to fix the positive electrode terminal plate 8 and the sealing plate 9.

【0054】この電池は、通常の状況下では金属バネ1
0の押圧力により弁体11がガス検知孔9aを閉鎖して
いるので、電池内部は密閉状態に保たれているが、電池
内部にガスが発生して電池内部の圧力が異常に上昇した
場合には、金属バネ10が収縮して弁体11とガス検知
孔9aとの間に隙間が生じ、電池内部のガスはガス検知
孔9aおよびガス排出孔8aを通過して電池外部に放出
され、それによって電池内圧が低下して電池内圧が正常
に戻った場合には、金属バネ10が元の状態に復元し、
その押圧力により弁体11が再びガス検知孔9aを閉鎖
して電池内部を密閉構造に保つようになる。上記のよう
に金属バネ10と弁体11が安全弁の主材となるが、安
全弁は上記金属バネ10と弁体11のみで構成されるも
のではなく、それらと正極端子板8や封口板9などの他
の機能を有する部材とで構成されている。
This battery has a metal spring 1 under normal circumstances.
Since the valve body 11 closes the gas detection hole 9a by the pressing force of 0, the inside of the battery is kept in a sealed state, but when gas is generated inside the battery and the pressure inside the battery rises abnormally. , The metal spring 10 contracts to form a gap between the valve body 11 and the gas detection hole 9a, and the gas inside the battery passes through the gas detection hole 9a and the gas discharge hole 8a and is discharged to the outside of the battery. As a result, when the battery internal pressure decreases and the battery internal pressure returns to normal, the metal spring 10 restores to the original state,
The pressing force causes the valve element 11 to close the gas detection hole 9a again and keep the inside of the battery in a sealed structure. As described above, the metal spring 10 and the valve body 11 are the main materials of the safety valve. However, the safety valve is not limited to the metal spring 10 and the valve body 11, and the positive electrode terminal plate 8 and the sealing plate 9 are included. And a member having another function.

【0055】正極リード体12はニッケルリボンからな
り、その一方の端部は正極2の最外周部における支持体
の金属板状態にされた部分にスポット溶接されて図3の
20で示すような集電部(タブ)を構成し、その他方の
端部は封口板9の下端にスポット溶接され、正極端子板
8は上記封口板9との接触により正極端子として機能で
きるようになっている。そして、前記したように、負極
2の最外周部の外面側は支持体が露出していて、その支
持体が電池缶5の内壁に接触し、それによって、電池缶
5は負極端子として作用する。この図4も、模式的に示
したものであり、正極1、負極2、セパレータ3などの
詳細を示しておらず、また図3とは若干位置を異なら
せ、正極リード体12も切断面に配置しているかのよう
にして図示しているし、負極2の断面も図3とは異なっ
た態様で示している。
The positive electrode lead body 12 is made of a nickel ribbon, and one end thereof is spot-welded to the metal plate-like portion of the support at the outermost peripheral portion of the positive electrode 2 and is assembled as shown by 20 in FIG. The other end part of the positive electrode terminal plate 8 is spot welded to the lower end of the sealing plate 9 so that the positive electrode terminal plate 8 can function as a positive electrode terminal by contact with the sealing plate 9. Then, as described above, the support is exposed on the outer surface side of the outermost peripheral portion of the negative electrode 2, and the support contacts the inner wall of the battery can 5, whereby the battery can 5 functions as a negative electrode terminal. . This FIG. 4 is also schematically shown, and the details of the positive electrode 1, the negative electrode 2, the separator 3, etc. are not shown, and the positions thereof are slightly different from those of FIG. It is shown as if they are arranged, and the cross section of the negative electrode 2 is also shown in a mode different from that in FIG.

【0056】上記のようにして作製した密閉形アルカリ
蓄電池を25℃の温度下で15mAの電流で4時間充電
した後70℃で6時間保存して活性化処理し、25℃で
300mAで3時間の充電と300mAの放電(終止電
圧1.0V)を5サイクル繰り返して化成処理した後、
後述のように正極の容量を測定し、さらに低温高率放電
での放電容量および高温貯蔵後の低温高率放電での放電
容量を調べた。その結果を表2に示す。
The sealed alkaline storage battery prepared as described above was charged at a current of 15 mA at a temperature of 25 ° C. for 4 hours, then stored at 70 ° C. for 6 hours to be activated, and then at 25 ° C. for 300 hours at 300 mA. Charging and discharging of 300 mA (final voltage 1.0 V) were repeated for 5 cycles to perform chemical conversion treatment,
The capacity of the positive electrode was measured as described later, and the discharge capacity at low temperature high rate discharge and the discharge capacity at low temperature high rate discharge after high temperature storage were examined. The results are shown in Table 2.

【0057】低温高率放電での放電容量は、25℃の温
度下で175mAの電流値で6時間充電した後、−20
℃の温度下で5時間保持し、続いて700mAの電流値
で放電を行い、電池電圧が1.0Vになるまでの放電容
量を測定し、それを低温高率放電での放電容量(高温貯
蔵前の低温高率放電での放電容量)とした。ただし、表
2への表示にあたっては、この低温高率放電での放電容
量を単に「低温での放電容量」と表示した。さらに、放
電状態で70℃で14日間貯蔵してから25℃に冷却
し、冷却後に再度前記と同様に−20℃での放電容量を
測定し、高温貯蔵後の低温高率放電での放電容量とし
た。また、この高温貯蔵後の低温高率放電での放電容量
に関しても表2への表示にあたってはその低温高率放電
を単に「低温での放電容量」と表示した。
The discharge capacity at low temperature and high rate discharge was −20 after charging at a current value of 175 mA for 6 hours at a temperature of 25 ° C.
Hold for 5 hours at a temperature of ℃, then discharge at a current value of 700mA, measure the discharge capacity until the battery voltage becomes 1.0V, and measure the discharge capacity at low temperature and high rate discharge (high temperature storage The discharge capacity in the previous low temperature high rate discharge). However, in the display in Table 2, this discharge capacity at low temperature and high rate discharge was simply referred to as “discharge capacity at low temperature”. Furthermore, after being stored at 70 ° C. for 14 days in a discharged state and then cooled to 25 ° C., after cooling, the discharge capacity at −20 ° C. was measured again in the same manner as above, and the discharge capacity at low temperature and high rate discharge after high temperature storage was measured. And Also, regarding the discharge capacity at low temperature high rate discharge after this high temperature storage, in the display in Table 2, the low temperature high rate discharge was simply referred to as "low temperature discharge capacity".

【0058】つぎに、各電池を分解して正極を取り出
し、正極合剤をすべて王水に溶解し、ICP分析(日本
ジャーレル・アッシュICP727、シングルモード)
により正極中のMn含有量を測定した。このMn含有量
を表示するにあたって使用した正極の容量は、前記各電
池を170mAの電流値で6時間充電した後、1時間休
止し、140mAhの電流値で電池電圧が1.0Vにな
るまで放電を行ったときの放電容量である。
Next, each battery was disassembled, the positive electrode was taken out, all the positive electrode mixture was dissolved in aqua regia, and ICP analysis (Japan Jarrell Ashe ICP727, single mode)
The Mn content in the positive electrode was measured by. The capacity of the positive electrode used for displaying the Mn content was determined by charging each battery for 6 hours at a current value of 170 mA, then resting for 1 hour, and discharging at a current value of 140 mAh until the battery voltage became 1.0 V. Is the discharge capacity when performing.

【0059】前記モデルセルでの水素吸蔵合金の容量の
測定結果をモデルセル特性として表2に示す。また、上
記のように作製した密閉形アルカリ蓄電池について測定
した測定結果をまとめて表2に示す。
Table 2 shows the measurement results of the capacity of the hydrogen storage alloy in the model cell as model cell characteristics. In addition, Table 2 collectively shows the measurement results obtained by measuring the sealed alkaline storage battery manufactured as described above.

【0060】[0060]

【表2】 [Table 2]

【0061】表2のモデルセル特性の項に示す結果から
明らかなように、実施例1〜6の水素吸蔵合金は容量が
大きく、また、電池特性の項に示す結果から明らかなよ
うに、実施例1〜6の電池は、高温貯蔵前の低温高率放
電での放電容量が大きく、しかも、高温貯蔵後の低温高
率放電での放電容量も大きく、高温貯蔵後の低温放電特
性が優れていた。これは、負極活物質として用いた水素
吸蔵合金A〜Fの偏析相の数や大きさなどの形態が適切
であることと、正極中のMn含有量を0.6〜6mg/
Ahの範囲内にとどめたことによるものと考えられる。
また、これら電池の正極をMn含有量を測定した場合と
同様に調べたところ、正極中に亜鉛化合物が確認され
た。本発明の電池は、上記のように高温貯蔵特性が優れ
ていることから耐食性も優れているものと考えられる。
これに対して、比較例1の電池の負極活物質として用い
た水素吸蔵合金Gでは、偏析相の数が適切でないなどの
理由により、高温貯蔵時にMnの溶出量が大きいため、
特性が大きく劣化したものと考えられる。
As is clear from the results shown in the section of model cell characteristics in Table 2, the hydrogen storage alloys of Examples 1 to 6 have large capacities, and as is clear from the results shown in the section of battery characteristics, The batteries of Examples 1 to 6 have large discharge capacities in low-temperature high-rate discharge before high-temperature storage, and also large discharge capacities in low-temperature high-rate discharge after high-temperature storage, and have excellent low-temperature discharge characteristics after high-temperature storage. It was This is because the hydrogen storage alloys A to F used as the negative electrode active material have appropriate forms such as the number and size of segregation phases, and the Mn content in the positive electrode is 0.6 to 6 mg /
It is thought that this is due to the fact that it was kept within the range of Ah.
In addition, when the positive electrodes of these batteries were examined in the same manner as in the case of measuring the Mn content, zinc compounds were confirmed in the positive electrodes. The battery of the present invention is considered to have excellent corrosion resistance because it has excellent high temperature storage characteristics as described above.
On the other hand, in the hydrogen storage alloy G used as the negative electrode active material of the battery of Comparative Example 1, the elution amount of Mn during storage at high temperature was large because the number of segregated phases was not appropriate,
It is considered that the characteristics were greatly deteriorated.

【0062】[0062]

【発明の効果】以上説明したように、本発明では、高容
量で、かつ低温高率放電での放電特性が優れ、しかも高
温貯蔵後の低温高率放電での放電特性が優れたアルカリ
蓄電池を提供することができた。
As described above, according to the present invention, there is provided an alkaline storage battery having a high capacity, excellent discharge characteristics at low temperature and high rate discharge, and excellent discharge characteristics at low temperature and high rate discharge after high temperature storage. Could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の電池に負極活物質として用
いる水素吸蔵合金Aの断面の電子顕微鏡写真を模式的に
描いた図である。
FIG. 1 is a drawing schematically showing an electron microscope photograph of a cross section of a hydrogen storage alloy A used as a negative electrode active material in the battery of Example 1 of the present invention.

【図2】本発明のアルカリ蓄電池に使用する負極の一例
を模式的に示すもので、その(a)は負極の一方の側面
図で、(b)は負極の他方の側面図であり、(c)は上
記(a)のD−D線における切断面図である。
FIG. 2 schematically shows an example of a negative electrode used in the alkaline storage battery of the present invention, in which (a) is one side view of the negative electrode and (b) is another side view of the negative electrode. c) is a sectional view taken along the line D-D in (a) above.

【図3】本発明のアルカリ蓄電池に使用する巻回構造の
電極体の一例を模式的に示す横断面図である。
FIG. 3 is a cross-sectional view schematically showing an example of an electrode body having a wound structure used in the alkaline storage battery of the present invention.

【図4】本発明のアルカリ蓄電池の一例を模式的に示す
縦断面図である。
FIG. 4 is a vertical cross-sectional view schematically showing an example of the alkaline storage battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 2a 支持体 2b 活物質含有層 2c 活物質含有層 3 セパレータ 4 巻回構造の電極体 5 電池缶 21 偏析相 22 偏析相に最小直径で外接する円 1 positive electrode 2 Negative electrode 2a support 2b Active material-containing layer 2c Active material containing layer 3 separator 4 Winding structure electrode body 5 battery cans 21 segregated phase 22 Circle circumscribing the segregated phase with the minimum diameter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/62 H01M 4/62 C (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 平8−96805(JP,A) 特開 平9−115543(JP,A) 特開 平8−241713(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/30 H01M 4/24 H01M 4/32 H01M 4/38 H01M 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01M 4/62 H01M 4/62 C (72) Inventor Ryu Nagai 1-88, Tora-Tora, Ibaraki City, Osaka Prefecture Hitachi Maxell Co., Ltd. (56) References JP-A-8-96805 (JP, A) JP-A-9-115543 (JP, A) JP-A-8-241713 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) H01M 10/30 H01M 4/24 H01M 4/32 H01M 4/38 H01M 4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、負極、セパレータおよび電解液を
有するアルカリ蓄電池において、上記負極における負極
活物質が、Mm(Mmは30重量%以上のLaを含む2
種類以上の希土類元素の混合物を表す)と、少なくとも
Ni、Co、MnおよびAlを構成元素とする水素吸蔵
合金であって、上記水素吸蔵合金中にNiを主体とする
偏析相を有し、かつ合金断面の任意の15μm平方の領
域に露出する偏析相の数(ただし、偏析相に最小直径で
外接する円の直径が0.05μm以上の偏析相の数)が
1〜40である水素吸蔵合金であり、かつ正極中のMn
含有量が正極の容量に対して0.6〜6mg/Ahであ
ることを特徴とするアルカリ蓄電池。
1. In an alkaline storage battery having a positive electrode, a negative electrode, a separator and an electrolytic solution, the negative electrode active material in the negative electrode contains Mm (Mm is 30 wt% or more of La.
And a hydrogen storage alloy containing at least Ni, Co, Mn and Al as constituent elements, and having a segregation phase mainly composed of Ni in the hydrogen storage alloy, and A hydrogen storage alloy in which the number of segregated phases exposed in an arbitrary 15 μm square area of the alloy cross section (however, the number of segregated phases in which the diameter of the circle circumscribing the segregated phase with the minimum diameter is 0.05 μm or more) is 1 to 40 And Mn in the positive electrode
Content is 0.6-6 mg / Ah with respect to the capacity of a positive electrode, The alkaline storage battery characterized by the above-mentioned.
【請求項2】 偏析相に最小直径で外接する円の直径が
0.05〜10μmである請求項1記載のアルカリ蓄電
池。
2. The alkaline storage battery according to claim 1, wherein a diameter of a circle circumscribing the segregation phase with a minimum diameter is 0.05 to 10 μm.
【請求項3】 正極中に亜鉛イオンまたは亜鉛化合物を
含有する請求項1または2に記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the positive electrode contains zinc ions or a zinc compound.
JP2000159447A 1997-06-27 2000-05-30 Alkaline storage battery Expired - Fee Related JP3369148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159447A JP3369148B2 (en) 1997-06-27 2000-05-30 Alkaline storage battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18743797 1997-06-27
JP9-187437 1997-06-27
JP30648797 1997-10-20
JP9-306487 1997-10-20
JP2000159447A JP3369148B2 (en) 1997-06-27 2000-05-30 Alkaline storage battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10180156A Division JPH11191412A (en) 1997-06-27 1998-06-26 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2000353542A JP2000353542A (en) 2000-12-19
JP3369148B2 true JP3369148B2 (en) 2003-01-20

Family

ID=27325885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159447A Expired - Fee Related JP3369148B2 (en) 1997-06-27 2000-05-30 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3369148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181751A (en) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 Low-self-discharge hydrogen storage alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181751A (en) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 Low-self-discharge hydrogen storage alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2000353542A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
US5695530A (en) Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
EP2669973B1 (en) Alkaline rechargeable battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US7198868B2 (en) Alkaline storage battery
JP3604156B2 (en) Electrochemical battery
JP2965475B2 (en) Hydrogen storage alloy
EP0739990B1 (en) Hydrogen storage alloy and electrode therefrom
JP3369148B2 (en) Alkaline storage battery
US6197448B1 (en) Hydrogen storage alloy
EP1030392B1 (en) Hydrogene storage alloy electrode and method for manufacturing the same
JP3454780B2 (en) Alkaline storage battery
JPH1125964A (en) Alkaline storage battery
US5552246A (en) Materials for hydrogen storage, hydride electrodes and hydride batteries
JPH11191412A (en) Alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3322452B2 (en) Rare earth hydrogen storage alloy for alkaline storage batteries
EP0566055B1 (en) A hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH06145849A (en) Hydrogen storage alloy electrode
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees