JP2929716B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP2929716B2
JP2929716B2 JP2400003A JP40000390A JP2929716B2 JP 2929716 B2 JP2929716 B2 JP 2929716B2 JP 2400003 A JP2400003 A JP 2400003A JP 40000390 A JP40000390 A JP 40000390A JP 2929716 B2 JP2929716 B2 JP 2929716B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
alloy
storage alloy
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2400003A
Other languages
Japanese (ja)
Other versions
JPH05234590A (en
Inventor
庸一郎 辻
良夫 森脇
康治 山村
肇 世利
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2400003A priority Critical patent/JP2929716B2/en
Publication of JPH05234590A publication Critical patent/JPH05234590A/en
Application granted granted Critical
Publication of JP2929716B2 publication Critical patent/JP2929716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を使用し
た電極に関し、この電極はニッケル−水素蓄電池などの
アルカリ蓄電池に利用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode using a hydrogen storage alloy, and this electrode can be used for an alkaline storage battery such as a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池として鉛蓄電池とアルカリ蓄電池がある。このうちア
ルカリ蓄電池は高信頼性が期待でき、小形軽量化も可能
などので、小型電池として各種ポ−タブル機器用に、大
型電池として産業用として使われてきた。このアルカリ
蓄電池において、正極として一部空気極や酸化銀極など
も採用されているが、ほとんどの場合ニッケル極であ
る。この種アルカリ蓄電池は、ポケット式から焼結式に
代わって特性が向上し、さらに密閉化が可能になるとと
もに用途も広がった。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as various power supplies. Among them, alkaline storage batteries are expected to have high reliability and can be reduced in size and weight, and have been used as small batteries for various portable devices and as large batteries for industrial use. In this alkaline storage battery, an air electrode, a silver oxide electrode, or the like is partially used as a positive electrode, but in most cases, a nickel electrode. This type of alkaline storage battery has been improved in characteristics from the pocket type to the sintered type, and furthermore, it has become possible to seal the battery and the use thereof has been expanded.

【0003】他方、負極としてはカドミウムの他に亜
鉛、鉄、水素などが対象となっている。最近、一層の高
エネルギ−密度を達成するために金属水素化物つまり水
素吸蔵合金電極を使ったニッケル−水素蓄電池が注目さ
れ、製法などに多くの提案がされている。
On the other hand, as a negative electrode, zinc, iron, hydrogen and the like are targeted in addition to cadmium. Recently, attention has been paid to nickel-hydrogen storage batteries using metal hydrides, ie, hydrogen storage alloy electrodes, in order to achieve even higher energy densities, and many proposals have been made for manufacturing methods and the like.

【0004】水素吸蔵合金極の製法としては合金粉末を
焼結する方式と発泡状、繊維状、パンチングメタルなど
の多孔性支持体に充填や塗着する方式のペ−スト式があ
る。このうち製法が簡単なのがペ−スト式である。水素
吸蔵合金はカドミウム極や亜鉛極などと同様に電子伝導
性の点で比較的優れているので非焼結式極の可能性は大
きい。すなわち、結着剤とともにペ−スト状としこれを
3次元あるいは2次元構造の多孔性導電板に充填あるい
は塗着している。
[0004] As a method for producing a hydrogen storage alloy electrode, there are a paste method of sintering an alloy powder and a method of filling or coating a porous support such as foamed, fibrous, or punched metal. Of these, the paste method is the simplest one. Hydrogen storage alloys are relatively excellent in terms of electron conductivity, like cadmium electrodes and zinc electrodes, so that the possibility of non-sintered electrodes is great. That is, the paste is formed into a paste shape together with a binder, and the paste is filled or coated on a porous conductive plate having a three-dimensional or two-dimensional structure.

【0005】その中で、水素吸蔵合金電極の改善とし
て、たとえば水素吸蔵合金粉末の特に耐酸化性、また利
用率や成形性を改善するために粒子表面をニッケルや銅
でメッキして多孔性の金属層を形成する技術が知られて
いる。また特性向上のために合金製作後真空で熱処理し
たり、アルカリ溶液に浸漬するなどの工程が提案されて
いる。さらに密閉形に適用する際にはとくに過充電時に
正極から発生する酸素ガスの吸収性を改良するためにフ
ッソ樹脂や触媒の添加が試みられている。
Among them, as a hydrogen storage alloy electrode, for example, in order to improve the oxidation resistance of the hydrogen storage alloy powder, and to improve the utilization factor and formability, the surface of the particles is plated with nickel or copper to form a porous body. Techniques for forming a metal layer are known. Further, in order to improve the characteristics, a process has been proposed in which an alloy is heat-treated in a vacuum after being manufactured or immersed in an alkaline solution. Further, when applied to a closed type, addition of a fluorine resin or a catalyst has been attempted in order to improve the absorbability of oxygen gas generated from the positive electrode particularly when overcharged.

【0006】[0006]

【発明が解決しょうとする課題】この水素吸蔵合金を用
いた電池の課題としては、とくに充放電サイクルの初期
での充放電特性の改善や一層の利用率や高率放電特性の
改良の必要がある。これらの中で例えば、希土類・ニッ
ケル系合金の性能向上のために、La0.8Nd0.2Ni
2.9Co2.4Mo0.1Si0.1等の化学量論組成からずれた
合金を製造することにより、LaNi5ベース合金の粒
界にMoCo3を析出させ、これが良好な電気化学反応
を呈することが知られている(P.H.L. Notten and P. H
okkeling, ECSFall Meeting Extended Abstracts, 120,
1990)。
Problems to be solved by the battery using the hydrogen storage alloy include the need to improve the charge / discharge characteristics at the beginning of the charge / discharge cycle, and to further improve the utilization factor and the high-rate discharge characteristics. is there. Among these, for example, in order to improve the performance of rare earth / nickel alloys, La 0.8 Nd 0.2 Ni
It is known that by producing an alloy having a stoichiometric composition such as 2.9 Co 2.4 Mo 0.1 Si 0.1 , MoCo 3 precipitates at the grain boundaries of a LaNi 5 -based alloy, which exhibits a good electrochemical reaction. (PHL Notten and P. H
okkeling, ECSFall Meeting Extended Abstracts, 120,
1990).

【0007】しかし、この方法は電気化学的に水素を吸
蔵放出する水素吸蔵合金と第2相としてのMoCo3
同時に形成するものであり、LaNi5ベース合金のよ
うな金属間化合物の組成範囲が比較的狭い合金系では有
効であると考えられるが、広い組成範囲で安定な金属間
化合物に対しては必ずしも有効でなく種々の合金にこの
技術を適用することは困難であった。また従来、これら
の特性を改善する目的でPdブラック等の添加が試みら
れたが、この場合かなりの効果はあるものの、コスト的
な制約からより安価な方法が求められていた。
However, in this method, a hydrogen storage alloy electrochemically storing and releasing hydrogen and MoCo 3 as a second phase are simultaneously formed, and the composition range of an intermetallic compound such as a LaNi 5 base alloy is limited. Although it is considered effective for a relatively narrow alloy system, it is not necessarily effective for an intermetallic compound that is stable over a wide composition range, and it has been difficult to apply this technique to various alloys. Conventionally, addition of Pd black or the like has been attempted for the purpose of improving these characteristics. In this case, although a considerable effect is obtained, a more inexpensive method has been demanded due to cost restrictions.

【0008】[0008]

【課題を解決するための手段】特に主たる水素吸蔵合金
の一般式がABα(α=1.5〜2.5)で表され、合
金相が実質的に金属間化合物のLaves相に属し、そ
の結晶構造が6方対称のC14型または(および)立方
対称のC15型である水素吸蔵合金粉末の表面に一般式
がMoCo 3 型で表される六方晶構造の合金を機械的造
粒法などによって付着させる。
In particular, the general formula of the main hydrogen storage alloy is represented by ABα (α = 1.5 to 2.5), and the alloy phase substantially belongs to the Laves phase of the intermetallic compound. The general formula is applied to the surface of a hydrogen storage alloy powder whose crystal structure is C14 type having a hexagonal symmetry or (and) C15 type having a cubic symmetry.
There deposited by an alloy of a hexagonal structure represented by 3-inch MoCo machine械的granulation method and the like.

【0009】[0009]

【作用】特に合金がAB2型のLaves相に属し、そ
の結晶構造が6方対称のC14型または(および)立方
対称のC15型である水素吸蔵合金を用いたニッケル水
素蓄電池においては、初期において放電容量が小さいこ
とが問題であり、また急速な充放電電流では分極が比較
的大きく、充放電での電位特性が低下するという問題が
あった。しかし水素吸蔵合金上にMoCo 3 を付着させ
ることによって充電時の電気化学的な水素吸蔵反応を加
速し、さらに充放電効率を大幅に改善できる。
In particular, in a nickel-metal hydride storage battery using a hydrogen storage alloy whose alloy belongs to the AB 2 type Laves phase and whose crystal structure is C14 type or (and) cubic symmetrical C15 type having a hexagonal symmetry, The problem is that the discharge capacity is small, and the polarization is relatively large at a rapid charge / discharge current, and the potential characteristics during charge / discharge are degraded. However, by attaching MoCo 3 onto the hydrogen storage alloy, the electrochemical hydrogen storage reaction during charging can be accelerated, and the charge / discharge efficiency can be significantly improved.

【0010】[0010]

【実施例】水素吸蔵合金として、主たる合金相がC15
型Laves相合金の一つであるZrMn0.3Cr0.3
0.15Ni1.25金を用いた。まず、電極作成について説
明する。MoCo3をアーク溶解と950℃による熱処
理により作成し、これを粉砕して400メッシュを通過
させた。熱処理を行うのは、溶融時に目的とするMoC
3からかなり組成のずれがあることから、これ を均一
化するためである。これに100メッシュを通過させた
水素吸蔵合金を、MoCo3が5重量%になるように調
整し、ボールミルを用いて混合した。この状態を電子顕
微鏡で観察したところ、水素吸蔵合金の表面にMoCo
3が部分的に点在している状態が認められた。更にこれ
を200メッシュを通過させた後ポリビニルアルコール
(PVA)の1%水溶液を用いてペ−ストをつくった。
ついでこのペ−ストを多孔度95%厚さ0.8mmの発
泡状ニッケル板に充填し加圧して電極を得た。これが本
発明の一実施例であり、電極Aとする。この電極の特性
を比較するために従来の方法による電極も合わせて作製
した。すなわち、従来の方法としては同様にZrMn
0.3Cr0.30.15Ni1.25の組成の水素吸蔵合金を粉砕
し、200メッシュを通過させ得た合金粉末を、MoC
3 を付着させずに先と同様の方法で電極にした。これ
を従来法として電極Bとする。
EXAMPLE As a hydrogen storage alloy, the main alloy phase was C15.
ZrMn 0.3 Cr 0.3 V, one of the type Laves phase alloys
Using 0.15 Ni 1.25 Go gold. First, the preparation of the electrodes will be described. MoCo 3 was prepared by arc melting and heat treatment at 950 ° C., which was crushed and passed through 400 mesh. The heat treatment is performed when the target MoC is melted.
Since fairly deviation in composition from o 3, in order to equalize it. The hydrogen-absorbing alloy which was passed through a 100 mesh to, was adjusted to MoCo 3 becomes 5 wt%, were mixed using a ball mill. When this state was observed with an electron microscope, it was found that MoCo
3 was partially scattered. After passing this through 200 mesh, a paste was made using a 1% aqueous solution of polyvinyl alcohol (PVA).
Then, the paste was filled into a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm and pressed to obtain an electrode. This is an example of the present invention, and is referred to as an electrode A. In order to compare the characteristics of this electrode, an electrode according to a conventional method was also manufactured. That is, similarly to the conventional method, ZrMn
An alloy powder obtained by pulverizing a hydrogen storage alloy having a composition of 0.3 Cr 0.3 V 0.15 Ni 1.25 and passing through a 200 mesh was subjected to MoC
The o 3 without attaching to the electrodes in the previous similar manner. This is referred to as an electrode B as a conventional method.

【0011】これらの電極を負極とし、対極に過剰の電
気容量を有する酸化ニッケル極を配し電解液に比重1.
30の水酸化カリウム水溶液を用い、電解液が豊富な条
件下で水素吸蔵合金負極で容量規制を行なった開放系で
充放電を行った。充電は水素吸蔵合金1gあたり100
mA×5.5時間、放電は合金1gあたり50mAで端
子電圧が0.8Vまでとした。
These electrodes are used as a negative electrode, and a nickel oxide electrode having an excessive electric capacity is disposed at a counter electrode, and a specific gravity of the electrolytic solution is 1.
Using an aqueous solution of 30 potassium hydroxide, charge / discharge was performed in an open system in which the capacity was regulated with a hydrogen-absorbing alloy negative electrode under conditions rich in electrolyte. Charging is 100 per gram of hydrogen storage alloy
mA × 5.5 hours, the discharge was 50 mA per gram of alloy, and the terminal voltage was up to 0.8 V.

【0012】この結果、電極Bでは充放電サイクル初期
での放電容量が低く、飽和放電容量の380mAh/g
に達するまでに5サイクル以上要したが、電極Aの場
合、1サイクル目で飽和放電容量の95%、2サイクル
目で飽和放電容量の380mAh/gに達し、電池とし
ての初期活性の向上に非常に有効であった。
As a result, the discharge capacity of the electrode B at the beginning of the charge / discharge cycle is low, and the saturation discharge capacity of the electrode B is 380 mAh / g.
It took 5 cycles or more to reach, but in the case of the electrode A, it reached 95% of the saturated discharge capacity in the first cycle and reached 380 mAh / g of the saturated discharge capacity in the second cycle. Was effective.

【0013】次にこの電極を使用して密閉電池を構成し
た結果について説明する。先の電極A,Bをそれぞれ幅
3.3cm、長さ21cm、厚さ0.50mmに調整
し、リード板を所定の2カ所に取り付けた。そして、正
極、セパレータと組み合わせて円筒状に3層に渦巻き状
にしてSCサイズの電槽に収納した。このときの正極
は、公知の発泡式ニッケル極を選び、幅3.3cm、長
さ16cmとして用いた。この場合もリード板を2カ所
に取り付けた。またセパレータは、親水性を付与したポ
リプロピレン不織布を用いた。電解液としては、比重
1.30の水酸化カリウム水溶液に水酸化リチウムを3
0g/l溶解して用いた。これを封口して密閉形電池と
した。この電池は、正極容量規制で公称容量は2.5A
hである。この密閉形電池で水素吸蔵合金電極の電極A
で構成した電池を電池A、同様に電極Bで構成した電池
を電池Bとする。
Next, the result of forming a sealed battery using this electrode will be described. The electrodes A and B were adjusted to a width of 3.3 cm, a length of 21 cm, and a thickness of 0.50 mm, respectively, and lead plates were attached at two predetermined positions. Then, the resultant was combined with the positive electrode and the separator, spirally formed into three layers in a cylindrical shape, and stored in an SC-size battery case. As the positive electrode at this time, a known foamed nickel electrode was selected and used with a width of 3.3 cm and a length of 16 cm. Also in this case, two lead plates were attached. In addition, a polypropylene nonwoven fabric provided with hydrophilicity was used as the separator. As an electrolyte, lithium hydroxide was added to an aqueous solution of potassium hydroxide having a specific gravity of 1.30.
0 g / l was used after dissolution. This was sealed to obtain a sealed battery. This battery has a nominal capacity of 2.5 A due to positive electrode capacity regulation.
h. The electrode A of the hydrogen storage alloy electrode is
The battery constituted by the above is referred to as a battery A, and the battery similarly constituted by the electrodes B is referred to as a battery B.

【0014】これらの電池をそれぞれ10個づつ作成し
通常の充放電サイクル試験によって評価した結果を説明
する。まず初期の放電電圧と容量を比較した。5時間率
で容量の150%定電流充電、同様に5時間率で1.0
Vまでの定電流放電を行なったところ、Aは平均電圧は
1.28Vであり、放電容量は2サイクル以後ほぼ2.
5Ahであった。ところがBでは平均放電電圧は1.2
2Vであり、放電容量は2サイクルで2.5Ahに達せ
ずサイクルの増加と共に放電容量が増大し、ほぼ一定に
なるまでに4サイクルを必要とした。
A description will now be given of the results of making ten such batteries and evaluating them by a normal charge / discharge cycle test. First, the initial discharge voltage and the capacity were compared. 150% of capacity constant current charge at 5 hour rate, and 1.0 at 5 hour rate
When a constant current discharge was performed up to V, A had an average voltage of 1.28 V and a discharge capacity of about 2.
It was 5 Ah. However, in B, the average discharge voltage is 1.2
At 2 V, the discharge capacity did not reach 2.5 Ah in two cycles, and the discharge capacity increased with the number of cycles, and required four cycles until the discharge capacity became almost constant.

【0015】同様に、充電を1C(1時間率)で150
%まで、放電は同じく1C(1時間率)で終止電圧1.
0Vとし20℃での充放電サイクルを繰り返した結果で
は電池Aは平均放電電圧1.23Vであったのに対し電
池Bは1.14Vであり、急速充放電でさらに電池Aは
優れた放電特性を有していることもわかった。
Similarly, charging is performed at a rate of 1 C (1 hour rate) for 150 hours.
To 1%, the discharge is also at 1C (1 hour rate) with a cut-off voltage of 1.
As a result of repeating the charge / discharge cycle at 20 ° C. at 0 V, battery A had an average discharge voltage of 1.23 V, whereas battery B had 1.14 V, and battery A had excellent discharge characteristics due to rapid charge / discharge. Was also found.

【0016】以上はAB2型Laves相合金の場合で
あるが、LaNi5ベース合金でも同様の優れた結果を
得ることができた。また、先の実施例での混合はボール
ミルを用いて行ったが、このような混合によって均一な
混合物を作成し、さらに高速気流中衝撃法で第2相微粒
子を水素吸蔵合金表面上に複合固定化することによって
より優れた結果を得ることができた。さらに、メッキや
コーティングによる固定化を行った場合にも同様に優れ
た結果が得られた。また、MoCo 3 で表される合金
は、所定の比に混合された金属を溶解し、さらに700
〜1000℃での熱処理を加えることによってより均一
化される。
Although the above is the case of the AB 2 type Laves phase alloy, the same excellent results were obtained with the LaNi 5 base alloy. In addition, although the mixing in the previous example was performed using a ball mill, a uniform mixture was prepared by such mixing, and the second-phase fine particles were compositely fixed on the surface of the hydrogen storage alloy by a high-speed gas stream impact method. A better result could be obtained by the conversion. Furthermore, excellent results were similarly obtained when immobilization by plating or coating was performed. Further, the alloy represented by MoCo 3 dissolves a metal mixed in a predetermined ratio,
It is made more uniform by applying a heat treatment at 10001000 ° C.

【0017】[0017]

【発明の効果】以上のように本発明の水素吸蔵合金電極
は、従来からの問題であった初期活性を向上させ、充放
電効率も非常に安価に改善することが可能となり、高性
能な水素吸蔵合金電極およびこれを用いた電池を提供で
きる。
As described above, the hydrogen storage alloy electrode according to the present invention can improve the initial activity, which has been a problem in the past, and improve the charge / discharge efficiency at a very low cost. An occlusion alloy electrode and a battery using the same can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 世利 肇 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−173062(JP,A) 特開 平2−79369(JP,A) 特開 平2−256161(JP,A) 特開 昭50−111546(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 - 4/26 H01M 4/38 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hajime Sari 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-3-173062 (JP, A) JP-A-2-79369 (JP, A) JP-A-2-256161 (JP, A) JP-A-50-111546 (JP, A) (58) Fields surveyed (Int.Cl. 6 , DB name) H01M 4/24-4/26 H01M 4/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素を電気化学的に吸蔵、放出する主た
る水素吸蔵合金粉末の表面に、前記水素吸蔵合金粉末と
は全く別の、一般式がMoCo 3 で表される六方晶構造
を持つ合金を付着させ、電極としたことを特徴とする水
素吸蔵合金電極。
1. A hexagonal crystal structure having a general formula represented by MoCo 3 , which is completely different from the hydrogen storage alloy powder, on a surface of a main hydrogen storage alloy powder that electrochemically stores and releases hydrogen.
A hydrogen-absorbing alloy electrode comprising an electrode having an alloy having the following characteristics:
【請求項2】 主たる水素吸蔵合金は一般式がABα
(α=1.5〜2.5)で表され、合金相が実質的に金
属間化合物のLaves相に属し、その結晶構造が6方
対称のC14型および立方対称のC15型の少なくとも
一方であること特徴とする請求項1記載の水素吸蔵合金
電極。
2. The main hydrogen storage alloy has a general formula of ABα.
(Α = 1.5-2.5), wherein the alloy phase substantially belongs to the Laves phase of the intermetallic compound, and the crystal structure thereof is at least one of C14 type having hexagonal symmetry and C15 type having cubic symmetry. 2. The hydrogen storage alloy electrode according to claim 1, wherein:
JP2400003A 1990-12-01 1990-12-01 Hydrogen storage alloy electrode Expired - Fee Related JP2929716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400003A JP2929716B2 (en) 1990-12-01 1990-12-01 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400003A JP2929716B2 (en) 1990-12-01 1990-12-01 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH05234590A JPH05234590A (en) 1993-09-10
JP2929716B2 true JP2929716B2 (en) 1999-08-03

Family

ID=18509921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400003A Expired - Fee Related JP2929716B2 (en) 1990-12-01 1990-12-01 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2929716B2 (en)

Also Published As

Publication number Publication date
JPH05234590A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP2987873B2 (en) Alkaline storage battery
JP3189361B2 (en) Alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JP3118832B2 (en) Alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3118812B2 (en) Alkaline storage battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPS63239771A (en) Paste-type hydrogen occluded electrode
JP3370111B2 (en) Hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees