JP3010724B2 - Hydrogen storage alloy electrode for batteries - Google Patents

Hydrogen storage alloy electrode for batteries

Info

Publication number
JP3010724B2
JP3010724B2 JP2289154A JP28915490A JP3010724B2 JP 3010724 B2 JP3010724 B2 JP 3010724B2 JP 2289154 A JP2289154 A JP 2289154A JP 28915490 A JP28915490 A JP 28915490A JP 3010724 B2 JP3010724 B2 JP 3010724B2
Authority
JP
Japan
Prior art keywords
alloy
electrode
type
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2289154A
Other languages
Japanese (ja)
Other versions
JPH04162355A (en
Inventor
良夫 森脇
肇 世利
康治 山村
庸一郎 辻
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2289154A priority Critical patent/JP3010724B2/en
Publication of JPH04162355A publication Critical patent/JPH04162355A/en
Application granted granted Critical
Publication of JP3010724B2 publication Critical patent/JP3010724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル−水素蓄電池用などの水素吸蔵合金
電極に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for a nickel-hydrogen storage battery or the like.

従来の技術 各種の電源として広く使われている蓄電池として鉛蓄
電池とアルカリ蓄電池がある。このうちアルカリ蓄電池
は高信頼性が期待でき、小形軽量化も可能などの理由で
小形電池は各種ポータブル機器用に、大型は産業用とし
て使われてきた。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as various power sources. Among these, alkaline storage batteries can be expected to have high reliability, and small batteries can be reduced in size and weight, and small batteries have been used for various portable devices and large batteries for industrial use.

このアルカリ蓄電池において、正極としては一部空気
極や酸化銀極なども取り上げられているが、ほとんどの
場合ニッケル極である。ポケット式から焼結式に代わっ
て特性が向上し、さらに密閉化が可能になるとともに用
途も広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode, and the like are partially mentioned as a positive electrode, but in most cases, a nickel electrode. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.

一方負極としてはカドミウムの他に亜鉛、鉄、水素な
どが対象となっている。最近一層の高エネルギー密度を
達成するために金属水素化物つまり水素吸蔵合金電極を
使ったニッケル−水素蓄電池が注目されている。この場
合水素吸蔵合金としてはMmNi5系合金(Mm:ミッシュメタ
ルでLa,Ce,Ndなどの希土類元素の混合物)が多く、つい
でAB2型Laves相構造を有するZrMnCrNi系合金などが開発
の対象になっている。
On the other hand, in addition to cadmium, zinc, iron, hydrogen and the like are targeted as the negative electrode. Recently, attention has been paid to a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode, in order to achieve a higher energy density. In this case MmNi 5 system alloy as a hydrogen absorbing alloy (Mm: in misch metal La, Ce, mixture of rare earth elements such as Nd) is large, then the subject, such as the development ZrMnCrNi alloy having AB 2 type Laves phase structure Has become.

製法上の改良としては水素吸蔵合金粉末のとくに耐酸
化性それに利用率や成型性を改善するために粒子表面を
ニッケルや銅でメッキして多孔性の金属層を形成する技
術が知られている。また特性向上のために合金製作後真
空で熱処理したり、アルカリ溶液に浸せきするなどの工
程が提案されている。
As a method for improving the manufacturing method, there is known a technique of forming a porous metal layer by plating the particle surface with nickel or copper in order to improve the hydrogen storage alloy powder, particularly the oxidation resistance and the utilization and moldability. . Further, in order to improve the characteristics, a process has been proposed in which a heat treatment is performed in a vacuum after the production of the alloy, or a process of immersing the alloy in an alkaline solution.

さらに密閉形に適用する際にはとくに充電時の正極か
らの酸素ガスや過充電時に発生することがある水素ガス
の吸収性を改良するためにフッソ樹脂や触媒の添加が試
みられている。
Further, when applied to a closed type, addition of a fluorine resin or a catalyst has been attempted in order to improve absorptivity of oxygen gas from the positive electrode during charging and hydrogen gas which may be generated during overcharging.

発明が解決しようとする課題 水素吸蔵合金極の製法としては合金粉末を焼結する方
式と発泡状、繊維状、パンチングメタルなどの多孔性支
持体に充填や塗着する方式のペースト式がある。このう
ち製法が簡単なのがペースト式である。水素吸蔵合金は
カドミウム極や亜鉛極などと同様に電子伝導性の点で比
較的優れているので非焼結式極の可能性は大きい。
Problems to be Solved by the Invention There are two methods for producing a hydrogen storage alloy electrode: a method of sintering an alloy powder and a method of filling or coating a porous support such as foamed, fibrous, or punched metal. Of these, the paste method is the simplest one. Hydrogen storage alloys are relatively excellent in terms of electron conductivity, like cadmium electrodes and zinc electrodes, so that the possibility of non-sintered electrodes is great.

すなわち、結着剤とともにペースト状としこれを3次
元あるいは2次元構造の多孔性導電板に充填あるいは塗
着している。この場合水素吸蔵合金としてLaNi5系合金
の一つであるMmNiMnAlCo系合金は優れた放電容量を示す
が、ガス吸収特性の点で改良の余地がある。
That is, the paste is formed into a paste together with a binder, and the paste is filled or coated on a porous conductive plate having a three-dimensional or two-dimensional structure. In this case, an MmNiMnAlCo-based alloy, which is one of the LaNi 5 -based alloys as a hydrogen storage alloy, exhibits excellent discharge capacity, but has room for improvement in gas absorption characteristics.

一方AB2型Laves相構造を有する合金としての、ZrMnCr
Ni系、ZrMnVCrNi系、ZrMnVAlNi系、ZrMnMoCrNi系、ZrMn
AlNi系合金はいずれも最終的にはさらに優れた放電容量
を示し、ガス吸収特性の点でもよいが、サイクルの初期
特性の点が問題で多く、初期活性化特性の向上が課題で
あった。したがってとくに充放電サイクルの初期での放
電特性や一層の利用率や高率放電特性の上で改良の必要
がある。また密封形はニッケル−カドミウム系同様負荷
でガスの吸収が可能なので採用できるが、急速充電性の
一層の向上が望まれている。
On the other hand, ZrMnCr as an alloy having the AB 2 type Laves phase structure
Ni, ZrMnVCrNi, ZrMnVAlNi, ZrMnMoCrNi, ZrMn
All of the AlNi-based alloys ultimately show even better discharge capacity and may be good in terms of gas absorption characteristics, but the initial characteristics of the cycle are many problems, and improvement of the initial activation characteristics has been a problem. Therefore, it is necessary to improve the discharge characteristics at the beginning of the charge / discharge cycle, the utilization factor, and the high-rate discharge characteristics. The sealed type can be used because it can absorb a gas under a load like the nickel-cadmium type, but further improvement in quick chargeability is desired.

課題を解決するための手段 水素吸蔵合金としてLaNi5、MmNi5をベースとするCaCu
5型構造を有する合金とZrMn2、ZrV2などのベースとする
AB2型Laves相構造を有する合金の混合物から構成するこ
とを特徴とする。
Means to solve the problem CaCu based on LaNi 5 and MmNi 5 as hydrogen storage alloy
Based on alloy with 5 type structure and ZrMn 2 , ZrV 2 etc.
It is characterized by being composed of a mixture of alloys having an AB type 2 Laves phase structure.

また、合金の混合物の焼結体で電極を形成したことを
特徴とする。
Further, the electrode is formed by a sintered body of a mixture of alloys.

作用 本発明では、平衡圧力を示す温度は、ほぼ同じであり
温度特性を基準に混合するのではなく、CaCu5型構造を
有する合金と、定常状態での容量とガス吸収特性に優れ
たAB2型Laves相構造を有する合金とを混合して優れた負
極としていることに特徴を有し、これによって充放電サ
イクルの初期特性の問題を克服し、併せて、一層の利用
率や高率放電特性、急速充電特性などの改良が図れる。
In the present invention, the temperature indicating the equilibrium pressure is almost the same, and instead of mixing based on the temperature characteristics, an alloy having a CaCu 5- type structure and an AB 2 having excellent capacity and gas absorption characteristics in a steady state are used. It is characterized by being mixed with an alloy having a Laves phase structure to form an excellent negative electrode, thereby overcoming the problem of the initial characteristics of the charge-discharge cycle, and at the same time, further improving the utilization factor and the high-rate discharge characteristics. And improvement of quick charge characteristics and the like.

しかもこれらの混合物を熱処理し焼結させて、電極を
形成するすることにより、一層効果的に充放電サイクル
の初期での放電特性や利用率や高率放電特性の改良が可
能となる。
Moreover, by heat-treating and sintering these mixtures to form electrodes, it is possible to more effectively improve the discharge characteristics, utilization factor and high-rate discharge characteristics at the beginning of the charge / discharge cycle.

実施例 これまでに2種以上の異なる合金を混合する試みはあ
った。その多くは合金独自の水素平衡圧力−温度特性を
利用して、たとえば水素平衡圧力を示す温度が異なる合
金を混合して幅広い温度領域で使用可能にすることが目
的であった。
EXAMPLES Attempts have been made to mix two or more different alloys. Many of the objects of the invention are to utilize alloys having different hydrogen equilibrium pressure-temperature characteristics by utilizing alloy-specific hydrogen equilibrium pressure-temperature characteristics so that the alloys can be used in a wide temperature range by mixing alloys having different temperatures.

このような平衡圧力を示す温度はほぼいずれもほぼ同
じであり温度特性を基準に混合するのではなく、密閉型
の電池の負極として容量、特に初期の容量に優れたMmNi
MnAlCo系もしくはMmNiAlCo系合金などのCaCu5型構造を
有する合金と、定常状態での容量とガス吸収特性に優れ
たZrMnCrNi系、ZrMnVCrNi系、ZrMnVAlNi系、ZrMnMoCrNi
系、ZrMnAlNi系などから選ばれたAB2型Laves相構造を有
する合金とを混合して優れた負極としている点で従来と
異なる観点で混合している。
The temperature at which such an equilibrium pressure is shown is almost the same, and rather than mixing based on temperature characteristics, MmNi, which has excellent capacity as a negative electrode of a sealed type battery, especially excellent initial capacity
Alloys with a CaCu 5- type structure such as MnAlCo or MmNiAlCo alloys, and ZrMnCrNi, ZrMnVCrNi, ZrMnVAlNi, and ZrMnMoCrNi with excellent steady-state capacity and gas absorption characteristics
And an alloy having an AB 2 type Laves phase structure selected from the group consisting of ZrMnAlNi and the like.

以下より具体的に実施例について述べる。 Examples will be described more specifically below.

(実施例1) 水素吸蔵合金としてCaCu5型構造を有するMmNi3.7Mn
0.4Al0.3Co0.6とAB2型Laves相合金の一つであるZrMn0.4
0.2Cr0.1Ni1.3合金をそれぞれ粉砕して300メッシュ通
過させた後、重量比で1:1に混合しポリエチレン微粉末
をこの樹脂が水素吸蔵合金粉末に対して3部になるよう
に加え、さらに2.5重量%PVA溶液でペーストをつくる。
ついでこのペーストを厚さ0.17mm、孔径1.8mm、開口度5
3%の鉄製でニッケルメッキを施したパンチングメタル
板に塗着し0.6mmのスリットを通して平滑化した。その
後120℃で1時間乾燥した。得られた電極は135℃に保っ
たエンボス加工を施したローラプレス機を通して厚さ0.
5mmに調整した。最後に5%のフッ素樹脂ディスパージ
ョンを添加し乾燥した。このペースト式水素吸蔵合金極
を裁断し、リード板をスポット溶接により取り付けた。
この電極をAとする。
(Example 1) MmNi 3.7 Mn having a CaCu 5 type structure as a hydrogen storage alloy
0.4 Al 0.3 Co 0.6 and ZrMn 0.4 , one of the AB 2 type Laves phase alloys
After each V 0.2 Cr 0.1 Ni 1.3 alloy was pulverized and passed through a 300 mesh, they were mixed at a weight ratio of 1: 1 and polyethylene fine powder was added so that this resin became 3 parts with respect to the hydrogen storage alloy powder. Make a paste with 2.5% by weight PVA solution.
Then paste the paste 0.17mm thick, 1.8mm hole diameter, 5 aperture
A 3% iron-plated nickel-plated punched metal plate was applied and smoothed through a 0.6 mm slit. Thereafter, it was dried at 120 ° C. for 1 hour. The obtained electrode was passed through an embossed roller press kept at 135 ° C to a thickness of 0,0.
Adjusted to 5mm. Finally, 5% fluororesin dispersion was added and dried. This paste-type hydrogen storage alloy electrode was cut, and a lead plate was attached by spot welding.
This electrode is designated as A.

比較のために各々MmNi3.7Mn0.4Al0.3Co0.6とZrMn0.4
0.2Cr0.1Ni1.3を単独で同様にして得られた電極をそ
れぞれBとCとして加えた。まず各々の負極としての特
性を調べるために負極律則になるように十分容量の大き
い対極として焼結式のニッケル極を用い、電解液として
比重1.25の苛性カリ水溶液に25g/lの水酸化リチウムを
溶解して用いた。電解液豊富な開放形とした。
For comparison, MmNi 3.7 Mn 0.4 Al 0.3 Co 0.6 and ZrMn 0.4
V 0.2 Cr 0.1 Ni 1.3 alone and electrodes obtained in the same manner were added as B and C, respectively. First, to examine the characteristics of each negative electrode, a sintered nickel electrode was used as a counter electrode having a sufficiently large capacity so as to satisfy the negative electrode rule, and 25 g / l lithium hydroxide in an aqueous caustic potassium solution having a specific gravity of 1.25 as an electrolyte solution. It was used after dissolving. Open type with rich electrolyte.

5時間率で負極容量の140%定電流充電−0.5Aで0.9V
までの定電流放電を行なったところ、Aの放電容量密度
は1サイクル273mAh/g、2サイクル291mAh/g以後ほぼ一
定になった。ところがBでは、1サイクル257mAh/g、2
サイクル266mAh/g、3サイクル以後ほぼ一定で275mAh/g
であった。さらにCでは、1サイクル52mAh/g、2サイ
クル165mAh/g、3サイクル251mAh/g、4サイクル362mAh
/g、5サイクル以後ほぼ一定で267mAh/gであった。この
結果からAではサイクル初期特性が向上し利用率も高い
ことがわかる。
140% constant current charge of negative electrode capacity at 5 hour rate-0.9V at 0.5A
As a result, the discharge capacity density of A became substantially constant after 273 mAh / g for one cycle and 291 mAh / g for two cycles. However, in B, 257 mAh / g per cycle, 2
266mAh / g cycle, 275mAh / g almost constant after 3 cycles
Met. In C, 52mAh / g for one cycle, 165mAh / g for two cycles, 251mAh / g for three cycles, and 362mAh for four cycles
/ g was almost constant after 5 cycles and was 267 mAh / g. From these results, it can be seen that in A, the cycle initial characteristics are improved and the utilization is high.

次に、異なる比較例について述べる。従来通り正極容
量規制の密閉形ニッケル−水素蓄電池を構成した。相手
極として公知の発泡状ニッケル極、それに親水処理ポリ
プロピレン不織布セパレータを用いた。電解液として比
重1.25の苛性カリ水溶液に25g/lの水酸化リチウムを溶
解して用いた。電池は単2型とした。正極に対する負極
の容量を150%とした。この電極Aを用いた電池をA′
とする。
Next, different comparative examples will be described. A sealed nickel-hydrogen storage battery with a regulated positive electrode capacity was constructed as before. As a counter electrode, a known foamed nickel electrode and a hydrophilically treated polypropylene nonwoven fabric separator were used. As an electrolytic solution, 25 g / l lithium hydroxide was dissolved in an aqueous caustic potassium solution having a specific gravity of 1.25 and used. The battery was a C2 type. The capacity of the negative electrode with respect to the positive electrode was set to 150%. A battery using this electrode A is referred to as A '
And

比較の電極Bを用いた電池をB′電極Cを用いた電池
をC′とした。まず初期の放電電圧と容量を比較した。
5時間率で容量の150%定電流充電−2.0Aで0.9Vまでの
定電流放電を行なったところ、A′は平均電圧は1.24V
であり、放電容量は2サイクル以後ほぼ一定で2.75〜2.
80Ahであった。ところがB′では、平均電圧は1.22Vで
あり放電特性が向上してほぼ一定になるまでに3サイク
ルを必要とした。C′では、平均電圧は1.21Vであり放
電特性が向上してほぼ一定になるまでに4サイクルを必
要とした。
The battery using the comparative electrode B was designated as B 'and the battery using the electrode C was designated as C'. First, the initial discharge voltage and the capacity were compared.
A constant current discharge of up to 0.9V at a constant current charge of -150A at a constant current of -2.0A at a rate of 5 hours. A 'average voltage is 1.24V.
The discharge capacity is almost constant after two cycles and is 2.75 to 2.
It was 80 Ah. However, in the case of B ', the average voltage was 1.22 V, and three cycles were required until the discharge characteristics were improved and became almost constant. In C ', the average voltage was 1.21 V, and four cycles were required until the discharge characteristics improved and became almost constant.

各電池それぞれ10セルを用い、急速充電特性を比較し
た。周囲温度を0℃とし1.2C充電を行ない、容量の130
%充電時の電池内圧力を調べた。その結果A′では1.9
〜2.7Kg/cm2であったのに対してB′では3.5〜4.5Kg/cm
2でありC′では2.5〜3.2Kg/cm2でありA′がガス吸収
の点で優れていた。
The quick charging characteristics were compared using 10 cells for each battery. Charge the battery at 1.2C with the ambient temperature set to 0 ° C
The pressure inside the battery at the time of% charging was examined. As a result, 1.9
~ 2.7 kg / cm 2 while B 'was 3.5-4.5 kg / cm
2 , and C 'was 2.5 to 3.2 kg / cm 2 , and A' was excellent in gas absorption.

(実施例2) 先の実施例のペースト式の代わりに焼結式電極を形成
した例について説明する。
(Example 2) An example in which a sintered electrode is formed instead of the paste type of the previous example will be described.

水素吸蔵合金として同様にMmNi3.7Mn0.4Al0.3Co0.6
ZrMn0.40.2Cr0.1Ni1.3合金をそれぞれ粉砕して300メ
ッシュ通過させた後、重量比で1:1に混合し、これらの
合金粉末をニッケルのメッシュ芯材を中心に加圧プレス
した成形体にした。その後、この成形体を950℃で30分
間真空熱処理炉で焼結処理を行い、裁断し、リード板を
スポット溶接により取り付けて電極とした。これを焼結
式A電極とする。
Similarly as a hydrogen storage alloy, MmNi 3.7 Mn 0.4 Al 0.3 Co 0.6
ZrMn 0.4 V 0.2 Cr 0.1 Ni 1.3 Each alloy is pulverized and passed through 300 mesh, then mixed at a weight ratio of 1: 1 and these alloy powders are pressed and pressed around nickel mesh core material. I made it. Thereafter, the compact was sintered at 950 ° C. for 30 minutes in a vacuum heat treatment furnace, cut, and a lead plate was attached by spot welding to form an electrode. This is a sintered type A electrode.

比較のために各々MmNi3.7Mn0.4Al0.3Co0.6とZrMn0.4
0.2Cr0.1Ni1.3を単独で同様にして得られた電極をそ
れぞれ焼結式Bと焼結式Cとして加えた。
For comparison, MmNi 3.7 Mn 0.4 Al 0.3 Co 0.6 and ZrMn 0.4
V 0.2 Cr 0.1 Ni 1.3 electrodes obtained independently in the same manner were added as sintering formula B and sintering formula C, respectively.

これらの焼結式電極の負極としての特性を調べるため
に、先と同様に十分容量の大きい対極として焼結式のニ
ッケル極を用い、電解液が豊富な開放形での充放電試験
を行った。電解液として比重1.25の苛性カリ水溶液に25
g/lの水酸化リチウムを溶解して用いた。
In order to investigate the characteristics of these sintered electrodes as negative electrodes, we conducted a charge-discharge test in an open type with abundant electrolytes, using a sintered nickel electrode as a counter electrode with a sufficiently large capacity as before. . 25 in aqueous caustic potassium solution with specific gravity of 1.25 as electrolyte
g / l lithium hydroxide was dissolved and used.

5時間率で負極容量の140%定電流充電−0.5Aで0.9V
までの定電流放電を行なったところ、Aの放電容量密度
は1サイクル345mAh/g、2サイクル352mAh/g以後ほぼ一
定になった。ところがBでは、1サイクル239mAh/g、2
サイクル242mAh/g、3サイクル以後ほぼ一定で245mAh/g
であった。さらにCでは、1サイクル207mAh/g、2サイ
クル245mAh/g、3サイクル263mAh/g、4サイクル以後ほ
ぼ一定で265mAh/gであった。この結果からAではサイク
ル初期特性が向上し利用率も高いことがわかった。ま
た、このような焼結式電極にすることにより、先のペー
スト式よりも初期放電特性が改善できることが明らかに
なった。おそらく焼結工程において合金の表面状態が変
化し、より電子伝導性が向上したことが予想できる。
140% constant current charge of negative electrode capacity at 5 hour rate-0.9V at 0.5A
As a result, the discharge capacity density of A became substantially constant after 345 mAh / g for one cycle and 352 mAh / g for two cycles. However, in B, 239 mAh / g per cycle, 2
242 mAh / g for cycle 245 mAh / g, almost constant after 3 cycles
Met. Further, in C, 207 mAh / g for one cycle, 245 mAh / g for two cycles, 263 mAh / g for three cycles, and 265 mAh / g, which was almost constant after four cycles. From these results, it was found that in A, the cycle initial characteristics were improved and the utilization was high. Further, it has been clarified that the use of such a sintered electrode can improve the initial discharge characteristics as compared with the above-mentioned paste type. Presumably, the surface state of the alloy changed during the sintering process, and it can be expected that the electron conductivity was further improved.

この焼結式電極での密閉電池を構成した試験や電池内
圧の試験も先の実施例1の場合と同様に行った。その結
果、焼結式電極の場合にもCaCu5型構造を有する合金とA
B2型Laves相構造を有する合金の混合物の場合が、実施
例1と同様に優れた電池性能が得られた。
A test for forming a sealed battery using this sintered electrode and a test for the internal pressure of the battery were performed in the same manner as in Example 1 above. As a result, alloys with a CaCu 5 type structure and A
The case of a mixture of alloys with a B 2 type Laves phase structure, similarly excellent cell performance as in Example 1 were obtained.

この焼結式電極を作製する条件としては、合金の粒子
径などとも微妙に関連するが、ほぼ800℃以上の温度条
件で、真空中もしくは不活性ガス雰囲気中での処理が好
ましい。
The conditions for producing this sintered electrode are delicately related to the particle size of the alloy and the like, but the treatment is preferably carried out in a vacuum or in an inert gas atmosphere at a temperature of about 800 ° C. or higher.

水素吸蔵合金粉末の他に5〜15wt%のNi粉末などの焼
結助剤の添加も有効である。なお、添加物がある場合は
700℃でも焼結する。
It is also effective to add a sintering aid such as 5 to 15 wt% Ni powder in addition to the hydrogen storage alloy powder. If there are additives
Sinters even at 700 ° C.

本発明におけるCaCu5型構造を有する合金と、AB2型La
ves相構造を有する合金との混合割合は実質的な合金組
成によってもかなり特性が変化するが、発明の効果を有
効に引き出すためには5〜95重量%の範囲であることが
好ましい。
An alloy having a CaCu 5 type structure according to the present invention, and an AB 2 type La
The mixing ratio with the alloy having the ves phase structure varies considerably depending on the substantial alloy composition, but is preferably in the range of 5 to 95% by weight in order to effectively bring out the effects of the invention.

さらに、本発明において使用する水素吸蔵合金につい
て簡単に説明する。LaNi5、MmNi5をベースとするCaCu5
型構造を有する水素吸蔵合金は多くの研究開発により広
範な材料組成が知られているが、特に、Mm−Ni−Mn−Al
−Co系もしくはMm−Ni−Al−Co系合金で構成されたCaCu
5型構造を有する水素吸蔵合金が好ましい。また、AB2
Laves相構造を有する合金としても多くの合金が提案さ
れているが、特に、AサイトをZrでBサイトをNiとMn,C
r,Al,V,Moなどで構成するC15型、またはC14型のLaves合
金が好ましく、具体的な多元系合金としてはZr−Mn−Cr
−Ni系、Zr−Mn−V−Cr−Ni系、Zr−Mn−V−Al−Ni
系、Zr−Mn−Mo−Cr−Ni系、Zr−Mn−Al−Ni系などから
選ばれた合金が良好である。
Further, the hydrogen storage alloy used in the present invention will be briefly described. LaNi 5, CaCu 5 based on MmNi 5
A wide range of material compositions have been known for hydrogen storage alloys having a die structure through many research and development, and in particular, Mm-Ni-Mn-Al
-CoCu or CaCu composed of Mm-Ni-Al-Co alloy
A hydrogen storage alloy having a 5- type structure is preferred. AB 2 type
Many alloys have been proposed as alloys having a Laves phase structure. In particular, the A site is Zr and the B site is Ni and Mn, Cn.
r, Al, V, C15 type composed of Mo, etc., or C14 type Laves alloy is preferable, as a specific multi-component alloy is Zr-Mn-Cr
-Ni, Zr-Mn-V-Cr-Ni, Zr-Mn-V-Al-Ni
Alloys selected from the group consisting of Zr-Mn-Mo-Cr-Ni and Zr-Mn-Al-Ni.

発明の効果 本発明においては、特に従来の高容量化が可能な合金
系として有望なAB2型Laves相構造を有する合金の充放電
サイクルの初期特性の問題を克服することができる。併
せて、一層の利用率や高率放電特性、急速充電特性など
の改良が図られる。
In effect the present invention, it is possible to overcome the problem of initial characteristics of the charge-discharge cycle of the alloy, especially with promising AB 2 type Laves phase structure traditional higher capacity as an alloy system possible. At the same time, the utilization rate, the high-rate discharge characteristics, the rapid charge characteristics, and the like are further improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−173573(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 JOIS──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoichiro Tsuji 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Tsutomu Iwaki 1006 Kazama Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-1-173573 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38 JOIS

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LaNi5、MmNi5をベースとするCaCu5型構造
を有する合金とZrMn2、ZrV2などをベースとするAB2型La
ves相構造を有する合金の混合物からなることを特徴と
する電池用水素吸蔵合金極。
1. An alloy having a CaCu 5 type structure based on LaNi 5 or MmNi 5 and an AB 2 type La based on ZrMn 2 , ZrV 2 or the like.
A hydrogen storage alloy electrode for a battery, comprising a mixture of alloys having a ves phase structure.
【請求項2】CaCu5型構造を有する合金とAB2型Laves相
構造を有する合金の混合物の焼結体で電極を形成するこ
とを特徴とする請求項1記載の電池用水素吸蔵合金極。
2. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the electrode is formed of a sintered body of a mixture of an alloy having a CaCu 5 type structure and an alloy having an AB 2 type Laves phase structure.
【請求項3】LaNi5、MmNi5をベースとするCaCu5型構造
を有する合金が特に、Mm−Ni−Mn−Al−Co系もしくはMm
−Ni−Al−Co系合金である請求項1または2記載の電池
用水素吸蔵合金極。
3. An alloy having a CaCu 5 type structure based on LaNi 5 or MmNi 5 is preferably an Mm—Ni—Mn—Al—Co system or Mm
The hydrogen storage alloy electrode for a battery according to claim 1, wherein the electrode is a Ni—Al—Co alloy.
【請求項4】AB2型Laves相構造を有する合金が特に、Zr
−Mn−Cr−Ni系、Zr−Mn−V−Cr−Ni系、Zr−Mn−V−
Al−Ni系、Zr−Mn−Mo−Cr−Ni系、Zr−Mn−Al−Ni系な
どから選ばれた合金である請求項1または2記載の電池
用水素吸蔵合金極。
4. An alloy having an AB 2 type Laves phase structure is preferably Zr.
-Mn-Cr-Ni, Zr-Mn-V-Cr-Ni, Zr-Mn-V-
3. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the electrode is an alloy selected from the group consisting of Al-Ni, Zr-Mn-Mo-Cr-Ni, and Zr-Mn-Al-Ni.
【請求項5】水素吸蔵合金のCaCu5型構造を有する合金
と、AB2型Laves相構造を有する合金との混合割合が5〜
95重量%の範囲である請求項1または2記載の電池用水
素吸蔵合金極。
5. The mixing ratio of an alloy having a CaCu 5 type structure of a hydrogen storage alloy and an alloy having an AB 2 type Laves phase structure is 5 to 5.
3. The hydrogen-absorbing alloy electrode for a battery according to claim 1, which is in a range of 95% by weight.
JP2289154A 1990-10-25 1990-10-25 Hydrogen storage alloy electrode for batteries Expired - Lifetime JP3010724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2289154A JP3010724B2 (en) 1990-10-25 1990-10-25 Hydrogen storage alloy electrode for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2289154A JP3010724B2 (en) 1990-10-25 1990-10-25 Hydrogen storage alloy electrode for batteries

Publications (2)

Publication Number Publication Date
JPH04162355A JPH04162355A (en) 1992-06-05
JP3010724B2 true JP3010724B2 (en) 2000-02-21

Family

ID=17739465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2289154A Expired - Lifetime JP3010724B2 (en) 1990-10-25 1990-10-25 Hydrogen storage alloy electrode for batteries

Country Status (1)

Country Link
JP (1) JP3010724B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554456A (en) * 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles
KR100312699B1 (en) * 1994-12-28 2002-06-29 김순택 Metal hydride and preparation method thereof
US5876869A (en) * 1995-12-07 1999-03-02 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrodes
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
US6500583B1 (en) * 2000-07-17 2002-12-31 Energy Conversion Devices, Inc. Electrochemical hydrogen storage alloys for nickel metal hydride batteries, fuel cells and methods of manufacturing same
WO2015068331A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Electrode alloy powder, nickel-hydrogen-storage-cell negative electrode using same, and nickel-hydrogen storage cell

Also Published As

Publication number Publication date
JPH04162355A (en) 1992-06-05

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
KR20010047382A (en) A surface-modification methode of metal hydride in Ni/MH secondary battery using flake-type Ni
JPH0765833A (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH09293501A (en) Manufacture of hydrogen storage alloy electrode
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH04264362A (en) Hydrogen storage alloy electrode
JP2002042801A (en) Hydrogen storage alloy electrode and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

EXPY Cancellation because of completion of term