JPH0582125A - Hydrogen occluding alloy electrode - Google Patents
Hydrogen occluding alloy electrodeInfo
- Publication number
- JPH0582125A JPH0582125A JP4070704A JP7070492A JPH0582125A JP H0582125 A JPH0582125 A JP H0582125A JP 4070704 A JP4070704 A JP 4070704A JP 7070492 A JP7070492 A JP 7070492A JP H0582125 A JPH0582125 A JP H0582125A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- electrode
- hydrogen storage
- hydrogen
- alloy electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵−放出を可逆的に行える水素吸蔵合金電極に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen.
【0002】[0002]
【従来の技術】各種の電源として広く使われている蓄電
池として鉛電池とアルカリ電池がある。このうちアルカ
リ蓄電池は高信頼性が期待でき、小形軽量化も可能など
の理由で小型電池は各種ポ−タブル機器用に、大型は産
業用として使われてきた。2. Description of the Related Art Lead batteries and alkaline batteries are widely used as storage batteries for various power sources. Among them, the alkaline storage battery can be expected to have high reliability and can be made compact and lightweight. For this reason, the small battery has been used for various portable devices and the large battery for industrial use.
【0003】このアルカリ蓄電池において、正極として
は一部空気極や酸化銀極なども取り上げられているが、
ほとんどの場合ニッケル極である。ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。In this alkaline storage battery, an air electrode, a silver oxide electrode, etc. are also taken up as a positive electrode,
In most cases it is a nickel pole. The characteristics have been improved from the pocket type to the sintered type, and it has become possible to further seal and expand the applications.
【0004】一方、負極としてはカドミウムの他に亜
鉛、鉄、水素などが対象となっているが、現在のところ
カドミウム極が主体である。ところが、一層の高エネル
ギ−密度を達成するために金属水素化物つまり水素吸蔵
合金極を使ったニッケル−水素蓄電池が注目され、製法
などに多くの提案がされている。On the other hand, as the negative electrode, zinc, iron, hydrogen, etc. are targeted in addition to cadmium, but at present, the main component is a cadmium electrode. However, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode, has been attracting attention in order to achieve a higher energy density, and many proposals have been made for a manufacturing method and the like.
【0005】水素を可逆的に吸収・放出しうる水素吸蔵
合金を負極に使用するアルカリ蓄電池の水素吸蔵合金電
極は、理論容量密度がカドミウム極より大きく、亜鉛極
のような変形やデンドライトの形成などもないことか
ら、長寿命・無公害であり、しかも高エネルギー密度を
有するアルカリ蓄電池用負極として期待されている。A hydrogen storage alloy electrode of an alkaline storage battery, which uses a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a negative electrode, has a theoretical capacity density larger than that of a cadmium electrode and causes deformation such as a zinc electrode and formation of dendrite. Therefore, it is expected as a negative electrode for alkaline storage batteries that has a long life, is pollution-free, and has a high energy density.
【0006】このような水素吸蔵合金電極に用いられる
合金として、一般的にはTi−Ni系およびLa(また
はMm)−Ni系の多元系合金がよく知られている。T
i−Ni系の多元系合金は、ABタイプ(A:La,Z
r,Tiなどの水素との親和性の大きい元素、B:N
i,Mn,Crなどの遷移元素)として分類できるが、
この特徴として充放電サイクルの初期には比較的大きな
放電容量を示すが、充放電を繰り返すと、その容量を長
く維持することが困難であるという問題がある。また、
AB5タイプのLa(またはMm)−Ni系の多元系合
金は、近年電極材料として多くの開発が進められ、特に
Mm−Ni系の多元系合金はすでに実用化されている
が、この合金系も比較的放電容量が小さいこと、電池電
極としての寿命性能が不十分であること、材料コストが
高いなどの問題を有している。したがって、さらに放電
容量が大きく長寿命である新規水素吸蔵合金材料が望ま
れている。As alloys used for such hydrogen storage alloy electrodes, generally, Ti-Ni-based and La (or Mm) -Ni-based multi-component alloys are well known. T
i-Ni-based multi-component alloys are AB type (A: La, Z
Elements with a high affinity for hydrogen, such as r and Ti, B: N
i, Mn, Cr and other transition elements)
This feature shows a relatively large discharge capacity at the beginning of the charge / discharge cycle, but there is a problem that it is difficult to maintain the capacity for a long time when charge / discharge is repeated. Also,
AB 5 type La (or Mm) -Ni-based multi-component alloys have been extensively developed in recent years as electrode materials, and in particular, Mm-Ni-based multi-component alloys have already been put to practical use. Also has problems such as relatively small discharge capacity, insufficient life performance as a battery electrode, and high material cost. Therefore, a novel hydrogen storage alloy material having a large discharge capacity and a long life is desired.
【0007】これに対して、AB2タイプのLaves
相合金は水素吸蔵能が比較的高く、高容量かつ長寿命の
電極として有望である。すでにこの合金系については、
例えばZrαVβNiγMδ系合金(特開昭64−60
961号公報)やAxByNiz系合金(特開平1−1
02855号公報)、ZrαMnβVγCrδNiε
(特開平3−289041号公報)などを提案してい
る。On the other hand, AB 2 type Laves
The phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode having a high capacity and a long life. Already for this alloy system,
For example, ZrαVβNiγMδ type alloy (Japanese Patent Laid-Open No. 64-60)
961) and AxByNiz alloys (JP-A-1-1-1).
No. 02855), ZrαMnβVγCrδNiε.
(Japanese Patent Laid-Open No. 3-2899041) is proposed.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、AB2
タイプのLaves相合金を電極に用いた場合、Ti−
Ni系やLa(またはMm)−Ni系の多元系合金に比
べて放電容量が高く、長寿命化が可能なものの、さらに
一層の性能の向上が望まれている。そして、合金系をZ
r−Mn−V−Cr−Ni系に限定し、組成を調整する
ことにより0.34Ah/g以上の放電容量を持つ水素
吸蔵合金電極が得られた(特開平3−289041号公
報など)。そのようなZr−Mn−V−Cr−Ni系水
素吸蔵合金電極は高容量であるが、充放電サイクルの初
期での放電特性が非常に悪いという問題があった。However, AB 2
When a type Laves phase alloy is used for the electrode, Ti-
Although the discharge capacity is higher and the life can be extended as compared with the Ni-based or La (or Mm) -Ni-based multi-component alloy, further improvement in performance is desired. And the alloy system is Z
By limiting the composition to the r-Mn-V-Cr-Ni system and adjusting the composition, a hydrogen storage alloy electrode having a discharge capacity of 0.34 Ah / g or more was obtained (JP-A-3-289041, etc.). Such a Zr-Mn-V-Cr-Ni-based hydrogen storage alloy electrode has a high capacity, but there is a problem that the discharge characteristics at the beginning of the charge / discharge cycle are very poor.
【0009】本発明は上記従来の課題を解決するもので
あり、水素吸蔵合金を改善することにより、高容量を損
なうことなく初期放電特性を向上させることができる水
素吸蔵合金電極を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and it is an object of the present invention to provide a hydrogen storage alloy electrode by improving the hydrogen storage alloy, which can improve the initial discharge characteristics without impairing the high capacity. To aim.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に本発明は、一般式が、ZrMnwVxMyNiz(ただ
し、MはFe,Coの中から選ばれた1種以上の元素で
あり、0.4≦w≦0.8,0.1≦x≦0.3,0<
y≦0.2,1.2≦z≦1.5、かつ2.0≦w+x
+y+z≦2.4)で示され、合金相の主成分がC15
型Laves相であり、かつその結晶格子定数aが、
7.03Å≦a≦7.10Åである水素吸蔵合金または
その水素化物を用いるものである。Means for Solving the Problems The present invention to achieve the above object, the general formula, ZrMn w V x M y Ni z ( however, M is Fe, 1 or more selected from among Co Element, 0.4 ≦ w ≦ 0.8, 0.1 ≦ x ≦ 0.3, 0 <
y ≦ 0.2, 1.2 ≦ z ≦ 1.5, and 2.0 ≦ w + x
+ Y + z ≦ 2.4), and the main component of the alloy phase is C15.
Type Laves phase, and its crystal lattice constant a is
A hydrogen storage alloy having a hydrogen content of 7.03Å ≦ a ≦ 7.10Å or a hydride thereof is used.
【0011】[0011]
【作用】本発明の水素吸蔵合金電極は、従来のZr−M
n−V−Cr−Ni系Laves相合金を改善したもの
であり、本発明によれば従来合金の組成のCrをM(M
はFe,Coの中から選ばれた1種以上の元素)に置換
することにより、電気化学的な水素の吸蔵−放出に対す
る活性が大きくなるので、充放電特性において初期から
効率よく多量の水素を吸蔵−放出させることができる。The hydrogen storage alloy electrode of the present invention is the same as the conventional Zr-M
This is an improvement of the n-V-Cr-Ni-based Laves phase alloy. According to the present invention, Cr of the composition of the conventional alloy is M (M
Is substituted with one or more elements selected from Fe and Co), so that the electrochemical activity for hydrogen storage-release is increased, so that a large amount of hydrogen can be efficiently generated from the initial stage in charge and discharge characteristics. It can be occluded and released.
【0012】したがって、本発明の電極を用いて構成し
たアルカリ蓄電池、例えばニッケル−水素蓄電池は、従
来のこの種の電池に比べて高容量を損なわずに優れた初
期放電特性を有することが可能になる。Therefore, an alkaline storage battery constructed by using the electrode of the present invention, for example, a nickel-hydrogen storage battery, can have excellent initial discharge characteristics without impairing the high capacity as compared with the conventional battery of this type. Become.
【0013】[0013]
【実施例】以下に本発明の一実施例について図面ととも
に説明する。市販のZr,Mn,V,Fe,Co,Ni
金属を原料として、アルゴン雰囲気中、アーク溶解炉で
加熱溶解することにより、(表1)および(表2)に示
したような組成の合金を作製した。ただし、Mn量wが
0.8以上のものはアーク炉で作製すると多量のMnが
蒸発し、目的合金を得ることが困難であるため、誘導加
熱炉で作製した。次いで、真空中、1100℃で12時
間熱処理し、合金試料とした。なお、(表1)中の試料
No.1および2については上記金属のFeあるいはC
oに代えてCrを使用した。An embodiment of the present invention will be described below with reference to the drawings. Commercially available Zr, Mn, V, Fe, Co, Ni
An alloy having a composition as shown in (Table 1) and (Table 2) was prepared by heating and melting a metal as a raw material in an arc melting furnace in an argon atmosphere. However, when the Mn amount w is 0.8 or more, a large amount of Mn is evaporated when it is manufactured in an arc furnace, and it is difficult to obtain the target alloy. Therefore, it was manufactured in an induction heating furnace. Then, heat treatment was performed in vacuum at 1100 ° C. for 12 hours to obtain an alloy sample. In addition, the sample No. in (Table 1). For 1 and 2, Fe or C of the above metals
Cr was used instead of o.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】この合金試料の一部はX線回折などの合金
分析および水素ガス雰囲気における 水素吸収−放出量測定(通常のP(水素圧力)−C(組
成)−T(温度)測定) に使用し、残りは電極特性評価に用いた。A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.
【0017】試料No.1〜6は本発明と構成元素また
は合金組成が異なる比較例であり、試料No.7〜31
は本発明の水素吸蔵合金のいくつかの実施例である。ま
ず、各合金試料についてX線回折測定を行った。その結
果、いずれの合金試料についても合金相の主成分はC1
5型Laves相(MgCu2型fcc構造)であるこ
とを確認した。また、熱処理前と比べるとfccのピー
クがより大きく鋭くなったので、熱処理することにより
C15型Laves相の割合が増大し、合金の均質性お
よび結晶性も向上したことがわかった。特にMn量wが
0.8以上のものについても均一組成の目的合金が得ら
れたことを確認した。結晶格子定数については、試料N
o.3は7.03Åより小さかったが、それ以外はいず
れも7.04〜7.08Åであった。Sample No. Sample Nos. 1 to 6 are comparative examples having different constituent elements or alloy compositions from the present invention. 7-31
Are several examples of hydrogen storage alloys of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, the main component of the alloy phase was C1 in all the alloy samples.
It was confirmed to be a 5 type Laves phase (MgCu 2 type fcc structure). Further, since the fcc peak was larger and sharper than that before the heat treatment, it was found that the heat treatment increased the proportion of the C15 type Laves phase and improved the homogeneity and crystallinity of the alloy. In particular, it was confirmed that the target alloy having a uniform composition was obtained even when the Mn content w was 0.8 or more. For the crystal lattice constant, see Sample N
o. 3 was smaller than 7.03Å, but other than that, all were 7.04 to 7.08Å.
【0018】以上のような試料No.1〜31の合金に
ついて、電気化学的な充放電反応によるアルカリ蓄電池
用負極としての電極特性、特に、初期放電特性を評価す
るために単電池試験を行った。Sample No. With respect to the alloys Nos. 1 to 31, a single cell test was performed to evaluate the electrode characteristics as a negative electrode for an alkaline storage battery by an electrochemical charge / discharge reaction, particularly the initial discharge characteristics.
【0019】試料No.1〜31の合金を400メッシ
ュ以下の粒径になるように粉砕し、この合金粉末1gと
導電剤としてのカーボニルニッケル粉末3gおよび結着
剤としてのポリエチレン微粉末0.12gを十分混合撹
伴し、プレス加工により24.5Φ×2.5mmHの円
板状に成形した。これを真空中、130℃で1時間加熱
し、結着剤を溶融させて水素吸蔵合金電極とした。Sample No. The alloys Nos. 1 to 31 were pulverized to have a particle size of 400 mesh or less, and 1 g of this alloy powder, 3 g of carbonyl nickel powder as a conductive agent, and 0.12 g of polyethylene fine powder as a binder were thoroughly mixed and stirred. Then, it was formed into a disk shape of 24.5Φ × 2.5 mmH by press working. This was heated in vacuum at 130 ° C. for 1 hour to melt the binder and form a hydrogen storage alloy electrode.
【0020】この水素吸蔵合金電極にニッケル線のリー
ドを取り付けて負極とし、正極として過剰の容量を有す
る焼結式ニッケル極を、セパレータとしてポリアミド不
織布を用い、比重1.30の水酸化カリウム水溶液を電
解液として、25℃において、一定電流で充電と放電を
繰り返し、各サイクルでの放電容量を測定した。なお、
充電電気量は水素吸蔵合金1gあたり100mA×5時
間であり、放電は同様に1gあたり50mAで行い、
0.8Vでカットした。その結果を図1および図2に示
す。図1および図2はいずれも横軸に充放電サイクル数
を、縦軸に合金1gあたりの放電容量を示したものであ
り、図中の番号は(表1)または(表2)の試料No.
と一致している。図1および図2から試料No.1およ
び2では1サイクル目の放電容量が0.01〜0.02
Ah/g、2サイクル目が0.01〜0.05Ah/g
であり、10サイクル以後ほぼ一定になったのに対し
て、本発明の水素吸蔵合金を用いると、いずれも1サイ
クル目が0.2〜0.25Ah/g、2サイクル目が
0.27〜0.3Ah/g、3サイクル以後ほぼ一定で
0.34〜0.37Ah/gであり、従来よりも初期放
電特性が大きく向上していることがわかった。A nickel wire lead is attached to the hydrogen storage alloy electrode to serve as a negative electrode, a sintered nickel electrode having an excessive capacity as a positive electrode, a polyamide nonwoven fabric as a separator, and an aqueous potassium hydroxide solution having a specific gravity of 1.30. As an electrolytic solution, charging and discharging were repeated at a constant current at 25 ° C., and the discharge capacity in each cycle was measured. In addition,
The amount of charge electricity is 100 mA / g of hydrogen storage alloy × 5 hours, and the discharge is similarly performed at 50 mA / g,
It was cut at 0.8V. The results are shown in FIGS. 1 and 2. 1 and 2 show the number of charge / discharge cycles on the horizontal axis and the discharge capacity per 1 g of alloy on the vertical axis, and the numbers in the figures are the sample numbers of (Table 1) or (Table 2). .
Is consistent with 1 and 2, the sample No. In 1 and 2, the discharge capacity in the first cycle was 0.01 to 0.02.
Ah / g, the second cycle is 0.01 to 0.05 Ah / g
While it became almost constant after 10 cycles, when the hydrogen storage alloy of the present invention was used, both were 0.2 to 0.25 Ah / g in the first cycle and 0.27 to 0.27 in the second cycle. It was found that 0.3 Ah / g was substantially constant after 3 cycles and was 0.34 to 0.37 Ah / g, and the initial discharge characteristics were greatly improved as compared with the conventional case.
【0021】また、50サイクルまで続けて単電池試験
を行ったところ、試料No.3〜6は水素吸蔵量自体が
小さいため0.23〜0.28Ah/gと飽和容量が小
さく、試料No.1はMn量が多いためMnのアルカリ
電解液中への溶出が激しく、充放電サイクルを繰り返す
につれて放電容量が大きく低下した。これに対して本発
明の水素吸蔵合金電極では飽和容量が0.34〜0.3
6Ah/gと大きく、充放電サイクルに伴う放電容量の
低下が非常に小さいことがわかった。Further, when the unit cell test was continuously conducted up to 50 cycles, the sample No. Samples Nos. 3 to 6 had small hydrogen storage capacity of 0.23 to 0.28 Ah / g and thus had a small saturation capacity. No. 1 had a large amount of Mn, so that Mn was severely eluted into the alkaline electrolyte, and the discharge capacity greatly decreased as the charge and discharge cycle was repeated. On the other hand, the hydrogen storage alloy electrode of the present invention has a saturation capacity of 0.34 to 0.3.
It was found to be as large as 6 Ah / g, and the decrease in discharge capacity with charge / discharge cycles was very small.
【0022】さらに、これらの水素吸蔵合金を用いて以
下に示したような方法で密閉型ニッケル−水素蓄電池を
作製した。Further, a sealed nickel-hydrogen storage battery was manufactured by using the above hydrogen storage alloy by the following method.
【0023】(表1)または(表2)に示した合金の中
から試料No.1,2,12,16,24,30および
31の7種類の合金を選び、400メッシュ以下の粉末
にした各水素吸蔵合金をそれぞれカルボキシメチルセル
ローズ(CMC)の希水溶液と混合撹拌してペースト状
にし、電極支持体として平均ポアサイズ150ミクロ
ン、多孔度95%、厚さ1.0mmの発泡状ニッケルシ
ートに充填した。これを120℃で乾燥してローラープ
レスで加圧し、さらにその表面にフッ素樹脂粉末をコー
ティングして水素吸蔵合金電極とした。From the alloys shown in (Table 1) or (Table 2), sample No. 1,7,2,12,16,24,30 and 31 alloys are selected, and each hydrogen storage alloy made into powder of 400 mesh or less is mixed with a dilute aqueous solution of carboxymethyl cellulose (CMC) and stirred to form a paste. Then, a foamed nickel sheet having an average pore size of 150 μm, a porosity of 95% and a thickness of 1.0 mm was filled as an electrode support. This was dried at 120 ° C., pressed by a roller press, and the surface thereof was coated with a fluororesin powder to obtain a hydrogen storage alloy electrode.
【0024】この電極をそれぞれ幅3.3cm、長さ2
1cm、厚さ0.40mmに調整し、リード板を所定の
2カ所に取り付けた。そして、正極およびセパレータと
組み合わせて円筒状に3層を渦巻き状にしてSCサイズ
の電槽に収納した。このときの正極は公知の発泡式ニッ
ケル極を選び、幅3.3cm、長さ18cmとして用い
た。この場合もリード板を2カ所に取り付けた。また、
セパレータは親水性を付与したポリプロピレン不織布を
使用し、電解液としては、比重1.20の水酸化カリウ
ム水溶液に水酸化リチウムを30g/l溶解したものを
用いた。これを封口して密閉型電池とした。この電池は
正極容量規制であり理論容量は3.0Ahにした。Each of these electrodes has a width of 3.3 cm and a length of 2
The lead plate was adjusted to 1 cm and the thickness was 0.40 mm, and the lead plates were attached to two predetermined places. Then, in combination with the positive electrode and the separator, the three layers were made into a cylindrical shape and housed in an SC size battery case. A known foaming nickel electrode was selected as the positive electrode at this time and used with a width of 3.3 cm and a length of 18 cm. Also in this case, the lead plates were attached at two places. Also,
As the separator, a polypropylene non-woven fabric having hydrophilicity was used, and as the electrolytic solution, 30 g / l of lithium hydroxide was dissolved in an aqueous potassium hydroxide solution having a specific gravity of 1.20. This was sealed to form a sealed battery. This battery has a positive electrode capacity regulation and a theoretical capacity of 3.0 Ah.
【0025】このようにして作製した電池を通常の充放
電サイクル試験によって評価した。すなわち、充電は
0.5C(2時間率)で150%まで、放電は0.2C
(5時間率)で終止電圧1.0Vとし、20℃において
充放電サイクルを繰り返した。その結果、試料No.1
および2では理論容量に達するのに10〜15サイクル
かかったが、それら以外ではいずれの電池も3〜5サイ
クルの充放電で理論容量の3.0Ahに到達し、その後
安定した電池性能を持続した。The battery thus produced was evaluated by a usual charge / discharge cycle test. That is, charging is 0.5C (2-hour rate) up to 150% and discharging is 0.2C.
The final voltage was 1.0 V at (5 hour rate), and the charge / discharge cycle was repeated at 20 ° C. As a result, the sample No. 1
It took 10 to 15 cycles to reach the theoretical capacity in Examples 2 and 2, but other than that, all the batteries reached the theoretical capacity of 3.0 Ah in 3 to 5 cycles of charging and discharging, and then maintained stable battery performance. ..
【0026】ここで、本発明の合金組成の作用について
説明する。従来のZr−Mn−V−Cr−Ni合金はア
ルカリ溶液中でCrの不働態被膜を形成するため、充放
電サイクル初期での電気化学的な水素の吸蔵−放出を困
難にしていた。したがって、従来合金の組成のCrをM
(MはFe,Coの中から選ばれた1種以上の元素)に
置換することにより電気化学的な水素の吸蔵−放出に対
する活性が向上し、充放電サイクルの初期から効率よく
多量の水素を吸蔵−放出させることができる。Here, the function of the alloy composition of the present invention will be described. Since the conventional Zr-Mn-V-Cr-Ni alloy forms a passive film of Cr in an alkaline solution, it has been difficult to electrochemically store and release hydrogen at the initial stage of charge and discharge cycles. Therefore, the Cr of the conventional alloy composition is M
By substituting (M is one or more elements selected from Fe and Co), the activity for electrochemical hydrogen storage-release is improved, and a large amount of hydrogen is efficiently produced from the beginning of the charge / discharge cycle. It can be occluded and released.
【0027】次に、各組成の範囲は主に水素吸蔵−放出
量を確保するためのものである。Vは水素吸蔵−放出量
増加に寄与し、Niは吸蔵−放出量の低下を引き起こす
が電気化学的な水素の吸蔵−放出に対する活性の向上に
寄与する。しかし、V量xが0.1より小さいとVの効
果が小さく、V量xが0.3を越えると、合金の均質性
が悪くなり逆に水素吸蔵−放出量は減少する。また、N
i量zが1.5より大きいと水素平衡圧力が大きくなり
水素吸蔵−放出量が減少する。したがって、V量xおよ
びNi量zはそれぞれ0.1≦x≦0.3,1.2≦z
≦1.5が適当である。しかし、VとNiは相反する効
果を及ぼすのでV量xとNi量zのバランスが重要であ
り、たとえxおよびzが上記の範囲内であってもz−x
が1.2を越えると水素吸蔵−放出量が小さくなってし
まう。よって、xおよびzが上記の範囲内で、かつz−
x≦1.2であることが必要である。Next, the range of each composition is mainly for ensuring the hydrogen storage-release amount. V contributes to an increase in hydrogen storage-release amount, and Ni causes a decrease in storage-release amount, but contributes to improvement of electrochemical activity for hydrogen storage-release. However, if the V amount x is smaller than 0.1, the effect of V is small, and if the V amount x exceeds 0.3, the homogeneity of the alloy is deteriorated and conversely the hydrogen storage-release amount is reduced. Also, N
When the i amount z is larger than 1.5, the hydrogen equilibrium pressure increases and the hydrogen storage-release amount decreases. Therefore, the V amount x and the Ni amount z are 0.1 ≦ x ≦ 0.3 and 1.2 ≦ z, respectively.
≦ 1.5 is suitable. However, since V and Ni exert contradictory effects, it is important to balance the V amount x and the Ni amount z. Even if x and z are within the above range, z−x
When the ratio exceeds 1.2, the hydrogen storage-release amount becomes small. Therefore, x and z are within the above range, and z-
It is necessary that x ≦ 1.2.
【0028】M(MはFeまたはCoの中から選ばれた
1種以上の元素)も電気化学的な水素の吸蔵−放出に対
する活性のさらなる向上に寄与する。しかし、M量yが
0.2を越えると合金の水素吸蔵−放出能に影響を及ぼ
し水素吸蔵−放出量が小さくなる。したがって、M量y
は0<y≦0.2が適当であるが、V量xより多いと水
素平衡圧力が上昇し放電容量が小さくなってしまう。よ
ってM量に関しては0<y≦0.2、かつy≦xである
ことが必要である。M (M is one or more elements selected from Fe or Co) also contributes to the further improvement of the electrochemical activity for hydrogen storage-release. However, when the M amount y exceeds 0.2, the hydrogen storage-release capacity of the alloy is affected and the hydrogen storage-release amount becomes small. Therefore, M amount y
Is suitable for 0 <y ≦ 0.2, but if it is more than V amount x, the hydrogen equilibrium pressure rises and the discharge capacity becomes small. Therefore, regarding the amount of M, it is necessary that 0 <y ≦ 0.2 and y ≦ x.
【0029】MnはPCT曲線における水素平衡圧力の
平坦性に影響を及ぼし、Mn量が0.4以上でその平坦
性が非常に良くなり、放電容量が増加する。しかし、M
n量が0.8を越えると、Mnの電解液への溶出が激し
くなりサイクル寿命特性が悪くなる。したがって、Mn
量は0.4≦w≦0.8が適当である。Mn affects the flatness of the hydrogen equilibrium pressure in the PCT curve, and when the amount of Mn is 0.4 or more, the flatness becomes very good and the discharge capacity increases. But M
If the amount of n exceeds 0.8, Mn will be much eluted into the electrolytic solution and the cycle life characteristics will be deteriorated. Therefore, Mn
A suitable amount is 0.4 ≦ w ≦ 0.8.
【0030】以上のことから、高容量であり、かつ優れ
た初期放電特性を有する水素吸蔵合金電極を得るために
は、本発明の合金組成の条件を満たすことが重要である
ことがわかる。From the above, it is understood that it is important to satisfy the conditions of the alloy composition of the present invention in order to obtain a hydrogen storage alloy electrode having a high capacity and excellent initial discharge characteristics.
【0031】[0031]
【発明の効果】水素吸蔵合金電極は従来の水素吸蔵合金
電極の合金組成のCrをM(MはFe,Coの中から選
ばれた1種以上の元素)に置換することにより、電気化
学的な水素の吸蔵−放出に対する活性が大きくなるの
で、充放電サイクルの初期から効率よく多量の水素を吸
蔵−放出させることができる。したがって、これを負極
とするアルカリ蓄電池は従来のこの種の電池に比べて高
容量を損なわずに優れた初期放電特性を有する。EFFECTS OF THE INVENTION The hydrogen storage alloy electrode is electrochemically produced by substituting Cr (M is one or more elements selected from Fe and Co) in the alloy composition of the conventional hydrogen storage alloy electrode. Since a large amount of hydrogen storage-release activity is increased, a large amount of hydrogen can be stored and released efficiently from the beginning of the charge / discharge cycle. Therefore, the alkaline storage battery having this as a negative electrode has excellent initial discharge characteristics without impairing the high capacity as compared with the conventional battery of this type.
【図1】本発明の実施例および従来の水素吸蔵合金電極
を用いた単電池試験結果を示す充放電サイクル特性図FIG. 1 is a charge-discharge cycle characteristic diagram showing the results of a unit cell test using an example of the present invention and a conventional hydrogen storage alloy electrode.
【図2】本発明の実施例の水素吸蔵合金電極を用いた単
電池試験結果を示す充放電サイクル特性図FIG. 2 is a charge-discharge cycle characteristic diagram showing the results of a single cell test using the hydrogen storage alloy electrode of the example of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 良夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Moriwaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tsutomu Iwashiro 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (3)
し、MはFe,Coの中から選ばれた1種以上の元素で
あり、0.4≦w≦0.8,0.1≦x≦0.3,0<
y≦0.2,1.2≦z≦1.5、かつ2.0≦w+x
+y+z≦2.4)で示され、合金相の主成分がC15
(MgCu2)型Laves相であり、かつその結晶格
子定数(a)が、7.03Å≦a≦7.10Åである水
素吸蔵合金またはその水素化物を用いることを特徴とす
る水素吸蔵合金電極。1. A general formula, ZrMn w V x M y Ni z ( however, M is Fe, at least one element selected from among Co, 0.4 ≦ w ≦ 0.8,0 1 ≦ x ≦ 0.3, 0 <
y ≦ 0.2, 1.2 ≦ z ≦ 1.5, and 2.0 ≦ w + x
+ Y + z ≦ 2.4), and the main component of the alloy phase is C15.
A hydrogen storage alloy electrode comprising a (MgCu 2 ) -type Laves phase and having a crystal lattice constant (a) of 7.03Å ≦ a ≦ 7.10Å or a hydride thereof.
特徴とする請求項1記載の水素吸蔵合金電極。2. The hydrogen storage alloy electrode according to claim 1, wherein y ≦ x and z−x ≦ 1.2.
中もしくは不活性ガス雰囲気中で均質化熱処理を行った
合金を用いることを特徴とする請求項1または2記載の
水素吸蔵合金電極。3. The hydrogen storage alloy electrode according to claim 1, wherein an alloy which has been subjected to homogenizing heat treatment in a vacuum at 1000 to 1300 ° C. or in an inert gas atmosphere after the alloy is produced is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4070704A JPH0582125A (en) | 1991-03-29 | 1992-03-27 | Hydrogen occluding alloy electrode |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6635591 | 1991-03-29 | ||
JP6635491 | 1991-03-29 | ||
JP3-66355 | 1991-03-29 | ||
JP3-66354 | 1991-03-29 | ||
JP4070704A JPH0582125A (en) | 1991-03-29 | 1992-03-27 | Hydrogen occluding alloy electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0582125A true JPH0582125A (en) | 1993-04-02 |
Family
ID=27299097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4070704A Pending JPH0582125A (en) | 1991-03-29 | 1992-03-27 | Hydrogen occluding alloy electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0582125A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532076A (en) * | 1993-04-20 | 1996-07-02 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy and electrode therefrom |
US5541018A (en) * | 1992-04-13 | 1996-07-30 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storing alloy electrode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179836A (en) * | 1988-12-29 | 1990-07-12 | Matsushita Electric Ind Co Ltd | Manufacture of hydrogen storage alloy and electrode |
-
1992
- 1992-03-27 JP JP4070704A patent/JPH0582125A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02179836A (en) * | 1988-12-29 | 1990-07-12 | Matsushita Electric Ind Co Ltd | Manufacture of hydrogen storage alloy and electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541018A (en) * | 1992-04-13 | 1996-07-30 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storing alloy electrode |
US5532076A (en) * | 1993-04-20 | 1996-07-02 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy and electrode therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0506084B1 (en) | A hydrogen storage alloy and an electrode using the same | |
JP2579072B2 (en) | Hydrogen storage alloy electrode | |
JPH0953136A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH05287422A (en) | Hydrogen occluding alloy electrode | |
JPH0765833A (en) | Hydrogen storage alloy electrode | |
JP2563638B2 (en) | Hydrogen storage alloy electrode | |
JPH0582125A (en) | Hydrogen occluding alloy electrode | |
JP3248762B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JPH073365A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JP3352479B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP3410308B2 (en) | Hydrogen storage alloy and nickel-hydrogen battery electrode using the same | |
JPH0675398B2 (en) | Sealed alkaline storage battery | |
JPH05343055A (en) | Hydrogen storage alloy electrode | |
JPH05343056A (en) | Hydrogen storage alloy electrode | |
JPH0696763A (en) | Hydrogen storage alloy electrode and its manufacture | |
US5541018A (en) | Hydrogen storing alloy electrode | |
JPH05343054A (en) | Hydrogen storage alloy electrode | |
JPH06251769A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JPH05343057A (en) | Hydrogen storage alloy electrode | |
JPH05347156A (en) | Hydrogen storage alloy electrode | |
JPH06140038A (en) | Hydrogen storage alloy electrode | |
JPH06150918A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JPH06145849A (en) | Hydrogen storage alloy electrode | |
JP2929716B2 (en) | Hydrogen storage alloy electrode | |
JPH0463240A (en) | Hydrogen storage alloy electrode and battery using it |