JPH02179836A - Manufacture of hydrogen storage alloy and electrode - Google Patents

Manufacture of hydrogen storage alloy and electrode

Info

Publication number
JPH02179836A
JPH02179836A JP63333227A JP33322788A JPH02179836A JP H02179836 A JPH02179836 A JP H02179836A JP 63333227 A JP63333227 A JP 63333227A JP 33322788 A JP33322788 A JP 33322788A JP H02179836 A JPH02179836 A JP H02179836A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
ferrozirconium
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63333227A
Other languages
Japanese (ja)
Other versions
JP2834165B2 (en
Inventor
Koji Gamo
孝治 蒲生
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63333227A priority Critical patent/JP2834165B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to PCT/JP1989/001319 priority patent/WO1990007585A1/en
Priority to DE68924346T priority patent/DE68924346T2/en
Priority to US07/870,224 priority patent/US5281390A/en
Priority to EP90901007A priority patent/EP0413029B1/en
Publication of JPH02179836A publication Critical patent/JPH02179836A/en
Priority to US07/796,819 priority patent/US5268143A/en
Priority to US08/261,305 priority patent/US5490970A/en
Application granted granted Critical
Publication of JP2834165B2 publication Critical patent/JP2834165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture the alloy which is homogeneous and having good characteristics such as the amt. of hydrogen to be stored with good workability by utilizing at least ferrozirconium as a starting material. CONSTITUTION:At least ferrozirconium (Zr-Fe alloy) is used as a starting material, which is melted by a high frequency furnace, an arc furnace or the like to manufacture the hydrogen storage alloy. Preferably, the alloy expressed by general formula ABalpha or its hydride is manufactured. In the formula, A denotes Zr, Ti, Hf, Ta, Y, etc., B denotes Fe or a mixture of Fe and V, Ni, Cr, Mn, Co or the like, alpha=1.5 to 2.5 and A and B are regulated as different kinds of elements. The alloy phase substantially belongs to a Laves phase of intermetallic compounds and its crystal structure is regulated as the C14 type of hexagonal symmetry or the C15 type of cubic symmetry. The alloy is used to the storage, holding and transportation of hydrogen, a heat pump, material for the negative electrode of an alkali storage battery or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
の製造法に関するもので、特に水素の貯蔵・保持・輸送
、ヒートポンプおよびアルカリ蓄電池の負極用材料など
に用いられる水素吸蔵合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a hydrogen storage alloy that reversibly absorbs and releases hydrogen, and in particular for hydrogen storage, retention, and transportation, heat pumps, and negative electrodes of alkaline storage batteries. This paper relates to a method for manufacturing hydrogen storage alloys used in industrial materials, etc.

従来の技術 水素の貯蔵・保持・輸送、ヒートポンプおよびアルカリ
蓄電池の負極用材料などとして用いられる水素吸蔵合金
としては、これまでに希土類系、Zr(Ti)系、M9
系などがある。これらの中で、水素吸蔵量、空気中での
発火性や水素解離平衡圧などから評価される安全性、お
よび電気化学的に水素吸蔵・放出可能などの点から、特
にZr(Ti)−N1系、Zr(Ti)−Fe系もしく
は、これらの合金をベースとし、他の元素で置換あるい
は添加した合金が注目されている。中でもZr及びFo
を含有したラーバス相合金は多量の水素を安全に吸蔵さ
せることができ実用的な水素吸蔵合金として良好である
Conventional technology Hydrogen storage alloys used for storing, retaining, and transporting hydrogen, and as negative electrode materials for heat pumps and alkaline storage batteries, include rare earth alloys, Zr (Ti) series, and M9.
There are systems etc. Among these, Zr(Ti)-N1 is particularly suitable from the viewpoint of safety evaluated from hydrogen storage capacity, flammability in air, hydrogen dissociation equilibrium pressure, etc., and ability to absorb and release hydrogen electrochemically. Attention has been focused on alloys based on Zr(Ti)-Fe series, Zr(Ti)-Fe series, or alloys thereof, with other elements substituted or added. Among them, Zr and Fo
A larvous phase alloy containing hydrogen can safely store a large amount of hydrogen and is suitable as a practical hydrogen storage alloy.

従来から一般に、この合金の製造法は、出発原材料とし
て、単体のZr及びFeを用いていた。すなわち、例え
ば多孔質アルミナ坩堝等の中に成分原材料の単体金属を
所定の原子比で配合して準備し、高周波誘導加熱炉、高
温抵抗加熱炉やアーク炉等を用いて坩堝内で直接溶解し
、合成するものである。
Traditionally, methods for producing this alloy have generally used elemental Zr and Fe as starting materials. That is, for example, a porous alumina crucible or the like is prepared by mixing elemental metals as raw materials at a predetermined atomic ratio, and then directly melted in the crucible using a high-frequency induction heating furnace, high-temperature resistance heating furnace, arc furnace, etc. , to synthesize.

発明が解決しようとする課題 しかしながら、Zゎ単体金属を原料の一つとして用いて
溶解する際、溶液状態で坩堝と反応したり、高温で、他
元素との蒸気圧の違いから組成ずれを起こしやすく、望
ましい組成の均質な合金を得ることがむずかしい。また
、Zr単体金属は、その製造において煩雑な精製工程を
必要とするため% Z r金属の材料価格は比較的高い
。従って、実用性、経済性、安全性の点からZ2合金の
製造にZr単体金属を用いない方法が望まれている。
Problems to be Solved by the Invention However, when a simple metal is used as one of the raw materials and melted, it may react with the crucible in the solution state, or it may cause a compositional shift due to the difference in vapor pressure with other elements at high temperatures. It is difficult to obtain a homogeneous alloy with a desirable composition. In addition, since Zr elemental metal requires a complicated refining process in its production, the material price of Zr metal is relatively high. Therefore, from the viewpoints of practicality, economy, and safety, a method that does not use Zr alone in the production of Z2 alloy is desired.

本発明は、Zr含有水素吸蔵合金の製造における上述の
問題点に鑑みてなされたもので、原材料コストおよび製
造コストが安く、信頼性、再現性が高い水素吸蔵合金の
製造法および電極を提供することを目的とするものであ
る。
The present invention was made in view of the above-mentioned problems in manufacturing Zr-containing hydrogen storage alloys, and provides a method and electrode for manufacturing hydrogen storage alloys that are low in raw material cost and manufacturing cost, and have high reliability and reproducibility. The purpose is to

課題を解決するための手段 本発明の製造法は、成分原材料である単体Zrを市販の
フェロジルコニウム(Zr−Fe合金)に査き換えるこ
とにより、原材料コストおよび製造コストが安く、作業
性がよく、信頼性が高く、均質で、従って、水素吸蔵量
などの特性が良好な水素吸蔵合金を得ることができるも
のである。なお、フェロジルコニウムを用いた際に、所
望の組成の合金を得るために不足する場合は単体金属で
補えば同様の効果が添加量に応じて得られる。
Means for Solving the Problems The manufacturing method of the present invention has low raw material and manufacturing costs and good workability by replacing elemental Zr, which is a component raw material, with commercially available ferrozirconium (Zr-Fe alloy). Therefore, it is possible to obtain a hydrogen storage alloy that is highly reliable, homogeneous, and has good properties such as hydrogen storage capacity. Note that when ferrozirconium is used, if it is insufficient to obtain an alloy with a desired composition, the same effect can be obtained depending on the amount added by supplementing with a single metal.

作用 この方法に係る合金は、ロット間のバラツキが少ないた
め合金の均質性がよく2品質が安定で、信頼性が高く、
そのうえ安価で、しかも耐酸化性に優れている。
Function: The alloy produced using this method has good alloy homogeneity due to little variation between lots. 2. The quality is stable and reliable.
Moreover, it is inexpensive and has excellent oxidation resistance.

その結果9本発明は少なくともZrとFeを含有する水
素吸蔵合金、特に、一般式ABα(ただし、AはZr、
  Ti、  Hf、  T−、Y、  C,、Mm、
  L−。
As a result, the present invention provides a hydrogen storage alloy containing at least Zr and Fe, particularly a hydrogen storage alloy of the general formula ABα (where A is Zr,
Ti, Hf, T-, Y, C,, Mm,
L-.

C−、P、、  M−、Nb、  Nd、 Mo、  
A+y  Stから選んだ1種または2種以上の元素、
BはFeあるいはFe及びV、N+t  Cr、  M
np  Coy  Cut  Zn、  AnyS+、
  Nb、  Mm、  W、  Mm、  C−、Y
、  T、、  Pa。
C-, P,, M-, Nb, Nd, Mo,
One or more elements selected from A+y St,
B is Fe or Fe and V, N+t Cr, M
np Coy Cut Zn, AnyS+,
Nb, Mm, W, Mm, C-, Y
, T., Pa.

Ag)  Au、Cd、  lny  Sny  Bi
g  Lmp  cal  Pr。
Ag) Au, Cd, lny Sny Bi
g Lmp cal Pr.

Nd、  Th、  Sm、Mll(M−は希土類元素
の混合物を示す)から選んだ1種または2種以上の元素
、α=1.5〜2.5、またAとBは異種元素)で表さ
れ、合金相が実質的に金属間化合物のラーバス相に属し
、その結晶構造が6方対称の014型またはくおよび)
立方対称のC15型で、特に6方対称のC14型につい
ては結晶格子定数a、  Cがそれぞれa=4.8〜5
.2A(オングストローム)c=7.9〜8.3A(オ
ングストローム)また、立方対称のC1S型については
結晶格子定数aが6.92〜7.70A(オングストロ
ーム)の合金相に適用したときに効果を発揮するもので
ある。
One or more elements selected from Nd, Th, Sm, Mll (M- indicates a mixture of rare earth elements), α = 1.5 to 2.5, and A and B are different elements). (014 type or type) in which the alloy phase substantially belongs to the ravas phase of an intermetallic compound and whose crystal structure is hexagonal symmetry.
For C15 type with cubic symmetry, especially for C14 type with hexagonal symmetry, the crystal lattice constants a and C are a = 4.8 to 5, respectively.
.. 2A (Angstrom) c = 7.9 to 8.3A (Angstrom) Also, for the C1S type with cubic symmetry, the effect is obtained when applied to an alloy phase with a crystal lattice constant a of 6.92 to 7.70A (Angstrom). It is something that can be demonstrated.

また、上記方法による合金を水素吸蔵電極として使用し
たとき、特に効果が著しい。
Further, when the alloy prepared by the above method is used as a hydrogen storage electrode, the effect is particularly remarkable.

実施例 以下に、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 第1表は、本発明を実施するために使用する原材料とし
てのジルコニウム(Zr)単体金属およびフェロジルコ
ニウム合金の組成と価格比の一例を比較して示したもの
である。第1表に示すごとく、単体ジルコニウム金属は
単位重量当りの価格がフェロジルコニウムに比べて約2
〜7倍も高い。
Example 1 Table 1 compares an example of the composition and price ratio of zirconium (Zr) single metal and ferrozirconium alloy as raw materials used to carry out the present invention. As shown in Table 1, the price per unit weight of elemental zirconium metal is about 2% lower than that of ferrozirconium.
~7 times higher.

例えば、品種欄のフェロジルコニウム1ではZr割合が
80%もの高率にもかかわらず、価格は従来品の約11
5である。またフェロジルコニウム1、フェロジルコニ
ウム2の均質性を調べたところ、共にきわめて良好であ
った。またこれらを溶解したときの蒸気圧は単体Zr金
金属1/2以下であり、組成ずれが少ないことがわかっ
た。
For example, Ferrozirconium 1 in the product category has a high Zr ratio of 80%, but the price is about 11% higher than the conventional product.
It is 5. Further, when the homogeneity of ferrozirconium 1 and ferrozirconium 2 was examined, both were found to be extremely good. It was also found that the vapor pressure when these were melted was 1/2 or less of that of simple Zr gold metal, indicating that there was little compositional deviation.

従来のZrおよびFeを含む合金(特にラーベス相のA
Ba系合金)の製造法では、この高価なジルコニウムに
電解鉄およびモンドニッケル等を所望の配合比だけ加え
て調製し、合金を製造していた。従って、原材料の価格
的不利に加えて、製造工程が複雑になり、さらに単体ジ
ルコニウムの酸化容易性や合金の不均一性などの問題が
発生していたが、第1表に示した実施例のようなフェロ
ジルコニウムを用いることによって、これらの欠点を除
去できる。
Conventional alloys containing Zr and Fe (especially Laves phase A
In the method for producing Ba-based alloys, alloys are produced by adding electrolytic iron, monoxide nickel, and the like to this expensive zirconium in a desired blending ratio. Therefore, in addition to the cost disadvantage of raw materials, the manufacturing process became complicated, and problems such as the ease of oxidation of elemental zirconium and non-uniformity of the alloy occurred. By using such ferrozirconium, these drawbacks can be eliminated.

原材料として、フェロジルコニウムを用いる本発明の製
造手順は、従来の高周波炉やアーク炉を用いる溶解法と
同様の操作方法でよい。第2表、N001〜5に示した
Zr(Ti)−Fe系合金を所望の組成比で配合し、溶
解したところ、溶解後の合金は、従来のものより均質性
が優れ、組成ずれがほとんどなく、ロット間のバラツキ
が少なかった0次いで、水素吸蔵合金としての特性(水
素吸蔵量、反応速度、空気中での発火性など)を調べた
ところ、同表に示したように水素吸蔵量は大きく、反応
速度などの他の特性も非常に良好であフた。
The manufacturing procedure of the present invention using ferrozirconium as a raw material may be similar to a conventional melting method using a high frequency furnace or an arc furnace. When the Zr(Ti)-Fe alloys shown in Table 2, Nos. 001 to 5 were blended in the desired composition ratio and melted, the alloy after melting had better homogeneity than conventional ones, with almost no deviation in composition. Next, we investigated the properties of the hydrogen storage alloy (hydrogen storage capacity, reaction rate, ignitability in air, etc.), and as shown in the table, the hydrogen storage capacity was low. It was large, and other properties such as reaction rate were also very good.

実施例2 実施例1と同様の方法で、市販のフェロジルコニウムお
よびZr、  Nl、  Ti、  Ht、  T−、
Y。
Example 2 Commercially available ferrozirconium and Zr, Nl, Ti, Ht, T-,
Y.

Ca9Mg、  Lay  Cap  M@I  Nb
t  Ndt  Sap  MatAt、  St、 
 V、  Cr、  Mn、  F−、C0,Cu、 
 Zl、。
Ca9Mg, Lay Cap M@I Nb
t Ndt Sap MatAt, St.
V, Cr, Mn, F-, C0, Cu,
Zl.

St、  Nb、  Mo、  W 、  Caなどを
原材料とし、ABa系合金の中から、一般式ZrαN1
γMδ(ただし、α、γ、δは、それぞれZ7、Ni、
  M元素の原子比で、α=0.5〜1.5、γ=0.
4〜2゜5、δ=0.01〜1.8で、かつγ+δ=1
.2〜3.7、M: Fe単独またはF6およびV、M
g、  C,。
Using St, Nb, Mo, W, Ca, etc. as raw materials, from ABa-based alloys, general formula ZrαN1
γMδ (however, α, γ, δ are Z7, Ni,
The atomic ratio of M element is α=0.5 to 1.5, γ=0.
4~2°5, δ=0.01~1.8, and γ+δ=1
.. 2-3.7, M: Fe alone or F6 and V, M
g, C,.

Y、  Ht、  Nb、  Tey  cr、  M
o、  W、  Mnt  Co。
Y, Ht, Nb, Tey cr, M
o, W, Mnt Co.

P d)  cut  AQ、Aug  Zn、  C
a、  A+、  St、  In。
P d) cut AQ, Aug Zn, C
a, A+, St, In.

So、  Bl、  L−、C−、M−、P−、Nd、
  Th、  Smから選んだ1種以上の元素)で表さ
れる合金系を選び、その中から第2表中、No、6〜1
1の組成第2表 の合金を合成した。
So, Bl, L-, C-, M-, P-, Nd,
Select an alloy system represented by one or more elements selected from Th, Sm, and No. 6 to 1 in Table 2 from among them.
An alloy of composition Table 2 of No. 1 was synthesized.

具体的な手順は、まず同表の組成になるようにフェロジ
ルコニウム等の原材料を秤量し、アルゴンアーク溶解炉
(またはアルゴン不活性ガス中での高周波誘導加熱炉)
で直接溶解した。溶解した合金試料の一部は、原子組成
、結晶構造、結晶格子定数、均質性等の合金分析用に使
用し、残りは水素ガス中での水素吸蔵、放出量測定用(
主としてP(圧力) −C(!成)−T(温度)測定)
および電気化学的性能評価用に用いた。
The specific procedure is to first weigh raw materials such as ferrozirconium so that they have the composition shown in the table, and then melt them in an argon arc melting furnace (or a high-frequency induction heating furnace in argon inert gas).
Dissolved directly. A part of the melted alloy sample was used for alloy analysis such as atomic composition, crystal structure, crystal lattice constant, and homogeneity, and the rest was used for measuring hydrogen absorption and release in hydrogen gas (
Mainly P (pressure) - C (! formation) - T (temperature) measurement)
and used for electrochemical performance evaluation.

分析の結果から、第2表の合金、No、6〜11は、均
質で、主たる合金相がC14型またはC15型ラーベス
相であり、その結晶格子定数は、6方対称の014型の
場合はa、  Cがそれぞれa=4.8〜5.2A(オ
ングストローム)、c =7.9〜8.3A(オングス
トローム)また、立方対称のC15型の場合は結晶格子
定数aが、6.92〜7.70A(オングストローム)
であるあることを確認した。また組成ずれもほとんど無
かった。これらの合金の水素ガスでの通常のP−C−T
特性結果から得られた水素吸蔵量を第2表に示す。これ
らは、従来の値より大きく、反応速度などの特性も良好
であった。
From the analysis results, alloys No. 6 to 11 in Table 2 are homogeneous, and the main alloy phase is C14 type or C15 type Laves phase, and the crystal lattice constant is 014 type with six-way symmetry. a and C are respectively a = 4.8 to 5.2 A (angstrom) and c = 7.9 to 8.3 A (angstrom). In addition, in the case of cubic symmetric C15 type, the crystal lattice constant a is 6.92 to 7.70A (angstrom)
It was confirmed that Furthermore, there was almost no compositional deviation. Conventional P-C-T of these alloys in hydrogen gas
Table 2 shows the hydrogen storage capacity obtained from the characteristic results. These values were larger than conventional values, and characteristics such as reaction rate were also good.

一方、第2表の合金No、12〜15は比較のために示
した従来の製造法によるものの代表例である。これらは
、均質性や組成ずれが発生し、表の如く同様の系にもか
かわらず、水素吸蔵量はかなり少なかった。
On the other hand, Alloy Nos. 12 to 15 in Table 2 are representative examples of alloys made by conventional manufacturing methods, shown for comparison. In these cases, homogeneity and compositional deviation occurred, and the amount of hydrogen storage was quite small, even though the systems were similar as shown in the table.

なお、本発明の製造法を適用できる合金は第2表に示す
もの以外に、多くの合金組成がある。これらの中で、合
金相が実質的に金属間化合物のラーベス相に属し、その
結晶構造が6方対称のC14型または(および)立方対
称のC15型で、その結晶格子定数は、6方対称のC1
4型の場合はa、  cがそれぞれa =4.8〜5.
2A (オングストローム)、c =7.9〜8.3A
 (オングストローム)また、特に立方対称のC15型
については結晶格子定数aが6.92〜7.70A(オ
ングストローム)である合金は、中でも特に効果が大き
かった。
In addition, there are many alloy compositions other than those shown in Table 2 to which the manufacturing method of the present invention can be applied. Among these, the alloy phase substantially belongs to the Laves phase of an intermetallic compound, and its crystal structure is C14 type with hexagonal symmetry or (and) C15 type with cubic symmetry, and its crystal lattice constant is hexagonal symmetrical. C1 of
In the case of type 4, a and c are respectively a = 4.8 to 5.
2A (angstrom), c = 7.9~8.3A
(Angstrom) In addition, particularly for the cubic symmetric C15 type, alloys with a crystal lattice constant a of 6.92 to 7.70A (Angstrom) were particularly effective.

このように水素吸蔵合金の出発原材料として。In this way, it is used as a starting material for hydrogen storage alloys.

FeとZrからなるフェロジルコニウムを用いて水素吸
蔵合金を合成する製造法によると、合金は均質性が極め
て良く、水素吸蔵・保持・輸送用合金としての性能も、
FeとZr金属単独を原材料とするものよりも優れ、プ
ロセスも簡便であった。
According to the manufacturing method of synthesizing a hydrogen storage alloy using ferrozirconium consisting of Fe and Zr, the alloy has extremely good homogeneity and has excellent performance as an alloy for hydrogen storage, retention, and transport.
It was superior to those using only Fe and Zr metals as raw materials, and the process was simpler.

ここで、本製造法で得られた合金を水素吸蔵・放出量の
点から厳密に比較評価し、各元素による本発明の効果を
調べ、本発明が最も効果を発揮する最適組成例を得る。
Here, the alloys obtained by the present manufacturing method are strictly compared and evaluated in terms of the amount of hydrogen absorption and release, and the effects of the present invention due to each element are investigated to obtain an optimal composition example in which the present invention exhibits the most effect.

一般式ZrαNiγMδ(ただし、α、γ、δは、それ
ぞれZ2、N1、M元素の原子比で、α=0.5〜1.
5、γ=0.4〜2,5、δ=0.01〜1゜8で、か
つγ+δ=1.2〜3.7、M: Fe単独またはF6
およびV、Mg、  C−、Y、  Hf、  Nb、
  T−。
General formula ZrαNiγMδ (where α, γ, and δ are the atomic ratios of Z2, N1, and M elements, respectively, and α=0.5 to 1.
5, γ = 0.4 to 2.5, δ = 0.01 to 1°8, and γ + δ = 1.2 to 3.7, M: Fe alone or F6
and V, Mg, C-, Y, Hf, Nb,
T-.

C,、Mo、  W、  Mn、  Co、Pd、  
Cu、  A9.  A、。
C,, Mo, W, Mn, Co, Pd,
Cu, A9. A.

Z nj  Ca、  A+I  Sip  In@ 
 Snp  Big  La)  Co。
Z nj Ca, A+I Sip In@
Snp Big La) Co.

M−、Pr、  Nd、  Th、  Smから選んだ
1種以上の元素)で表される合金系で、原子比δが0.
01より小さいか、または1.8より大きい合金も同様
に水素数出量が若干小さかった。また原子比αが0.5
より小さい合金は水素吸蔵量がやや不十分で、1.5よ
り大きい合金は水素放出量が比較的小さい。
An alloy system represented by one or more elements selected from M-, Pr, Nd, Th, and Sm, with an atomic ratio δ of 0.
Similarly, alloys smaller than 01 or larger than 1.8 had slightly smaller hydrogen numbers. Also, the atomic ratio α is 0.5
Smaller alloys have somewhat insufficient hydrogen storage capacity, and alloys larger than 1.5 have relatively low hydrogen release capacity.

更に原子比γが0.4より小さい合金は水素吸蔵・放出
のサイクル耐久性の点で不十分であり、また2、5より
大きい合金は水素吸蔵量が若干小さかった。モして(γ
+δ)の値が1.2より小さい合金は水素放出量が、ま
た3、7より大きい合金は水素吸蔵量が比較的小さかフ
た。これらの理由はZrの含有量αは、特に水素吸蔵量
に関与し、Zrが多い程、水素吸蔵量は大きいが、安定
な水素化物を形成するため水素放出率が小さく、結果的
に水素放出量が少なくなる。またNttは、特に吸蔵・
放出サイクル特性(耐久性)に関係し、Ni量多いほど
、長寿命だが、水素吸蔵量が少なくなる傾向がある。
Furthermore, alloys with an atomic ratio γ smaller than 0.4 were insufficient in terms of hydrogen storage/release cycle durability, and alloys with an atomic ratio γ larger than 2 or 5 had a slightly small hydrogen storage capacity. Mo (γ
Alloys with a value of +δ) smaller than 1.2 have a relatively small amount of hydrogen released, and alloys with a value larger than 3 or 7 have a relatively small amount of hydrogen storage. The reason for these is that the Zr content α is particularly related to the amount of hydrogen storage, and the more Zr there is, the larger the amount of hydrogen storage is, but because it forms a stable hydride, the hydrogen release rate is low, and as a result, the hydrogen release rate is low. Quantity decreases. In addition, Ntt is particularly important for occlusion and
In relation to release cycle characteristics (durability), the larger the Ni content, the longer the life, but the hydrogen storage capacity tends to decrease.

そしてM元素の含有量δは特に吸蔵・放出サイクル特性
と放出圧力に関与し、Mが多いほどこれらの特性は向上
するが、水素吸蔵量が減少した。また、Feを必須元素
とする効果は9合金の溶解性、均質性に優れ、低価格で
あることから、工業的。
The M element content δ is particularly involved in the storage/desorption cycle characteristics and the desorption pressure, and as the amount of M increases, these characteristics improve, but the amount of hydrogen storage decreases. In addition, the effect of using Fe as an essential element is that alloy 9 has excellent solubility and homogeneity, and is inexpensive, making it industrially viable.

経済的に利点が大きかった。It had great economic advantages.

また前記一般式ZrαN1γMδで表される合金を用い
て形成したアルカリ蓄電池用水素吸蔵合金負極は第3表
に示すように、電気容量が大きく良発明の効果 本発明の製造法にかかる合金および電極は、その均質性
がよく、ロット間のバラツキが少ないため品質が安定で
、信頼性が高く、しかも原材料コストが低く、また、製
造工程が簡便であるため。
Further, as shown in Table 3, the hydrogen storage alloy negative electrode for alkaline storage batteries formed using the alloy represented by the general formula ZrαN1γMδ has a large electric capacity. Effects of the invention The alloy and electrode according to the manufacturing method of the present invention The quality is stable and reliable due to its good homogeneity and little variation between lots, and the cost of raw materials is low, and the manufacturing process is simple.

合金価格が安く、その結果、水素吸蔵・放出量やサイク
ル寿命などの諸特性が優れた合金を供給し得、しかも耐
酸化性の点でも好ましい。
The price of the alloy is low, and as a result, it is possible to supply an alloy with excellent properties such as hydrogen storage/release amount and cycle life, and is also preferable in terms of oxidation resistance.

Claims (5)

【特許請求の範囲】[Claims] (1)出発原材料として、少なくともフェロジルコニウ
ム(Zr−Fe合金)を使用することを特徴とする水素
吸蔵合金の製造法。
(1) A method for producing a hydrogen storage alloy, characterized in that at least ferrozirconium (Zr-Fe alloy) is used as a starting material.
(2)出発原材料として、少なくともフェロジルコニウ
ム(Zr−Fe合金)を使用し、一般式ABα(ただし
、AはZr、Ti、Hf、Ta、Y、Ca、Mg、La
、Ce、Pr、Mm、Nb、Nd、Mo、Al、Siか
ら選んだ1種または2種以上の元素、BはFe単独また
はFeおよびV、Ni、Cr、Mn、Co、Cu、Zn
、Al、Si、Nb、Mo、W、Mg、Ca、Y、Ta
、Pd、Ag、Au、Cd、In、Sn、Bi、La、
Ce、Pr、Nd、Th、Sm、Mm(ここでMmは希
土類元素の混合物を示す)から選んだ1種または2種以
上の元素、α=1.5〜2、5、またAとBは異種元素
)で表され、合金相が実質的に金属間化合物のラーベス
相に属し、その結晶構造が6方対称のC14型または立
方対称のC15型で、特に6方対称のC14型について
は結晶格子定数a、cがそれぞれa=4.8〜5.2A
(オングストローム)、c=7.9〜8.3A(オング
ストローム)また、立方対称のC15型については結晶
格子定数aが6.92〜7.70A(オングストローム
)である合金またはその水素化物を製造することを特徴
とする水素吸蔵合金の製造法。
(2) At least ferrozirconium (Zr-Fe alloy) is used as a starting material, and the general formula ABα (where A is Zr, Ti, Hf, Ta, Y, Ca, Mg, La
, Ce, Pr, Mm, Nb, Nd, Mo, Al, Si, B is Fe alone or Fe and V, Ni, Cr, Mn, Co, Cu, Zn
, Al, Si, Nb, Mo, W, Mg, Ca, Y, Ta
, Pd, Ag, Au, Cd, In, Sn, Bi, La,
One or more elements selected from Ce, Pr, Nd, Th, Sm, Mm (here Mm indicates a mixture of rare earth elements), α = 1.5 to 2, 5, and A and B are The alloy phase substantially belongs to the Laves phase of an intermetallic compound, and its crystal structure is the C14 type with hexagonal symmetry or the C15 type with cubic symmetry, especially the C14 type with hexagonal symmetry. The lattice constants a and c are a=4.8 to 5.2 A, respectively.
(Angstrom), c = 7.9 to 8.3A (Angstrom) Also, for the cubic symmetric C15 type, an alloy or its hydride having a crystal lattice constant a of 6.92 to 7.70A (Angstrom) is produced. A method for producing a hydrogen storage alloy characterized by the following.
(3)合金またはその水素化物が、Aとして、少なくと
も30原子%以上のZrを含有することを特徴とする請
求項2記載の水素吸蔵合金の製造法。
(3) The method for producing a hydrogen storage alloy according to claim 2, wherein the alloy or its hydride contains Zr as A in an amount of at least 30 atom %.
(4)合金またはその水素化物が、実質的に、一般式Z
rαNiγMδ(ただし、α、γ、δは、それぞれZr
、Ni、M元素の原子比で、α=0.5〜1.5、γ=
0.4〜2、5、δ=0.01〜1.8で、かつγ+δ
=1.2〜3.7、M:Fe単独またはFeおよびV、
Mg、Ca、Y、Hf、Nb、Ta、Cr、Mo、W、
Mn、Co、Pd、Cu、Ag、Au、Zn、Cd、A
l、Si、In、Sn、Bi、La、Ce、Mm、Pr
、Nd、Th、Smから選んだ1種以上の元素)で表さ
れる請求項1、2、または3記載の水素吸蔵合金の製造
法。
(4) The alloy or its hydride substantially has the general formula Z
rαNiγMδ (however, α, γ, δ are each Zr
, Ni, M element atomic ratio, α=0.5 to 1.5, γ=
0.4-2,5, δ=0.01-1.8, and γ+δ
= 1.2 to 3.7, M: Fe alone or Fe and V,
Mg, Ca, Y, Hf, Nb, Ta, Cr, Mo, W,
Mn, Co, Pd, Cu, Ag, Au, Zn, Cd, A
l, Si, In, Sn, Bi, La, Ce, Mm, Pr
, Nd, Th, and Sm).
(5)出発原材料として、少なくともフェロジルコニウ
ム(Zr−Fe合金)を使用することを特徴とする水素
吸蔵合金電極。
(5) A hydrogen storage alloy electrode characterized in that at least ferrozirconium (Zr-Fe alloy) is used as a starting material.
JP63333227A 1988-06-28 1988-12-29 Production method and electrode for hydrogen storage alloy Expired - Fee Related JP2834165B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63333227A JP2834165B2 (en) 1988-12-29 1988-12-29 Production method and electrode for hydrogen storage alloy
DE68924346T DE68924346T2 (en) 1988-12-29 1989-12-28 METHOD FOR PRODUCING AN ALLOY WITH HYDROGEN STORAGE AND ELECTRODE FROM SUCH AN ALLOY.
US07/870,224 US5281390A (en) 1988-06-28 1989-12-28 Method of producing hydrogen-storing alloy and electrode making use of the alloy
EP90901007A EP0413029B1 (en) 1988-12-29 1989-12-28 Method of producing hydrogen-occlusion alloy and electrode using the alloy
PCT/JP1989/001319 WO1990007585A1 (en) 1988-12-29 1989-12-28 Method of producing hydrogen-occlusion alloy and electrode using the alloy
US07/796,819 US5268143A (en) 1988-06-28 1991-11-25 Method of producing hydrogen-storing alloy from a zirconium-tin starting material
US08/261,305 US5490970A (en) 1988-06-28 1994-06-16 Method of producing hydrogen-storing alloy and electrode making use of the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333227A JP2834165B2 (en) 1988-12-29 1988-12-29 Production method and electrode for hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH02179836A true JPH02179836A (en) 1990-07-12
JP2834165B2 JP2834165B2 (en) 1998-12-09

Family

ID=18263742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333227A Expired - Fee Related JP2834165B2 (en) 1988-06-28 1988-12-29 Production method and electrode for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2834165B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110435A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110436A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110434A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110433A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH0582125A (en) * 1991-03-29 1993-04-02 Matsushita Electric Ind Co Ltd Hydrogen occluding alloy electrode
WO1995017531A1 (en) * 1993-12-22 1995-06-29 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and alkaline secondary cell using the same
CN114787401A (en) * 2019-09-06 2022-07-22 株式会社泰库诺瓦 Nanocomposite metal material and method for producing nanocomposite metal material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131942A (en) * 1983-11-21 1985-07-13 コツパース コムパニー インコーポレーテツド Hydrogen storage material for superchemical weight alloy
JPS62294143A (en) * 1986-06-13 1987-12-21 Mazda Motor Corp Manufacture of metallic alloy for hydrogen storage
JPS6316552A (en) * 1986-07-09 1988-01-23 Hitachi Metals Ltd Hydrogen storage electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131942A (en) * 1983-11-21 1985-07-13 コツパース コムパニー インコーポレーテツド Hydrogen storage material for superchemical weight alloy
JPS62294143A (en) * 1986-06-13 1987-12-21 Mazda Motor Corp Manufacture of metallic alloy for hydrogen storage
JPS6316552A (en) * 1986-07-09 1988-01-23 Hitachi Metals Ltd Hydrogen storage electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110435A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110436A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110434A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH04110433A (en) * 1990-08-30 1992-04-10 Mitsubishi Materials Corp Hydrogen storage ni-zr series alloy
JPH0582125A (en) * 1991-03-29 1993-04-02 Matsushita Electric Ind Co Ltd Hydrogen occluding alloy electrode
WO1995017531A1 (en) * 1993-12-22 1995-06-29 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and alkaline secondary cell using the same
US6030724A (en) * 1993-12-22 2000-02-29 Kabushiki Kaisha Toshiba Hydrogen-storage alloy and alkali secondary battery using same
CN114787401A (en) * 2019-09-06 2022-07-22 株式会社泰库诺瓦 Nanocomposite metal material and method for producing nanocomposite metal material
CN114787401B (en) * 2019-09-06 2023-09-12 株式会社泰库诺瓦 Nanocomposite metal material and method for producing nanocomposite metal material

Also Published As

Publication number Publication date
JP2834165B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US4160014A (en) Hydrogen storage material
US4228145A (en) Hydrogen storage material
JP3528599B2 (en) Hydrogen storage alloy
US4195989A (en) Hydrogen storage material
JPH059504B2 (en)
JP5134175B2 (en) Hydrogen storage alloy
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
JPH02179836A (en) Manufacture of hydrogen storage alloy and electrode
US4259110A (en) Process for storing of hydrogen and the use thereof, particularly in engines
WO1990007585A1 (en) Method of producing hydrogen-occlusion alloy and electrode using the alloy
US5281390A (en) Method of producing hydrogen-storing alloy and electrode making use of the alloy
JPH0210659A (en) Manufacture of hydrogen storage alloy
JPS6141978B2 (en)
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
JPH02179837A (en) Manufacture of hydrogen storage alloy and electrode
US4446121A (en) Material for hydrogen absorption and desorption
EP0127161B1 (en) Hydrogen storage metal material
JPS61124545A (en) Hydrogen occluding metallic material
US5028389A (en) Hydrogen storage materials of Zr-Ti-Cr-Fe
US5268143A (en) Method of producing hydrogen-storing alloy from a zirconium-tin starting material
JP2896433B2 (en) Magnesium hydrogen storage alloy
JPH0949034A (en) Production of hydrogen storage alloy
KR100361908B1 (en) Titanium-zirconium-based Laves phase alloy for hydrogen storage
JP3338176B2 (en) Hydrogen storage material
JPS6141975B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees