JPH04110433A - Hydrogen storage ni-zr series alloy - Google Patents

Hydrogen storage ni-zr series alloy

Info

Publication number
JPH04110433A
JPH04110433A JP2228809A JP22880990A JPH04110433A JP H04110433 A JPH04110433 A JP H04110433A JP 2228809 A JP2228809 A JP 2228809A JP 22880990 A JP22880990 A JP 22880990A JP H04110433 A JPH04110433 A JP H04110433A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
negative electrode
active material
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2228809A
Other languages
Japanese (ja)
Other versions
JP2806010B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2228809A priority Critical patent/JP2806010B2/en
Publication of JPH04110433A publication Critical patent/JPH04110433A/en
Application granted granted Critical
Publication of JP2806010B2 publication Critical patent/JP2806010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a hydrogen storage Ni-Zr series alloy suitable for the use as the active material in the negative pole of a closed type Ni-hydrogen storage battery by preparing a hydrogen storage Ni-Zr series allay with an MgZn2. type crystalline structure contg. specified ratios of Zr, Ti, Mn, Fe, Ag and V. CONSTITUTION:A hydrogen storage Ni-Zr series alloy having a compsn. contg., by weight, 10 to 37% Zr, 5 to 25% Ti, 4 to 20% Mn, 0.01 to 5% Fe, 0.1 to 5% Ag and 0.1 to 15% V, furthermore contg., at need, one or two kinds of 1 to 7% Cu and 0.05 to 6% Cr and the balance Ni with inevitable impurities is prepd. This allay has an MgZn2 type crystalline structure (hexagonal C14 type crystalline structure) and shows excellent performance when used as the active material in the negative pole of a closed type Ni-hydrogen storage battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、M g Z n 2型結品構造、すなわち
六方晶C14型結晶柘造をもち、特に密閉型Ni水素蓄
電池の負極活物質として用いるのに適した水素吸蔵Ni
−Zr系合金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention has a M g Z n 2 type crystal structure, that is, a hexagonal C14 type crystal structure, and is particularly useful as a negative electrode active material of a sealed Ni hydrogen storage battery. Hydrogen storage Ni suitable for use
-This relates to Zr-based alloys.

〔従来の技術〕[Conventional technology]

一般に、密閉型N1−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、N1正極と、さらにセパ
レータおよびア′ルヵり電解液で構成され、かつ前記負
極を構成する水素吸蔵合金には、 (a)  室温付近ての水素吸蔵・放用能が大きい。
Generally, a sealed N1-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, an N1 positive electrode, a separator and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode. (a) It has a large hydrogen storage and release capacity near room temperature.

(1:l)  P CT曲線における室温(=J近の温
度でのプラトー圧に相当する平衡水素解離圧が比較的低
い(5気圧以下)。
(1:l) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature (=J) in the P CT curve is relatively low (5 atm or less).

(C)  アルカリ電解液rl−jで酬食性および耐久
性(lliiJ劣化性)かある。
(C) It has feeding property and durability (lliiJ deterioration property) with alkaline electrolyte rl-j.

((1)水素酸化能(触媒作用)か大きい。((1) Hydrogen oxidation ability (catalytic action) is large.

(e)  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
(e) Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

([)無(低)公害である。([) No (low) pollution.

(I−)  低コストである。(I-) It is low cost.

以Jx(a)〜(g)の性質を具備することか望まれ、
さらにこのような性質を具備した水素吸蔵合金を負極の
活物質として用いてなる密閉型N] −水素蓄電池は、
大きな放電容量、長い充・放電サイクル寿命、ずくれた
急速光・放電特性、および低自己放゛屯なとの好ましい
性能を発揮するようになることも良く知られるところで
ある。
It is desired that Jx has the following properties (a) to (g),
Furthermore, a sealed N]-hydrogen storage battery that uses a hydrogen storage alloy with such properties as the active material of the negative electrode is
It is also well known that they exhibit favorable performance properties such as large discharge capacity, long charge/discharge cycle life, exceptional rapid light/discharge characteristics, and low self-emission.

したかって、特に密閉型Ni  −水素蓄電池の負極を
構成する活物質として用いるのに適した水素吸蔵合金の
開発か盛んに行なわれ、例えば特開昭61−455.8
3号公報に記載されるM g Z n 2型結晶構造、
すなわち六方晶C1,4型結晶構造をもった水素吸蔵合
金はじめ、多数の水素吸蔵合金が提案されている。
Therefore, efforts have been made to actively develop hydrogen storage alloys suitable for use as active materials constituting the negative electrodes of sealed Ni-hydrogen storage batteries.
M g Z n type 2 crystal structure described in Publication No. 3,
That is, a large number of hydrogen storage alloys have been proposed, including hydrogen storage alloys having a hexagonal C1,4 type crystal structure.

[発明か解決しようとする課題1 しかし、すでに提案されているいずれの水素吸蔵合金も
倖1閉型N」 −水素蓄電池の負極活物質として用いる
場合に要求される一1二記の性質をすべて病足して具備
するものではなく、より一層の開発か望まれているのか
現状である。
[Invention or problem to be solved 1 However, none of the hydrogen storage alloys that have already been proposed meet all of the properties listed in 112 when used as a negative electrode active material for a hydrogen storage battery. The current situation is that it is not something that has been made available, but that further development is desired.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明省等は、上述のような観点から、特に密
閉型N】 −水素蓄Z[i池の負極活物質として用いる
のに適[、た水素吸蔵合金を開発すべく研究を行なった
結果、重量%で(以下%は重量%を示ず)、 Zr:]00337%  Ti:5〜25%、Mn:4
〜20%、  Fe:0.01〜5%、Ag:0.]〜
5%、 V  01〜15%、を含有し、さらに必要に
応じて、 Cu:]−77%  Cr:0.05−6%、のうしの
]種または2種を含有し、残りがNiと不【げ避不純物
からなる組成を有する水素吸蔵N1−ZI・系合金は、
M gZ n 2型結晶構造(六方晶C14型結晶柘造
)をもち、密閉型N1−水素蓄電池の負極活物質として
用いる場合に要求される上記〈21)〜(g)の性質を
十分満足した状態で具備し、したがってこれを負極活物
質として用いた密閉型N1−水素蓄電池は、大きなエネ
ルギー密度と゛心気容量をもち、かつ長いサイクル寿命
を示すようになるほか、自己放電か小さくなり、さらこ
高率光・放電特性にもすぐれ、無公害および低コストと
合わせて、す(れた性能を発揮するようになるという研
究結果を得たのである。
Therefore, from the above-mentioned viewpoint, the Ministry of Invention and others conducted research to develop a hydrogen storage alloy suitable for use as a negative electrode active material in a sealed type N]-hydrogen storage Z[i] pond. As a result, in weight% (hereinafter % does not indicate weight%), Zr:]00337% Ti: 5-25%, Mn: 4
~20%, Fe: 0.01~5%, Ag: 0. ] ~
5%, V 01-15%, and further contains Cu:]-77% Cr:0.05-6%, or two species as necessary, and the rest is Ni and A hydrogen-absorbing N1-ZI alloy with a composition consisting of evaporative impurities is
MgZn has a 2-type crystal structure (hexagonal C14-type crystal structure) and fully satisfies the properties of <21) to (g) above required when used as a negative electrode active material of a sealed N1-hydrogen storage battery. Therefore, a sealed N1-hydrogen storage battery using this as the negative electrode active material has a large energy density, a high capacity, and a long cycle life. Research has shown that this material has excellent high-rate light and discharge characteristics, is non-polluting and low cost, and exhibits excellent performance.

この発明は、上記研究結果にもとづいてなされたもので
あって、以下に上記水素吸蔵Ni−Zr系合金の成分組
成を上記の通りに限定した理由を説明する。
This invention has been made based on the above research results, and the reason why the composition of the hydrogen storage Ni-Zr alloy is limited as described above will be explained below.

QL)  ZrおよびTi これらの成分には1.!1ミ存した状態で合金に望まし
い水素吸蔵・放出特性を具備せしめると共に、室温にお
ける平衡水素解離圧(プラト−圧)を、例えば5気圧以
下に侃下さり−る作用かあるが、その倉r−i mかそ
れぞれ7丁・ 10%未満および′F5%未満ては前記
作用に所望の効果が得られず、一方Zrの含有量か37
%を越えると、放電容1の水素解離圧依存の点ては問題
はないが、水素吸蔵・放出能か低下するようになり、ま
たT1の含有量か25%を越えると、平衡水素解離圧が
例えば5気圧以上に」二カ1するようになり、大きな放
電容量を確保するためには高い水素解離圧を必要とする
ようになって蓄電池として好ま1.<ないものとなるこ
とから、その含イi瓜を、それぞれZ r・10〜37
%、T] 5〜25%と定めた。
QL) Zr and Ti These components include 1. ! This has the effect of providing the alloy with desirable hydrogen absorption and desorption characteristics in the state where hydrogen is present at 100 mA, and also lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. If the Zr content is less than 10% and less than 5%, the desired effect cannot be obtained; on the other hand, if the Zr content is less than 37
If the T1 content exceeds 25%, there will be no problem in terms of hydrogen dissociation pressure dependence of the discharge capacity 1, but the hydrogen storage and desorption capacity will decrease, and if the T1 content exceeds 25%, the equilibrium hydrogen dissociation pressure will decrease. For example, hydrogen pressure has become more than 5 atm, and a high hydrogen dissociation pressure is required to ensure a large discharge capacity, making it desirable for storage batteries. <Since it becomes something that does not exist, the melon containing it is Zr・10~37 respectively.
%, T] was set at 5 to 25%.

(b)  Mn Mn成分には、水素吸蔵・放出能を向」ニさせ、かつア
ルカリ′5ハ解液中ての合金の耐食性および耐久性を向
」ニさせるほか、蓄電池の負極活物質として用いた場合
に自己放電を抑制する作用があるが、その含’(−r 
mか4%未満で1′l前記作用に所望の効果か111ら
れす、一方その含有mか2D%を越えると、水素吸蔵・
放出特性か損なわわるようになることから、その含有量
を4〜20%と定めた。
(b) Mn The Mn component not only improves the hydrogen storage and release ability, but also improves the corrosion resistance and durability of the alloy in an alkali solution, and is used as a negative electrode active material in storage batteries. It has the effect of suppressing self-discharge when
If the content of m is less than 4%, the desired effect will be achieved. On the other hand, if the content of m is more than 2D%, hydrogen storage and
The content was set at 4 to 20% since the release characteristics would be impaired.

(c)  Fe Fe成分には、蓄′重油の負極活物質として用いる場合
などの粉末化に際[7て、形成された粉末を整粒化する
作用かあるか、その含有量が屹01%未7諺”dでは前
記作用に所望の効果か得られず、一方その含有ユか5%
を越えると耐食性が低下し、蓄電池に適用した場合、こ
れの自己放′小が進行するようになることから、その含
有量を0.旧〜5%と定めブこ。
(c) Fe The Fe component has a function of sizing the formed powder when it is powdered when used as a negative electrode active material for stored heavy oil. However, the desired effect cannot be obtained in the above-mentioned action, and on the other hand, its content is 5%.
If the content exceeds 0.0, the corrosion resistance will decrease, and when applied to a storage battery, self-emission will progress, so the content should be reduced to 0. It was previously set at 5%.

(d)    Ag Ag成分には、水素吸蔵能を一段とj14・大させ、も
ってN] −水素蓄電池の負極活物質として用いた場合
に放電容量を増加させて、その使用寿命の著l、い延命
化に寄与する作用かあるが、その含有量が01%1%未
満前記作用に所望の効果が得られず、一方その含有量か
5%を越えても前記作用により一層の向」二効果か見ら
れないことから、経済性を考慮して、その含有量を01
〜5%と定めノこ。
(d) Ag The Ag component further increases the hydrogen storage capacity, thereby increasing the discharge capacity when used as a negative electrode active material of a hydrogen storage battery and significantly prolonging its service life. However, if the content is less than 0.1% or 1%, the desired effect cannot be obtained from the above action, while even if the content exceeds 5%, the effect may be further enhanced by the action. Since it cannot be seen, the content was reduced to 0.01 in consideration of economic efficiency.
It is set at ~5%.

(c)  V 上記のように密閉型N1−水素蓄電池には、室ス頴こお
ける平衡水素解離圧か過度に高くなく (例えば5気圧
以下)、かつ水素吸蔵・放出能かできるたり大きいこと
が望まれるか、■成分には、このような水素吸蔵・放U
(−1能の増大および平衡水素圧の適〒[化に寄与する
作用かあるが、その含有ユか0.1%未1iYiでは前
記作用に所望の効果が得られず、一方その含有量か15
%を越えると、平衡水素圧か高くなりすぎるようになる
ほか、電解液中に溶(シ出して、1」已放電か助長され
るようになることから、その含有量を01〜15%と定
めた。
(c) V As mentioned above, a sealed N1-hydrogen storage battery requires that the equilibrium hydrogen dissociation pressure in the chamber is not excessively high (for example, 5 atm or less) and that the hydrogen storage and release capacity is large enough. Is it desirable? ■The ingredients contain such hydrogen absorption and U release.
(There is an effect that contributes to an increase in the -1 capacity and an appropriate equilibrium hydrogen pressure. However, if the content is less than 0.1%, the desired effect cannot be obtained in this effect; 15
If the hydrogen content exceeds 0.1%, the equilibrium hydrogen pressure will become too high, and it will dissolve into the electrolyte, promoting a 1" discharge. Established.

(f)  Cu CL、l成分には、水素吸蔵・放出能の増大およびマド
、衡水素圧の適正化を一段と促進する作用があるので、
必要に応じて含有されるか、その含有量が1%未満では
前記作用に所望の向−に効果かILlられす、一方その
含有量か7%を越えると、水素吸蔵・族11−14能の
低下を招き、放電容量が低下するようになることから、
その含:l−i量を1〜7%と定めた。
(f) The Cu CL, l component has the effect of increasing the hydrogen storage and release ability and further optimizing the hydrogen pressure and equilibrium hydrogen pressure.
If the content is less than 1%, it will be effective in the desired direction, while if the content exceeds 7%, the hydrogen storage/group 11-14 ability will be reduced. This leads to a decrease in discharge capacity, which leads to a decrease in discharge capacity.
Its content:li amount was determined to be 1 to 7%.

(g)  Cr Cr成分には、水素吸蔵・放出能を低−トさせることな
く、アルッJり電解液中での耐食性を一段と向上させる
作用かあるので、必要に応じて含有されるか、その含有
量が0.05%朱6′?4では前記作用に所望の向上効
果か得られず、一方その含有量が6%を越えると、水素
吸蔵・放出能が低下するようこなることから、その含有
量を0.05〜6%と定めた。
(g) Cr The Cr component has the effect of further improving the corrosion resistance in the aqueous electrolyte without reducing the hydrogen storage/desorption ability, so it may be included as needed or added. The content is 0.05% vermilion 6'? 4, the desired effect of improving the above-mentioned action cannot be obtained, and on the other hand, if the content exceeds 6%, the hydrogen storage and desorption ability decreases, so the content is set at 0.05 to 6%. Ta.

〔実 施 例〕〔Example〕

つきに、この発明の水素吸蔵N」 −Zr系合金を実施
例により具体的に説明する。
At the same time, the hydrogen-absorbing N''-Zr alloy of the present invention will be specifically explained with reference to Examples.

通當の高周波誘導溶解炉を用い、AI・雰囲気中にてそ
れぞれ第1表に示される成う〕組成をもったNi−Zr
系合金溶湯を調製し、銅釘」型に鋳造(−でインゴット
とじた後、このインゴットをA「雰1m気「1八 9[
)D−1,[)[)[)°Cの範囲内の所定温度に5時
間保持の条件で焼鈍し、ついでショークラッシャを用い
、粗粉砕して直径 2mm以下の粗粒とし、さらにボー
ルミルを用いて微粉砕して850mesh以下の粒度と
することによりいずれもM g Z n 2型結晶構造
をもった本発明水素吸蔵合金1〜20、比較水素吸蔵合
金1〜9、および従来水素吸蔵合金をそれぞれ製造した
Using a conventional high-frequency induction melting furnace, Ni-Zr with the composition shown in Table 1 was melted in an AI atmosphere.
After preparing the molten alloy and casting it into a "copper nail" mold (- and closing the ingot with -), the ingot was heated to 1 m in atmosphere of 18 9 [
) D-1, [) [) [) °C] The material was annealed at a predetermined temperature within the range of 5 hours, and then coarsely crushed using a show crusher to obtain coarse particles with a diameter of 2 mm or less, and then subjected to a ball mill. Hydrogen storage alloys 1 to 20 of the present invention, comparative hydrogen storage alloys 1 to 9, and conventional hydrogen storage alloys, all of which have a MgZn 2 type crystal structure, are finely pulverized to a particle size of 850 mesh or less. manufactured respectively.

ついて、この結果得られた各種の粉末状水素吸蔵合金を
活物質と[、て用い、まず、これにポリビニールアルコ
ール(P V A、 )の2%水溶液ヲ添加してペース
ト化した後、95%の多孔度を有する市販のNi ウィ
スカー不織布に充填し、乾燥し、さらに加圧して、下面
′1法+ 42mm X 3511mにして、厚さ 0
.GO〜0.65mmの形状(活物質充填量:約2.8
g)とし、これの−辺にリードとなるN1薄板を溶接に
より取イ(]けて負極を製造し、一方「E極として同T
j法のN1焼結板を2枚用意j7、これを前記負極の画
側に配置し、30%KOH水溶液を装入することにより
密閉型Ni  −水素蓄電池を製造した。
The resulting various powdered hydrogen storage alloys were then used as active materials. First, a 2% aqueous solution of polyvinyl alcohol (PVA) was added to form a paste. A commercially available Ni whisker nonwoven fabric with a porosity of
.. GO ~ 0.65mm shape (active material filling amount: approx. 2.8
g), and welded an N1 thin plate to serve as a lead on the - side of this to produce a negative electrode.
Two N1 sintered plates of method J7 were prepared, placed on the image side of the negative electrode, and a 30% KOH aqueous solution was charged to produce a sealed Ni-hydrogen storage battery.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量を1llll定し易くした
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made significantly larger than the capacity of the negative electrode, thereby making it easier to determine the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜9は、いずれも構成成
分のうちのいずれかの成☆〕含有量(第1表に※印を倒
す)かこの発明の範囲から外れた組成をもつものである
In addition, all of the comparative hydrogen storage alloys 1 to 9 have a content (marked with * in Table 1) of any of the constituent components or a composition that is outside the scope of the present invention. be.

つきに、これらの各種の蓄電池について、充放電速度・
0.2C,充電電気量 負極容量の]30%の条件で充
・放電試験を行い、1回の充電と放電を1サイクルとし
、130サイクル後、260サイクル後、および390
ザイクル後における放電容量をそれぞれ測定した。
At the same time, the charging/discharging speed and
A charging/discharging test was conducted under the conditions of 0.2C, charge amount of electricity 30% of the negative electrode capacity, one charge and discharge was one cycle, and after 130 cycles, 260 cycles, and 390 cycles.
The discharge capacity after cycling was measured.

また、さらに第1表に示される組成をもった各種の粉末
状水素吸蔵合金を用い、平面サイズを90mm X 4
0mm 、、厚さ: 0.GO−0,65mmとして、
容量1450〜1500mAh(?M物質充填二・約6
g)とするJ))、外は、上記の充・放電試験で用いた
蓄電池の負極板と同一の条件で負極板を製造し、一方正
極板は、95%の多孔度を有するNiウィスカー不織布
に水酸化ニッケル〔N1(○H)2〕を活物質として充
填し、乾燥し、さらにブレス力[ピロ1−だ後、す1・
を取イ・]けて、平面寸法: 70m+n X 40m
m、厚さ二〇 、 G5〜0 、70mmの形状(容量
+ 1000〜l(15(1mAh)とすることにより
製造し、この結果得られた負極板と正極板を、セパ1ノ
ータを介[7てうす巻き状に1.た状態で、電解液と共
にケース(これは○端子と兼用)の中に収容した+14
造の密閉型Ni  −水素蓄電池とした。なお、この蓄
′電池においては、正極容量より負極容量を大きくして
正極律則の蓄電池を構成した。
Further, various powdered hydrogen storage alloys having the compositions shown in Table 1 were used, and the planar size was 90 mm x 4.
0mm, Thickness: 0. As GO-0,65mm,
Capacity 1450~1500mAh (?M material filling 2.6
g) J)) The negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charge/discharge test, while the positive electrode plate was made of a Ni whisker nonwoven fabric with a porosity of 95%. was filled with nickel hydroxide [N1(○H)2] as an active material, dried, and further increased the pressing force [after pyrolysis, S1.
Plane dimensions: 70m+n x 40m
m, thickness 20, G5~0, 70mm shape (capacity + 1000~l (15 (1mAh)), and the resulting negative electrode plate and positive electrode plate were separated through a separator 1 node [ 7. +14 in a spirally wound state and housed in the case (this also serves as the ○ terminal) together with the electrolyte.
This is a sealed Ni-Hydrogen storage battery. In this storage battery, the negative electrode capacity was made larger than the positive electrode capacity to constitute a positive electrode regulation storage battery.

また、これらの蓄電池に対する自己放′嘔試験は、まず
室温て0.2C(20[)mA)で7時間充電し、つい
で蓄電池を45℃に温度セットしである恒温槽中に開路
状態(電池に負荷をかけない状態)で、216時間およ
び432時間放置放置放置後、とり出して、室温で0.
2C(200mA)放電を行ない、容量残存率を求める
ことにより行なった。
In addition, in the self-release test for these batteries, first charge the battery at room temperature at 0.2C (20 [) mA) for 7 hours, then place the battery in an open-circuit state (battery After leaving it for 216 hours and 432 hours, it was taken out and kept at room temperature for 0.2 hours.
This was performed by performing 2C (200 mA) discharge and determining the capacity remaining rate.

さらに、同じく第1表に示される成分組成をもった各種
の水素吸蔵合金について、一般にHu eY試験と呼ば
れている方法を用い、試験片を上記のインゴットより切
り出してプラスチック樹脂に埋] 4 め込み、腐食面をエメリーペーパー#600て研摩性」
二げした状態で、コールドフィンガー型コンデンザー例
三角フラスコに装入し、沸騰した30%KOH水溶液中
に120時間保持の条件でアルカリ電解液腐食試験を行
ない、試験後の腐食減量を測定した。これらの測定結果
を第1表に示した。
Furthermore, using a method generally called the HueY test, test pieces were cut from the above ingot and embedded in plastic resin for various hydrogen storage alloys having the compositions shown in Table 1. Polish the corroded surface with #600 emery paper.
In the cooled state, it was placed in a cold finger type condenser Erlenmeyer flask and subjected to an alkaline electrolyte corrosion test under conditions of being held in a boiling 30% KOH aqueous solution for 120 hours, and the corrosion loss after the test was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
0は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してずぐれた百1食性を示し、さらにこれを密
閉型Ni  −水素蓄電池の負極活物質として用いた場
合、蓄電池は高容量をもつようになり、従来水素吸蔵合
金を用いた蓄電池に比して充・放電サイクルを縁り返j
−だ場合の容量低下が著しく小さいという好ましい結果
を示すことか明らかであり、一方比較水素吸蔵合金1〜
9に見られるように、構成成分のうちのいずれかの成分
含有量でもこの発明の範囲から外れると、本発明水素吸
蔵合金に比j−で、アルカリ電解itlに対する耐食性
、並びにこれを蓄電池の負極話物質とl〜てコ5 ] 6 用いた場合の蓄′准池の放電容ユおよび自己放電のうち
の少なくともいずれかの特性が劣ったものになることが
明らかである。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
0 exhibits superior compatibility with alkaline electrolytes compared to conventional hydrogen storage alloys, and furthermore, when it is used as the negative electrode active material of a sealed Ni-hydrogen storage battery, the storage battery has a high It now has a higher capacity and has a faster charge/discharge cycle compared to conventional storage batteries using hydrogen storage alloys.
It is clear that this shows a favorable result in that the capacity decrease is significantly smaller when the hydrogen storage alloys 1 to
9, if the content of any of the constituent components is out of the scope of the present invention, the hydrogen storage alloy of the present invention has a lower corrosion resistance against alkaline electrolytic It is clear that when used, at least one of the discharge capacity and self-discharge characteristics of the storage battery becomes inferior.

」二連のように、この発明の水素吸蔵Ni−Zr系合金
は、アルカリ電解液に対する耐食性にすぐれているほか
、特に密閉型Ni  −水素蓄電池の負極活物質と1.
て用いた場合に、負極活物質に要求される特性をずべて
十分l萬足する状態で具備しているので、蓄電池の自己
放電が著しく低減し、さらに長いサイクル寿命に亘って
大きな放電8蚤か確保されるようになるなと工業上を用
な特性を有するのである。
As described above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and is particularly compatible with the negative electrode active material of sealed Ni-hydrogen storage batteries.
When used in a battery, it has all the characteristics required of a negative electrode active material in a sufficient state, so the self-discharge of the storage battery is significantly reduced, and even large discharges can be achieved over a long cycle life. It has properties that are useful in industry.

Claims (4)

【特許請求の範囲】[Claims] (1)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Ag:0.1〜5
%、V:0.1〜15%、を含有し、残りがNiと不可
避不純物からなる組成(以上重量%)を有することを特
徴とするMgZn_2型結晶構造をもった水素吸蔵Ni
−Zr系合金。
(1) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Ag: 0.1-5
%, V: 0.1 to 15%, and the remainder is Ni and unavoidable impurities (weight %).
-Zr alloy.
(2)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Ag:0.1〜5
%、V:0.1〜15%、を含有し、さらに、 Cu:1〜7%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(2) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Ag: 0.1-5
%, V: 0.1 to 15%, further contains Cu: 1 to 7%, and the remainder is Ni and unavoidable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a type crystal structure.
(3)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Ag:0.1〜5
%、V:0.1〜15%、を含有し、さらに、 Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Ag: 0.1-5
%, V: 0.1 to 15%, further contains Cr: 0.05 to 6%, and the remainder is Ni and inevitable impurities (weight %). A hydrogen-absorbing Ni-Zr alloy with a MgZn_2 type crystal structure.
(4)Zr:10〜37%、Ti:5〜25%、Mn:
4〜20%、Fe:0.01〜5%、Ag:0.1〜5
%、V:0.1〜15%、を含有し、さらに、 Cu:1〜7%、Cr:0.05〜6%、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(4) Zr: 10-37%, Ti: 5-25%, Mn:
4-20%, Fe: 0.01-5%, Ag: 0.1-5
%, V: 0.1 to 15%, and further contains Cu: 1 to 7%, Cr: 0.05 to 6%, and the remainder is Ni and unavoidable impurities (wt%). ) A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure.
JP2228809A 1990-08-30 1990-08-30 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2806010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228809A JP2806010B2 (en) 1990-08-30 1990-08-30 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228809A JP2806010B2 (en) 1990-08-30 1990-08-30 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH04110433A true JPH04110433A (en) 1992-04-10
JP2806010B2 JP2806010B2 (en) 1998-09-30

Family

ID=16882197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228809A Expired - Lifetime JP2806010B2 (en) 1990-08-30 1990-08-30 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2806010B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179836A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy and electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179836A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy and electrode

Also Published As

Publication number Publication date
JP2806010B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JPH04110433A (en) Hydrogen storage ni-zr series alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JPH0675398B2 (en) Sealed alkaline storage battery
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02263945A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13