JP2805994B2 - Hydrogen storage Ni-Zr alloy - Google Patents

Hydrogen storage Ni-Zr alloy

Info

Publication number
JP2805994B2
JP2805994B2 JP2176871A JP17687190A JP2805994B2 JP 2805994 B2 JP2805994 B2 JP 2805994B2 JP 2176871 A JP2176871 A JP 2176871A JP 17687190 A JP17687190 A JP 17687190A JP 2805994 B2 JP2805994 B2 JP 2805994B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
capacity
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2176871A
Other languages
Japanese (ja)
Other versions
JPH0466632A (en
Inventor
英和 土井
立衛 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2176871A priority Critical patent/JP2805994B2/en
Publication of JPH0466632A publication Critical patent/JPH0466632A/en
Application granted granted Critical
Publication of JP2805994B2 publication Critical patent/JP2805994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn2型結晶構造、すなわち六方晶C14型
結晶構造をもち、特に密閉型Ni−水素蓄電池の負極活物
質として用いるのに適した水素吸蔵Ni−Zr系合金に関す
るものである。
The present invention has a MgZn 2 type crystal structure, that is, a hexagonal C14 type crystal structure, and is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. And a hydrogen storage Ni-Zr alloy.

〔従来の技術〕[Conventional technology]

一般に、密閉型Ni−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、Ni正極と、さらにセパレ
ータおよびアルカリ電解液で構成され、かつ前記負極を
構成する水素吸蔵合金には、 (a) 室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, a Ni positive electrode, a separator and an alkaline electrolyte, and a hydrogen storage alloy constituting the negative electrode includes the following: a) Large hydrogen storage / release capability near room temperature.

(b) PCT曲線における室温付近の温度でのプラトー
圧に相当する平衡水素解離圧が比較的低い(5気圧以
下)。
(B) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure near room temperature in the PCT curve is relatively low (5 atm or less).

(c) アルカリ電解液中で耐食性および耐久性(耐劣
化性)がある。
(C) Corrosion resistance and durability (deterioration resistance) in an alkaline electrolyte.

(d) 水素酸化能(触媒作用)が大きい。(D) Hydrogen oxidation ability (catalysis) is large.

(e) 水素の吸蔵・放出の繰返しに伴う微粉化が起り
難い。
(E) Pulverization hardly occurs due to repeated storage and release of hydrogen.

(f) 無(低)公害である。(F) There is no (low) pollution.

(g) 低コストである。(G) Low cost.

以上(a)〜(g)の性質を具備することが望まれ、
さらにこのような性質を具備した水素吸蔵合金を負極の
活物質として用いてなる密閉型Ni−水素蓄電池は、大き
な放電容量、長い充・放電サイクル寿命、すぐれた急速
充・放電特性、および低自己放電などの好ましい性能を
発揮するようになることも良く知られるところである。
It is desired to have the above properties (a) to (g),
Furthermore, a sealed Ni-Hydrogen storage battery using a hydrogen storage alloy having such properties as an active material of a negative electrode has a large discharge capacity, a long charge / discharge cycle life, excellent rapid charge / discharge characteristics, and low self-charge characteristics. It is also well known that preferable performance such as discharge is exhibited.

したがって、特に密閉型Ni−水素蓄電池の負極を構成
する活物質として用いるのに適した水素吸蔵合金の開発
が盛んに行なわれ、例えば特開昭61−45563号公報に記
載されるMgZn2型結晶構造、すなわち六方晶C14型結晶構
造をもった水素吸蔵合金はじめ、多数の水素吸蔵合金が
提案されている。
Therefore, development of a hydrogen storage alloy particularly suitable for use as an active material constituting a negative electrode of a sealed Ni-hydrogen storage battery has been actively carried out, for example, a MgZn type 2 crystal described in JP-A-61-45563. Many hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a structure, that is, a hexagonal C14 type crystal structure.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金
も密閉型Ni−水素蓄電池の負極活物質として用いる場合
に要求される上記の性質をすべて満足して具備するもの
ではなく、より一層の開発が望まれているのが現状であ
る。
However, none of the hydrogen storage alloys already proposed satisfy all of the above properties required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery, and further development is desired. It is the present situation.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上述のような観点から、特に
密閉型Ni−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 Zr:10〜37%、Ti:5〜30%、 Mn: 5〜30%、Fe:1〜30%、 Ptおよび/またはAu:0.001〜0.5%、 W :0.01〜15%、 を含有し、さらに必要に応じて、 Cu:0.1〜16%、Cr:0.05〜10%、 のうちの1種または2種を含有し、残りがNiと不可避不
純物からなる組成を有する水素吸蔵Ni−Zr系合金は、Mg
Zn2型結晶構造(六方晶C14型結晶構造)をもち、密閉型
Ni−水素蓄電池の負極活物質として用いる場合に要求さ
れる上記(a)〜(g)の性質を十分満足した状態で具
備し、したがってこれを負極活物質として用いた密閉型
Ni−水素蓄電池は、大きなエネルギー密度と電気容量を
もち、かつ長いサイクル寿命を示すようになるほか、自
己放電が小さくなり、さらに高率充・放電特性にもすぐ
れ、無公害および低コストと合わせて、すぐれた性能を
発揮するようになるという研究結果を得たのである。
In view of the above, the present inventors have conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. % Indicates weight%), Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Pt and / or Au: 0.001 to 0.5%, W: 0.01 Up to 15%, and if necessary, one or two of Cu: 0.1 to 16% and Cr: 0.05 to 10%, with the balance comprising Ni and inevitable impurities. Hydrogen storage Ni-Zr based alloy
Sealed type with Zn 2 type crystal structure (hexagonal C14 type crystal structure)
A sealed type in which the properties (a) to (g) required when used as a negative electrode active material of a Ni-hydrogen storage battery are sufficiently satisfied, and thus the negative electrode active material is used.
Ni-Hydrogen storage batteries have a large energy density and electric capacity, have a long cycle life, have low self-discharge, and have excellent high-rate charge / discharge characteristics, as well as no pollution and low cost. As a result, the research results showed that it would exhibit excellent performance.

この発明は、上記研究結果にもとづいてなされたもの
であって、以下に上記水素吸蔵Ni−Zr系合金の成分組成
を上記の通りに限定した理由を説明する。
The present invention has been made based on the above research results, and the reason why the component composition of the above-mentioned hydrogen-absorbing Ni-Zr-based alloy is limited as described above will be described below.

(a) ZrおよびTi これらの成分には、共存した状態で合金に望ましい水
素吸蔵・放出特性を具備せしめると共に、室温における
平衡水素解離圧(プラトー圧)を、例えば5気圧以下に
低下させる作用があるが、その含有量がそれぞれZr:10
%未満およびTi:5%未満では前記作用に所望の効果が得
られず、一方Zrの含有量が37%を越えると、放電容量の
水素解離圧依存の点では問題はないが、水素吸蔵・放出
能が低下するようになり、またTiの含有量が30%を越え
ると、平衡水素解離圧が例えば5気圧以上に上昇するよ
うになり、大きな放電容量を確保するためには高い水素
解離圧を必要とするようになって蓄電池として好ましく
ないものとなることから、その含有量を、それぞれZr:1
0〜37%、Ti:5〜30%と定めた。
(A) Zr and Ti These components not only provide the alloy with desirable hydrogen storage / release characteristics in the coexisting state, but also reduce the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, its content is Zr: 10
% And Ti: less than 5%, the desired effect cannot be obtained. On the other hand, if the Zr content exceeds 37%, there is no problem in terms of the discharge capacity depending on the hydrogen dissociation pressure. When the release capacity decreases and the Ti content exceeds 30%, the equilibrium hydrogen dissociation pressure increases, for example, to 5 atmospheres or more, and in order to secure a large discharge capacity, a high hydrogen dissociation pressure is required. Is required as a storage battery, so that its content is Zr: 1
0 to 37%, Ti: 5 to 30%.

(b) Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が5%未満では
前記作用に所望の効果が得られず、一方のその含有量が
30%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を5〜30%と定めた。
(B) Mn The Mn component improves hydrogen storage / release capability, improves the corrosion resistance and durability of the alloy in an alkaline electrolyte, and suppresses self-discharge when used as a negative electrode active material for storage batteries. However, if the content is less than 5%, a desired effect cannot be obtained in the above-mentioned effect, and one of the contents is
If it exceeds 30%, the hydrogen storage / release characteristics will be impaired, so its content is set to 5 to 30%.

(c) Fe Fe成分には、水素化物を一段と安定化し、もって蓄電
池性能の安定化に寄与する作用があるほか、Niの一部代
替成分として用いてもNiによってもたらされる作用効果
が損なわれることがないので、経済性を考慮して含有さ
れるが、その含有量が1%未満では前記作用に所望の効
果が得られず、一方その含有量が30%を越えると、水素
吸蔵能が低下するようになることから、その含有量を1
〜30%と定めた。
(C) Fe The Fe component has the effect of further stabilizing hydrides, thereby contributing to the stabilization of storage battery performance, and the effect of Ni is impaired even when used as a partial substitute for Ni. However, if the content is less than 1%, the desired effect cannot be obtained, whereas if the content exceeds 30%, the hydrogen storage capacity is reduced. The content is 1
~ 30%.

(d) Ptおよび/またはAu これらの成分には、水素吸蔵能を一段と増大させ、も
ってNi−水素地電池の負極活物質として用いた場合に放
電容量を増加させて、その使用寿命の著しい延命化に寄
与する作用があるが、その含有量が0.001%未満では前
記作用に所望の効果が得られず、一方0.5%を越えて含
有させても前記作用により一層の向上効果が得られず、
経済性を考慮して、その含有量を0.001〜0.5%と定め
た。
(D) Pt and / or Au These components further increase the hydrogen storage capacity and, when used as a negative electrode active material of a Ni-hydrogen battery, increase the discharge capacity, thereby significantly extending the service life. However, if the content is less than 0.001%, the desired effect cannot be obtained, and if the content exceeds 0.5%, a further improvement effect cannot be obtained by the effect.
The content was determined to be 0.001 to 0.5% in consideration of economy.

(e) W W成分には、アルカリ電解液中での合金の耐食性を一
段と向上させると共に、耐久性も向上させ、さらに蓄電
池の負極活物質としての実用に際して自己放電を抑制す
る作用があるが、その含有量が0.01%未満では前記作用
に所望の効果が得られず、一方、その含有量が15%を越
えると、水素吸蔵・放出特性が損なわれるようになるこ
とから、その含有量を0.01〜15%と定めた。
(E) W The W component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte, improving the durability, and suppressing self-discharge in practical use as a negative electrode active material of a storage battery. If the content is less than 0.01%, the desired effect cannot be obtained in the above-mentioned action. On the other hand, if the content exceeds 15%, the hydrogen storage / release characteristics will be impaired. ~ 15%.

(f) Cu Cu成分には、水素吸蔵・放出能の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が0.1%未満では前記作
用に所望の向上効果が得られず、一方その含有量が16%
を越えると、水素吸蔵・放出能の低下を招き、放電容量
が低下するようになることから、その含有量を0.1〜16
%と定めた。
(F) Cu The Cu component has an effect of further increasing the hydrogen storage / release ability and optimizing the equilibrium hydrogen pressure. Therefore, the Cu component is contained as necessary. The desired improvement effect is not obtained, while its content is 16%
If the content exceeds 0.1%, the hydrogen storage / release capacity will be reduced, and the discharge capacity will be reduced.
%.

(g) Cr Cr成分には、水素吸蔵・放出能を低下させることな
く、アルカリ電解液中での耐食性を一段と向上させる作
用があるので、必要に応じて含有されるが、その含有量
が0.05%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が10%を越えると、水素吸蔵・放出
能が低下するようになることから、その含有量を0.05〜
10%と定めた。
(G) Cr The Cr component has an effect of further improving the corrosion resistance in an alkaline electrolyte without lowering the hydrogen storage / release ability, and is contained as necessary. If the content is less than 10%, the desired effect of improving the effect cannot be obtained, while if the content exceeds 10%, the ability to absorb and release hydrogen is reduced.
It was set at 10%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−Zr系合金を実施例に
より具体的に説明する。
Next, the hydrogen-absorbing Ni-Zr-based alloy of the present invention will be specifically described with reference to examples.

通常の高周波導溶解炉を用い、Ar雰囲気中にてそれぞ
れ第1表に示される成分組成をもったNi−Zr系合金溶湯
を調製し、銅鋳型に鋳造してインゴットとした後、この
インゴットをAr雰囲気中、900〜1000℃の範囲内の所定
温度に5時間保持の条件で焼鈍し、ついでジョークラッ
シャを用い、粗粉砕して直径:2mm以下の粗粒とし、 さらにボールミルを用いて微粉砕して350mesh以下の
粒度とすることによりいずれもMgZn2型結晶構造をもっ
た本発明水素吸蔵合金1〜22、比較水素吸蔵合金1〜1
0、および従来水素吸蔵合金をそれぞれ製造した。
Using a normal high-frequency induction melting furnace, a Ni-Zr-based alloy melt having the component composition shown in Table 1 was prepared in an Ar atmosphere, and cast into a copper mold to form an ingot. In an Ar atmosphere, annealed at a predetermined temperature in the range of 900 to 1000 ° C. for 5 hours, and then coarsely pulverized using a jaw crusher into coarse particles having a diameter of 2 mm or less, In addition, the hydrogen storage alloys 1 to 22 of the present invention and the comparative hydrogen storage alloys 1 to 1 each having an MgZn 2- type crystal structure by finely pulverizing them using a ball mill to have a particle size of 350 mesh or less.
0 and a conventional hydrogen storage alloy were produced.

ついで、この結果得られた各種の粉末状水素吸蔵合金
を活物質として用い、まず、これにポリビニールアルコ
ール(PVA)の2%水溶液を添加してペースト化した
後、95%の多孔度を有する市販のNiウイスカー不織布に
充填し、乾燥し、さらに加圧して、平面寸法:42mm×35m
mにして、厚さ:0.60〜0.65mmの形状(活物質充填量:約
2.8g)とし、これの一辺にリードとなるNi薄板を溶接に
より取付けて負極を製造し、一方正極として同寸法のNi
焼結板を2枚用意し、これを前記負極の両側に配置し、
30%KOH水溶液を装入することにより密閉型Ni−水素蓄
電池を製造した。
Then, various powdered hydrogen storage alloys obtained as a result are used as an active material. First, a 2% aqueous solution of polyvinyl alcohol (PVA) is added to the paste to form a paste, and the paste has a porosity of 95%. Filled into a commercially available Ni whisker non-woven fabric, dried, and further pressurized, planar dimensions: 42 mm x 35 m
m, thickness: 0.60-0.65mm (Active material filling: approx.
2.8 g), and a Ni thin plate serving as a lead is attached to one side of this by welding to produce a negative electrode.
Prepare two sintered plates, arrange them on both sides of the negative electrode,
A sealed Ni-hydrogen storage battery was manufactured by charging a 30% KOH aqueous solution.

なお、この結果得られた各種の蓄電池を、いずれも開
放電池とし、かつ正極の容量を負極の容量より著しく大
きくすることにより負極の容量を測定し易くした。
The resulting storage batteries were all open batteries, and the capacity of the negative electrode was easily measured by making the capacity of the positive electrode significantly larger than the capacity of the negative electrode.

また、上記比較水素吸蔵合金1〜10は、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※印を付
す)がこの発明の範囲から外れた組成をもつものであ
る。
Each of the comparative hydrogen storage alloys 1 to 10 has a composition in which the content of any one of the constituent components (marked with * in Table 1) is out of the range of the present invention.

つぎに、これらの各種の蓄電池について、充放電速
度:0.2C、充電電気量:負極容量の130%の条件で充・放
電試験を行い、1回の充電と放電を1サイクルとし、14
0サイクル後、280サイクル後、および420サイクル後に
おける放電容量をそれぞれ測定した。
Next, with respect to these various storage batteries, a charge / discharge test was performed under the conditions of a charge / discharge rate: 0.2 C, a charged amount of electricity: 130% of the negative electrode capacity, and one charge / discharge was defined as one cycle.
The discharge capacity was measured after 0 cycles, after 280 cycles, and after 420 cycles.

また、さらに第1表に示される組成をもった各種の粉
末状水素吸蔵合金を用い、平面サイズを90mm×40mm、厚
さ:0.60〜0.65mmとして、容量:1450〜1500mAh(活物質
充填量:約6g)とする以外は、上記の充・放電試験で用
いた蓄電池の負極板と同一の条件で負極板を製造し、一
方正極板は、95%の多孔度を有するNiウイスカー不織布
に水酸化ニッケル〔Ni(OH)〕を活物質として充填
し、乾燥し、さらにプレス加工した後、リードを取付け
て、平面寸法:70mm×40mm、厚さ:0.65〜0.70mmの形状
(容量:1000〜1050mAh)とすることにより製造し、この
結果得られた負極板と正極板を、セパレータを介してう
ず巻き状にした状態で、電解液と共にケース(これは
端子と兼用)の中に収容した構造の密閉型Ni−水素蓄電
池とした。なお、この蓄電池においては、正極容量より
負極容量を大きくして正極律則の蓄電池を構成した。
Further, using various powdered hydrogen storage alloys having the compositions shown in Table 1, the plane size was 90 mm × 40 mm, the thickness was 0.60 to 0.65 mm, and the capacity was 1450 to 1500 mAh (active material filling amount: Except for about 6 g), a negative plate was manufactured under the same conditions as the negative plate of the storage battery used in the charge / discharge test described above, while the positive plate was hydroxylated to a Ni whisker nonwoven fabric having 95% porosity. After filling nickel [Ni (OH) 2 ] as an active material, drying and pressing further, a lead is attached, and a plane dimension: 70 mm × 40 mm, thickness: 0.65 to 0.70 mm (capacity: 1000 to 1050 mAh), and the resulting negative and positive electrodes are wound in a spiral shape with a separator interposed between them and stored in a case (also used as a terminal) together with the electrolytic solution. The sealed Ni-hydrogen storage battery was used. In addition, in this storage battery, the storage capacity of the positive electrode rule was configured by making the negative electrode capacity larger than the positive electrode capacity.

また、これらの蓄電池に対する自己放電試験は、まず
室温で0.2C(200mA)で7時間充電し、ついで蓄電池を4
5℃に温度セットしてある恒温槽中に開路状態(電池に
負荷をかけない状態)で、240時間および480時間放置
し、放置後、とり出して、室温で0.2C(200mA)放電を
行ない、容量残存率を求めることにより行なった。
In the self-discharge test for these batteries, the batteries were charged at room temperature for 7 hours at 0.2 C (200 mA), and then the batteries were charged for 4 hours.
Leave the battery open for 240 hours and 480 hours in a thermostatic chamber set at 5 ° C (with no load applied to the battery), remove it, and discharge it at room temperature at 0.2C (200mA). And the residual capacity ratio was determined.

さらに、同じく第1表に示される成分組成をもった各
種の水素吸蔵合金について、一般にHuey試験と呼ばれて
いる方法を用い、試験片を上記のインゴットより切り出
してプラスチック樹脂に埋め込み、腐食面をエメリーペ
ーパー#600で研磨仕上げした状態で、コールドフィン
ガー型コンデンサー付三角フラスコに装入し、沸騰した
35%KOH水溶液中に120時間保持の条件でアルカリ電解液
腐食試験を行ない、試験後の腐食減量を測定した。これ
らの測定結果を第1表に示した。
Further, with respect to various hydrogen storage alloys having the component compositions shown in Table 1 as well, a test piece was cut out from the above ingot and embedded in a plastic resin using a method generally called a Huey test, and a corroded surface was formed. After being polished with Emery Paper # 600, it was charged into an Erlenmeyer flask equipped with a cold finger condenser and boiled.
An alkaline electrolyte corrosion test was carried out for 120 hours in a 35% KOH aqueous solution, and the corrosion loss after the test was measured. Table 1 shows the results of these measurements.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明水素吸蔵合金1〜
22は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
型Ni−水素蓄電池の負極活物質として用いた場合、蓄電
池は高容量をもつようになり、従来水素吸蔵合金を用い
た蓄電池に比して充・放電サイクルを繰り返した場合の
容量低下が著しく小さいという好ましい結果を示すこと
が明らかであり、一方比較水素吸蔵合金1〜10に見られ
るように、構成成分のうちのいずれかの成分含有量でも
この発明の範囲から外れると、本発明水素吸蔵合金に比
して、アルカリ電解液に対する耐食性、並びにこれを蓄
電池の負極活物質として用いた場合の蓄電池の放電容量
および自己放電のうちの少なくともいずれかの特性が劣
ったものになることが明らかである。
From the results shown in Table 1, the hydrogen storage alloys of the present invention 1 to
22 shows excellent corrosion resistance to alkaline electrolyte compared to conventional hydrogen storage alloys, and when this is used as a negative electrode active material of a sealed Ni-hydrogen storage battery, the storage battery has a high capacity Thus, it is clear that the capacity decrease when the charge / discharge cycle is repeated is remarkably small as compared with the storage battery using the conventional hydrogen storage alloy, and it is clear that the comparative hydrogen storage alloys 1 to 10 show favorable results. As can be seen, even if the content of any of the constituents deviates from the scope of the present invention, compared to the hydrogen storage alloy of the present invention, the corrosion resistance to the alkaline electrolyte, and as a negative electrode active material of the storage battery It is clear that the characteristics of at least one of the discharge capacity and self-discharge of the storage battery when used are inferior.

上述のように、この発明の水素吸蔵Ni−Zr系合金は、
アルカリ電解液に対する耐食性にすぐれているほか、特
に密閉型Ni−水素蓄電池の負極活物質として用いた場合
に、負極活物質に要求される特性をすべて十分満足する
状態で具備しているので、蓄電池の自己放電が著しく低
減し、さらに長いサイクル寿命に亘って大きな放電容量
が確保されるようになるなど工業上有用な特性を有する
のである。
As described above, the hydrogen-absorbing Ni-Zr-based alloy of the present invention is:
In addition to having excellent corrosion resistance to alkaline electrolytes, and especially when used as a negative electrode active material for sealed Ni-Hydrogen batteries, it has all the characteristics required for the negative electrode active material in a state that fully satisfies it. This has industrially useful characteristics such as a significant reduction in self-discharge and a large discharge capacity over a long cycle life.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zr:10〜37%、Ti:5〜30%、 Mn:5〜30%、Fe:1〜30%、 Ptおよび/またはAu:0.001〜0.5%、 W:0.01〜15%、 を含有し、残りがNiと不可避不純物からなる組成(以上
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni−Zr系合金。
1. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Pt and / or Au: 0.001 to 0.5%, W: 0.01 to 15% A hydrogen-absorbing Ni-Zr-based alloy having a MgZn 2- type crystal structure, characterized in that the alloy contains Ni and unavoidable impurities and has a composition (at least% by weight).
【請求項2】Zr:10〜37%、Ti:5〜30%、 Mn:5〜30%、Fe:1〜30%、 Ptおよび/またはAu:0.001〜0.5%、 W:0.01〜15%、 を含有し、さらに、 Cu:0.1〜16%、 を含有し、残りがNiと不可避不純物からなる組成(以上
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni−Zr系合金。
2. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Pt and / or Au: 0.001 to 0.5%, W: 0.01 to 15% A hydrogen-absorbing Ni having a MgZn 2- type crystal structure, characterized by containing Cu, 0.1 to 16%, and a balance of Ni and unavoidable impurities. -Zr-based alloy.
【請求項3】Zr:10〜37%、Ti:5〜30%、 Mn:5〜30%、Fe:1〜30%、 Ptおよび/またはAu:0.001〜0.5%、 W:0.01〜15%、 を含有し、さらに、 Cr:0.05〜10%、 を含有し、残りがNiと不可避不純物からなる組成(以上
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni−Zr系合金。
3. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Pt and / or Au: 0.001 to 0.5%, W: 0.01 to 15% A hydrogen-absorbing Ni having a MgZn 2- type crystal structure, characterized in that the composition further comprises: Cr: 0.05 to 10%; -Zr-based alloy.
【請求項4】Zr:10〜37%、Ti:5〜30%、 Mn:5〜30%、Fe:1〜30%、 Ptおよび/またはAu:0.001〜0.5%、 W:0.01〜15%、 を含有し、さらに、 Cu:0.1〜16%、Cr:0.05〜10%、 を含有し、残りがNiと不可避不純物からなる組成(以上
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni−Zr系合金。
4. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Pt and / or Au: 0.001 to 0.5%, W: 0.01 to 15% MgZn type 2 crystal, characterized by containing 0.1% to 16% of Cu, 0.05% to 10% of Cr, and having a composition of Ni and unavoidable impurities (more than% by weight). A hydrogen-absorbing Ni-Zr alloy with a structure.
JP2176871A 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy Expired - Lifetime JP2805994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176871A JP2805994B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176871A JP2805994B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Publications (2)

Publication Number Publication Date
JPH0466632A JPH0466632A (en) 1992-03-03
JP2805994B2 true JP2805994B2 (en) 1998-09-30

Family

ID=16021253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176871A Expired - Lifetime JP2805994B2 (en) 1990-07-04 1990-07-04 Hydrogen storage Ni-Zr alloy

Country Status (1)

Country Link
JP (1) JP2805994B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608560B2 (en) 2003-06-06 2009-10-27 Symyx Technologies, Inc. Platinum-titanium-tungsten fuel cell catalyst
JP4676958B2 (en) 2003-08-18 2011-04-27 サイミックス ソリューションズ, インコーポレイテッド Platinum-copper fuel cell catalyst
US7422994B2 (en) 2005-01-05 2008-09-09 Symyx Technologies, Inc. Platinum-copper-tungsten fuel cell catalyst

Also Published As

Publication number Publication date
JPH0466632A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JPH0675398B2 (en) Sealed alkaline storage battery
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPH0639646B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JPH0639645B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JPH0639644B2 (en) Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

EXPY Cancellation because of completion of term