JPH0675398B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH0675398B2
JPH0675398B2 JP11957688A JP11957688A JPH0675398B2 JP H0675398 B2 JPH0675398 B2 JP H0675398B2 JP 11957688 A JP11957688 A JP 11957688A JP 11957688 A JP11957688 A JP 11957688A JP H0675398 B2 JPH0675398 B2 JP H0675398B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11957688A
Other languages
Japanese (ja)
Other versions
JPH01290742A (en )
Inventor
英和 土井
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/124Alkaline secondary batteries, e.g. NiCd or NiMH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • Y02E60/324Reversible uptake of hydrogen by an appropriate medium

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学的に水素を吸蔵・放出する材料を負極活物質として用いる密閉型アルカリ蓄電池、いいかえれば前記負極として水素吸蔵合金を用いる密閉型ニッケル−水素蓄電池に関するものである。 BACKGROUND OF THE INVENTION [Field of the Industrial] This invention uses a hydrogen-absorbing alloy electrochemically hydrogen sealed alkaline storage batteries using a material capable of absorbing and releasing as a negative electrode active material, as the negative electrode other words it relates hydride battery - sealed nickel.

〔従来の技術〕 一般に、密閉型ニッケル−水素蓄電池が、水素吸蔵合金からなる負極と、ニッケル正極、さらにセパレータおよびアルカリ電解液から構成され、かつ、これを構成する前記負極には、 (a)室温付近での水素吸蔵・放出能が大きい。 The [prior art] Generally, sealed nickel - hydrogen storage battery, a negative electrode comprising a hydrogen storage alloy, a nickel positive electrode, further comprises a separator and an alkaline electrolyte, and the said negative electrode constituting this, (a) large hydrogen absorption-desorption ability in the vicinity of room temperature.

(b)PCT曲線における室温付近の温度でのプラトー圧に相当する平衡水素解離圧が比較的低い(<5気圧)。 (B) a relatively low equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at around room temperature in the PCT curve (<5 atm).

(c)アルカリ溶液中で耐食性および耐久性(耐劣化性)がある。 There is corrosion resistance and durability (deterioration resistance) in (c) an alkaline solution.

(d)水素酸化能(触媒作用)が大きい。 (D) hydrogen oxidation ability (catalysis) is large.

(e)水素の吸蔵・放出の繰返しに伴う微粉化が起り難い。 (E) hardly occur micronized accompanying the repetition of storage and release of hydrogen.

(f)無(低)公害である。 (F) is a non-(low) pollution.

(g)低コストである。 (G) is a low cost.

以上(a)〜(g)の性質を具備することが望まれ、このような性質を具備した水素吸蔵合金を負極として用いた密閉型ニッケル−水素蓄電池は、大きな放電容量、長い充・放電サイクル寿命、すぐれた急速充・放電特性、 Or (a) ~ be provided with a property of (g) is desired, such a property sealed nickel using a hydrogen storage alloy as a negative electrode provided with the - hydrogen storage battery, a large discharge capacity, long charge-discharge cycle life, excellent rapid charge-discharge characteristics,
および低自己放電などの好ましい性能を示すことはよく知られるところであり、これらの線に沿って多数の水素吸蔵合金を負極として用いた密閉型ニッケル−水素蓄電池が提案されており、中でも特開昭61-45563号公報に示される。 And to exhibit desirable properties such as low self-discharge is about to be well known, sealed nickel using a number of the hydrogen storage alloy as the negative electrode along these lines - hydrogen storage batteries have been proposed, among them JP It is shown in 61-45563 JP.

Ti:15〜20%、V:15〜40%、 Zr:10〜20%、 を含有し、残りが30〜55%のNiと不可避不純物からなる組成(以上原子%、以下%は原子%を示す)を有する水素吸蔵合金(以下従来水素吸蔵合金という)は、蓄電池負極に要求される上記の(a)〜(g)の性質のうち、 Ti: 15~20%, V: 15~40%, Zr: 10~20%, containing, remains 30-55% of Ni and unavoidable impurities Composition (atomic% or more, the following percentages are atomic% shown) that the hydrogen storage alloy (hereinafter conventional hydrogen storage alloy having a), of the nature of the required storage battery negative electrode (a) ~ (g),
(c),(g)を除いた性質を具備することから、蓄電池負極用として用いられ、これによって蓄電池は、エネルギー密度および電気容量が大きく、サイクル寿命が長いなど、無公害と合せて有用な特性をもつようになる。 (C), since it includes the property of excluding (g), used as a storage battery negative electrode, whereby the storage battery, the energy density and the electric capacity is large, such as a long cycle life, useful in conjunction with the pollution-free It will have the characteristics.

〔発明が解決しようとする課題〕 [Problems that the Invention is to Solve]

しかし、上記の従来水素吸蔵合金は、上記性質のうち、 However, the above conventional hydrogen-absorbing alloy, of the above properties,
特に(c)の性質が十分でないために、これを負極として用いた場合、蓄電池は自己放電が大きくなり、さらにきわめて高価なVを相当多く含有するための蓄電池の製造コストがその分高くなるという問題点をもつものである。 Especially because the nature of (c) is not sufficient, when this is used as a negative electrode, referred to the storage battery self-discharge is increased, further very expensive manufacturing cost of the battery for the containing considerably more V is correspondingly increased those with problems.

〔課題を解決するための手段〕 [Means for Solving the Problems]

そこで、本発明者等は、上述のような観点から、密閉型ニッケル−水素蓄電池の負極として用いられている上記の従来水素吸蔵合金に着目し、これの具備するすぐれた特性を損なうことなく、すなわちこれらの特性を具備した上で、さらに自己放電が小さく、かつ低コストの密閉型ニッケル−水素蓄電池を開発すべく研究を行なった結果、 Ti:13〜18%、Zr:15〜20%、 Mn:10〜15%、V:5〜12%、 Cu:3〜6%、 を含有し、残りが33〜45%のNiと不可避不純物からなる組成を有する水素吸蔵合金は、密閉型ニッケル−水素蓄電池の負極に要求される上記の性質をすべて具備し、したがってこれを前記蓄電池の負極として用いた場合、蓄電池は、大きなエネルギー密度と電気容量をもち、かつ長いサイクル寿命を示すようになるほか、自己放電が小さくなり、 The present inventors have, from the viewpoint as described above, sealed nickel - Focusing on the conventional hydrogen storage alloy of the which is used as a negative electrode of hydrogen storage battery, without impairing the excellent characteristics comprising this, that on equipped these characteristics, further self-discharge small and low-cost sealed nickel - result of performing studies in order to develop a hydrogen storage battery, Ti: 13~18%, Zr: 15~20%, Mn: 10~15%, V: 5~12%, Cu: 3~6%, containing, hydrogen storage alloy having a composition balance consisting of 33 to 45% of Ni and unavoidable impurities, sealed nickel - It includes all the above properties required for a negative electrode of hydrogen storage battery, therefore when this is used as the negative electrode of the battery, in addition to the storage battery has a high energy density and electric capacity, and exhibits a long cycle life , self-discharge is reduced, さらに高率充・放電特性にもすぐれ、無公害および低コストと合せて、すぐれた性能を発揮するようになるという知見を得たのである。 Further excellent in high rate charge-discharge characteristics, together with the pollution-free and low-cost, it was obtained a finding that come to exhibit superior performance.

この発明は、上記知見にもとづいてなされたものであり、以下に水素吸蔵合金の成分組成を上記の通りに限定した理由を説明する。 The present invention has been made based on the above findings, the composition of the hydrogen storage alloy will be described below Reasons of limiting as described above.

(a)TiおよびZr これらの成分には、共存した状態で合金に望ましい水素吸蔵・放出特性を具備せしめる作用があり、特にTi/Zr (A) The Ti and Zr These components, has the effect of allowed to include a desired hydrogen absorbing and desorbing properties to the alloy in the coexistence state, in particular Ti / Zr
の原子比が45/55の場合にすぐれた水素吸蔵・放出特性を示すようになるほか、室温における平衡水素解離圧(プラトー圧)が比較的低い、例えば5気圧以下という負極として好ましい性質を示すようになり、しかし、その含有量がTi:13%未満、Zr:15%未満では所望の水素吸蔵・放出特性を確保することができないので、それぞれ In addition to the atomic ratio of exhibits a good hydrogen absorption and desorption characteristics in the case of 45/55, shows the favorable properties as the negative electrode of the equilibrium hydrogen dissociation pressure (plateau pressure) is relatively low, for example 5 atm or less at room temperature becomes way, however, the content is Ti: less than 13%, Zr: since less than 15% can not be ensured the desired hydrogen absorption and desorption characteristics, respectively
Ti:13%以上、Zr:15%以上含有させる必要があり、しかもこの場合、Ti/Zrの原子比が55/45以上になると解離圧は例えば5気圧以上に増大してしまい、大きな放電容量を確保するためには高い水素圧を要するようになって蓄電池にとって好ましくないものとなり、また同40/60以下になると、放電容量の水素圧依存の点では問題はないが水素吸蔵・放出能が低下するようになることから、Ti Ti: 13% or more, Zr: it is necessary to contain at least 15%, yet this case, the dissociation pressure atomic ratio of Ti / Zr is equal to or higher than 55/45 is cause increased above example 5 atmospheres, large discharge capacity the become undesirable for battery so require high hydrogen pressures in order to ensure, also becomes the same 40/60 or less, there is no problem in terms of the hydrogen pressure depends hydrogen absorption-desorption capacity of the discharge capacity since will be lowered, Ti
/Zrの原子比は40/60〜55/45の間に保持するのが望ましく、したがって、TiおよびZrの含有量がそれぞれTi:18 / Atomic ratio of Zr is desirably to hold between 40 / 60-55 / 45, therefore, the content of Ti and Zr, respectively Ti: 18
%、Zr:20%を越えてはならない。 %, Zr: should not exceed 20 percent.

(b)Mn Mn成分には、水素吸蔵・放出能を増加させ、かつアルカリ電解液中での合金の耐食性および耐久性を向上させ、 (B) The Mn Mn component increases the hydrogen absorption-desorption ability and improve the corrosion resistance and durability of the alloy in the alkaline electrolyte,
特に密閉型蓄電池の負極としての使用に際して自己放電を抑制する作用があるが、その含有量が10%未満では前記作用に所望の効果が得られず、一方その含有量が15% In particular there is the effect of suppressing the self-discharge when used as a negative electrode of a sealed type storage battery, but the content is not the desired effect can be obtained in the working is less than 10%, while the content is 15%
を越えると、水素吸蔵・放出特性がそこなわれるようになることから、その含有量を10〜15%と定めた。 By weight, since it becomes hydrogen absorption and desorption characteristics are impaired, it determined the content of 10 to 15%.

(c)VおよびCu 上記のようにニッケル−水素蓄電池には、室温における平衡解離圧が過度に高くなく(例えば5気圧以下)、かつ水素吸蔵・放出量ができるだけ大きいことが望まれるが、VおよびCu成分には、このような水素吸蔵・放出量の増大および平衡水素圧の適正化に寄与する作用があるが、その含有量がそれぞれV:5%未満およびCu:3%未満では前記作用に所望の効果が得られず、一方その含有量が、Vにあっては12%を越えると、平衡水素圧が高くなりすぎるようになるほか、Vが電解液中に溶け出して、 (C) V and Cu as described above nickel - The hydrogen storage battery, the equilibrium dissociation pressure without excessively high (hereinafter eg 5 atm) at room temperature, and a hydrogen absorption and desorption amount that is desired as large as possible, V the and Cu components, there is a contributing effect on optimization of such a hydrogen absorption and desorption amount of increase and equilibrium hydrogen pressure, V the content of each: less than 5% and Cu: the effect is less than 3% can not be obtained the desired effect, whereas the amount thereof be in V is greater than 12%, in addition to so the equilibrium hydrogen pressure is too high, and V is dissolved into the electrolytic solution,
自己放電が助長されるようになり、またCuにあっては6 Become self-discharge is promoted, also In the Cu 6
%を越えると、水素吸蔵・放出量の低下を招き、放電容量が低下するようになることから、その含有量をV:5〜1 Above percent, causes deterioration of the hydrogen absorption and desorption amounts, since the discharge capacity will be lowered, the content of V: ​​5 to 1
2%、Cu:3〜6%と定めた。 2%, Cu: defined as 3-6%.

(d)Ni Ni成分には、蓄電池の性能として過充電時に正極に発生する酸素を負極表面において水素と反応せて水にする、 The (d) Ni Ni component, the oxygen generated in the positive electrode reaction with hydrogen in the negative electrode surface to the water during overcharge as the performance of the battery,
水素酸化の触媒作用があり、密閉型ニッケル−水素蓄電池の負極構成成分として不可欠の成分であるが、その含有量が33%未満では前記作用が十分に発揮されず、さらに水素吸蔵・放出能も低下し、一方その含有量が45%を越えると、平衡水素圧の上昇を招き、結果的に蓄電池の放電容量が低下するようになることから、その含有量を There is the catalysis of hydrogen oxidation, sealed nickel - are essential components as the negative electrode constituent of hydrogen storage battery, the content of the action is not sufficiently exerted is less than 33%, even more hydrogen absorption-desorption capacity reduced, whereas when the content exceeds 45%, leads to increase in the equilibrium hydrogen pressure, resulting from the discharge capacity of the battery will be lowered, the content
33〜45%と定めた。 It was defined as 33 to 45 percent.

なお、この発明の密閉型ニッケル−水素蓄電池において、上記水素吸蔵合金を用いて負極を製造するには、一般に、まず通常の溶解法にて所定の組成のNi合金溶湯を調製し、これを鋳塊に鋳造した後、粗粉砕および微粉砕を加えて粉末とし、この粉末に結着剤などを添加して、 Incidentally, sealed nickel of the present invention - in a hydrogen storage batteries, in order to produce a negative electrode using the hydrogen-absorbing alloy, typically by first preparing a Ni alloy melt having a predetermined composition at ordinary dissolution method, cast this after casting the mass, in addition to coarse grinding and fine grinding to a powder, by adding a binder or the like to the powder,
よく混練し、ペースト状とした後、ニッケルウイスカー不織布に均一に充填して乾燥する公知の方法がとられる。 Well kneaded, after a paste, a known method of drying uniformly filled into a nickel whisker nonwoven is taken.

〔実施例〕 〔Example〕

つぎに、この発明の密閉型ニッケル−水素蓄電池を実施例により具体的に説明する。 Next, sealed nickel of the present invention - illustrated by the examples of hydrogen storage battery.

アルゴンアーク溶解炉を用い、水冷銅るつぼにて、それぞれ第1表に示される成分組成をもったNi合金溶湯を調製し、インゴットに鋳造した後、このインゴットを、アルゴンガス雰囲気中、温度:1050℃に10時間保持の条件で焼鈍し、引続いてスタンプミルおよびジョークラッシャを用いて粗粉砕して直径:2mm以下の粗粒とした後、アトライターで微粉砕して350mesh以下の粒度とし、ついで、この結果得られた各種の水素吸蔵合金粉末を用い、 Using an argon arc melting furnace, in a water-cooled copper crucible, a Ni alloy melt having a component composition shown in Table 1 respectively were prepared, after casting into ingots, the ingot in an argon gas atmosphere, temperature: 1050 ℃ to annealing under the condition of 10 hour hold, and coarsely pulverized using a stamp mill and a jaw crusher and subsequently diameter: after a 2mm or less coarse, a particle size less than 350mesh comminuted in an attritor, then, using a hydrogen absorbing alloy powder of the resulting various,
まず、これにポリビニールアルコール(PVA)の2%水溶液を添加してペースト化した後、95%の多孔度を有する市販のニッケルウイスカー不織布に充填し、乾燥し、 First, this after a paste by addition of 2% aqueous solution of polyvinyl alcohol (PVA), was filled into a commercial nickel whiskers nonwoven having 95% porosity, and dried,
さらに加圧して、平面寸法:42mm×35mmにして、厚さ:0. Further pressurized, the planar dimensions: in the 42mm × 35 mm, thickness: 0.
60〜0.65mmの形状(活物質充填量:約2.8g)とし、これの一辺にリードとなるニッケル薄板を溶接により取付けて負極板を製造し、一方、正極板として同サイズの焼結型ニッケル正極を2枚用意し、これを前記負極板の両側に配置し、30%KOH水溶液を装入して、本発明蓄電池1 60~0.65mm shape (active material loading: about 2.8 g) and then, a nickel thin plate as a lead to one side to prepare a negative electrode plate attached by welding, while the sintered nickel of the same size as the positive electrode plate the positive electrode was prepared two, and place it on both sides of the negative electrode plate, and charged with 30% KOH aqueous solution, the present invention battery 1
〜9および比較蓄電池1〜9、さらに従来蓄電池をそれぞれ製造した。 To 9 and Comparative battery 1-9, further conventional battery was prepared, respectively.

なお、この結果得らてた各種の蓄電池に関し、いずれも解放電池とし、かつ正極の容量を負極の容量より著しく大きくしたのは、これによって負極の容量を測定可能にするためである(負極律則)。 Note relates various storage batteries were the resulting et al, both the release cell, and the capacity of the positive electrode was significantly greater than the capacity of the negative electrode, whereby in order to allow measuring the capacity of the negative electrode (Fukyokuritsu law).

また、上記の比較蓄電池1〜9は、負極に用いられている水素吸蔵合金において、これの構成成分のうちのいずれかの成分含有量(第1表に※印を付す)がこの発明の範囲から外れたものであり、さらに従来蓄電池は、これを構成する負極に上記の従来水素吸蔵合金に相当する組成をもった合金を用いたものである。 The comparison battery 1-9 above, the hydrogen-absorbing alloy used for the negative electrode, ingredient content of any of this component (in Table 1 are denoted by the mark ※) is the scope of the invention it is those out of the further prior art storage battery is obtained by using a negative electrode having a composition corresponding to the above conventional hydrogen-absorbing alloy alloy constituting it.

つぎに、これらの蓄電池について、充放電速度:0.2C、 Then, for these storage batteries, charge and discharge rate: 0.2C,
充電電気量:負極容量の130%の条件で充放電試験を行ない、1回の充電と放電を1サイクルとし、100サイクル後、300サイクル後、および500サイクル後における放電容量をそれぞれ測定し、第1表に示した。 Amount of charge: performs charge and discharge test at 130% for the negative electrode capacity, the single charge and discharge as 1 cycle, after 100 cycles, after 300 cycles, and 500 and the discharge capacity after cycles were measured, the It is shown in table 1.

さらに、第1表に示される各種水素吸蔵合金粉末のうちから第2表に示されるものを選び、これらを負極として用い、いずれも正極規制のAAサイズ(容量:1000mAh)の本発明密閉型ニッケル−水素蓄電池a〜d(以下、本発明蓄電池a〜dという)、比較密閉型ニッケル−水素電池a,b(以下、比較蓄電池a,bという)、および従来密閉型ニッケル−水素蓄電池(以下、従来蓄電池という)をそれぞれ組立て、これについて自己放電試験を行ない、 Further, from among various hydrogen absorbing alloy powder represented in Table 1 to select those shown in Table 2, using these as negative electrode, AA size either positive regulation (capacity: 1000 mAh) of the present invention sealed nickel - hydride battery to d (hereinafter, referred to as the present invention battery to d), compared sealed nickel - hydrogen batteries a, b (hereinafter, comparative battery a, as b), and conventionally sealed nickel - hydrogen storage batteries (hereinafter, assembling a conventional called accumulator), respectively, which perform the self-discharge test for,
その結果を第2表に示した。 The results are shown in Table 2.

さらに詳述すれば、第2表に示される組成の水素吸蔵合金粉末を用い、平面サイズを90mm×40mm、厚み:0.60〜 In more detail, using a hydrogen absorbing alloy powder having the composition shown in Table 2, 90 mm × 40 mm the plane size, thickness: 0.60
0.65mmとして、容量:1450〜1500mAh(活物質 As 0.65mm, capacity: 1450~1500mAh (active material 充填量:約6g)とする以外は、上記の充放電試験で用いた蓄電池の負極板と同一の条件で負極板を製造し、一方正極板は、95%の多孔度を有するニッケルウイスカー不繊布に水酸化ニッケル{Ni(OH) }を活物質として充填し、乾燥し、さらにプレス加工した後、リードを取付けて、平面寸法:70mm×40mm、厚さ:0.65〜0.70mmの形状(容量:1000〜1050mAh)とすることにより製造し、この結果得られた Loading: except that about 6 g), to prepare a negative electrode plate in the same conditions and the negative electrode plate of the battery used in the charge-discharge test described above, while the positive electrode plate is a nickel whiskers nonwoven having 95% porosity after nickel hydroxide {Ni (OH) 2} was charged as an active material, dried and further pressed into and fitted with lead, planar dimensions: 70 mm × 40 mm, thickness: 0.65~0.70Mm shape (volume : was prepared by a 1000~1050mAh), obtained as a result セパレータを介してうず巻き状にした状態で、電解液と共にケース(これは‐端子と兼用)の中に収容した構造の密閉型ニッケル−水素蓄電池、すなわち本発明蓄電池a〜d、比較蓄電池a,b、および従来蓄電池をそれぞれ製造した。 While the shape spiral with the separator, the case (which is - terminal also used) together with an electrolyte sealed nickel housing structure in - hydrogen storage battery, i.e. the present invention battery to d, compares battery a, b , and it was prepared prior battery, respectively.

なお、上記の各種密閉型ニッケル−水素蓄電池において、正極容量より負極容量を大きくしたのは、正極律則の蓄電池を構成するためである。 Incidentally, the above-mentioned various sealed nickel - in hydrogen storage batteries, had to increase the negative electrode capacity than the positive electrode capacity is to configure a battery of Seikyokuritsu law.

また、自己放電試験は、まず室温で0.2C(200mA)で7 Also, the self-discharge test, first with 0.2 C (200 mA) at room temperature 7
時間充電し、ついで蓄電池を45℃に温度をセットしてある恒温槽中に開路状態(電池に負荷をかけない状態) And time charging, then open circuit in a constant temperature bath which had been set temperature storage battery 45 ° C. (state where no intensive battery)
で、1週間放置および2週間放置し、放置後、とり出して、室温で0.2C(200mA)放電を行ない、容量残存率を求めることにより行なった。 In, one week was left standing and 2 weeks, after standing, are taken out, subjected to 0.2 C (200 mA) discharge at room temperature, it was carried out by determining the residual capacity ratio.

〔発明の効果〕 〔Effect of the invention〕

第1表に示される結果から、本発明蓄電池1〜9は、いずれも高容量であり、かつ充放電サイクルを繰返した場合の容量低下が小さいという好ましい結果を示しているのに対して、負極を構成する水素吸蔵合金の組成が、この発明の範囲から外れた比較蓄電池1〜5,8、および9 From the results shown in Table 1, the present invention battery 1-9 are both high capacity and whereas the capacity reduction in the case of repeated charging and discharging cycles have shown favorable results in that small, negative the composition of the hydrogen storage alloy constituting the comparison battery 1~5,8 deviating from the scope of the invention, and 9
は、放電容量がきわめて低く、かつ充放電サイクルの繰返しによる容量低下の度合も大きく、一方同じく負極を構成する水素吸蔵合金の組成がこの発明の範囲から外れた比較蓄電池6,7、並びに従来蓄電池の場合は、放電容量についてほぼ同レベルにあるが、後述する自己放電の点で問題があり、このように負極を構成する水素吸蔵合金の構成成分のうちのいずれかの成分含有量でもこの発明の範囲から外れると、上記の蓄電池負極に要求される性質のうちいずれかの性質が低下するようになることから、蓄電池の放電容量および自己放電の少なくともいずれかの点で十分満足する性能を発揮しないことが明らかである。 The discharge capacity is very low and the charge degree of the reduction capacity due to repeated discharge cycles is large, whereas also comparative battery 6 and 7 the composition of the hydrogen storage alloy is out of the scope of the invention which constitutes a negative electrode and a conventional storage battery, for, although there approximately the same level for the discharge capacity, there is a problem in terms of later self-discharge, the present invention also a component content of any of the components of the hydrogen storage alloy thus configuring the negative electrode When the value falls outside the range, from the any nature of the properties required to the battery negative electrode will reduce, exhibits satisfactory for performance in terms of at least one of the storage battery in the discharge capacity and self-discharge it is clear that you do not.

すなわち、第2表に示される通り、高容量を示した比較蓄電池a,b、並びに従来蓄電池も自己放電特性が悪く、 That is, as shown in Table 2, comparative battery a shown a high capacity, b, as well as the self-discharge characteristic conventional storage battery worse,
これに対して本発明蓄電池a〜dは、いずれも自己放電が著しく少なく、高い残存容量を示すものである。 The present invention battery a~d contrast, both significantly less self-discharge, and shows a high residual capacity.

上述のように、この発明の密閉型ニッケル−水素蓄電池においては、これの負極を構成する水素吸蔵合金が、従来水素吸蔵合金に比して、特に耐食性および耐久性にすぐれているので、自己放電が著しく少なくなり、さらに長いサイクル寿命に亘って大きな放電容量が確保されるようになるほか、高価なV成分の含有量が相対的に低いので、低コストとなり、かつ蓄電池の負極に要求される性質をすべて具備するようになることから、すぐれた性能を著しく長期に亘って発揮するのである。 As noted above, sealed nickel of the present invention - In the hydrogen storage batteries, hydrogen-absorbing alloy constituting this negative electrode, as compared with the conventional hydrogen storage alloy, particularly are excellent in corrosion resistance and durability, self-discharge It is significantly less, longer addition a large discharge capacity over the cycle life is to be ensured, since the relatively low content of expensive V components are required becomes low cost, and the negative electrode of the battery from becoming so equipped, all the property is to exert over a significantly long superior performance.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】負極が、原子%で、 Ti:13〜18%、Zr:15〜20%、 Mn:10〜15%、V:5〜12%、 Cu:3〜6%、 を含有し、残りが33〜45%のNiと不可避不純物からなる組成を有する水素吸蔵合金で構成されたことを特徴とする密閉型アルカリ蓄電池。 1. A negative electrode, in atomic%, Ti: 13~18%, Zr: 15~20%, Mn: 10~15%, V: 5~12%, Cu: 3~6%, containing the sealed alkaline storage battery, characterized in that the rest is composed of a hydrogen storage alloy having a composition consisting of 33 to 45% of Ni and unavoidable impurities.
JP11957688A 1988-05-17 1988-05-17 Sealed alkaline storage battery Expired - Lifetime JPH0675398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11957688A JPH0675398B2 (en) 1988-05-17 1988-05-17 Sealed alkaline storage battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11957688A JPH0675398B2 (en) 1988-05-17 1988-05-17 Sealed alkaline storage battery
DE1989609105 DE68909105T2 (en) 1988-05-17 1989-05-17 Hydrogen storage alloy based on nickel and rechargeable alkaline battery.
DE1989609105 DE68909105D1 (en) 1988-05-17 1989-05-17 Hydrogen storage alloy based on nickel and rechargeable alkaline battery.
US07353017 US4983474A (en) 1988-05-17 1989-05-17 Hydroen absorbing Ni-based alloy and rechargeable alkaline battery
EP19890108886 EP0342654B1 (en) 1988-05-17 1989-05-17 Hydrogen absorbing ni-based alloy and rechargeable alkaline battery

Publications (2)

Publication Number Publication Date
JPH01290742A true JPH01290742A (en) 1989-11-22
JPH0675398B2 true JPH0675398B2 (en) 1994-09-21

Family

ID=14764769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11957688A Expired - Lifetime JPH0675398B2 (en) 1988-05-17 1988-05-17 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0675398B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103435B2 (en) * 1988-10-18 1995-11-08 三菱マテリアル株式会社 Hydrogen storage Ni based alloy and sealed Ni- hydrogen storage battery
JP2627963B2 (en) * 1990-01-31 1997-07-09 古河電池株式会社 Hydrogen storage alloy electrode
JP2563638B2 (en) * 1990-04-03 1996-12-11 松下電器産業株式会社 Hydrogen storage alloy electrode
JP2775380B2 (en) * 1993-07-13 1998-07-16 株式会社日本製鋼所 Hydrogen storage material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge maintenance intensified electrochemical hydrogen occlusion alloy and charge maintenance intensifying electrochemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge maintenance intensified electrochemical hydrogen occlusion alloy and charge maintenance intensifying electrochemical cell

Also Published As

Publication number Publication date Type
JPH01290742A (en) 1989-11-22 application
JP1947340C (en) grant

Similar Documents

Publication Publication Date Title
US4946646A (en) Alloy for hydrogen storage electrodes
US5541017A (en) Method for making high capacity rechargeable hydride batteries
US4983474A (en) Hydroen absorbing Ni-based alloy and rechargeable alkaline battery
US4898794A (en) Hydrogen absorbing Ni,Zr-based alloy and rechargeable alkaline battery
US5242656A (en) Active material of hydrogen storage alloy electrode
JP2001040442A (en) Hydrogen storage alloy
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
CN101355155A (en) Hydrogen storage alloy and preparation method thereof as well as cathode and battery using the alloy
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JPH06187983A (en) Hydrogen storage alloy electrode
JP2004263213A (en) Hydrogen-storing alloy, hydrogen-storing alloy electrode, and nickel-hydrogen storage battery using the same
JPH10134806A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP2004273261A (en) Alkaline storage battery
US5358800A (en) Active material of hydrogen storage alloy electrode
JPH05343058A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
EP1227165A1 (en) Hydrogen-occluding alloy and process for producing the same
JPH05287422A (en) Hydrogen occluding alloy electrode
US6329100B1 (en) Hydrogen absorbing alloy electrode and process for producing same
JPH0613077A (en) Hydrogen storage electrode
US5552246A (en) Materials for hydrogen storage, hydride electrodes and hydride batteries
JPH05121073A (en) Nickel-metal hydride storage battery
JPH05307954A (en) Metal oxide and hydrogen battery