JPH02263944A - Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery - Google Patents

Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery

Info

Publication number
JPH02263944A
JPH02263944A JP1273404A JP27340489A JPH02263944A JP H02263944 A JPH02263944 A JP H02263944A JP 1273404 A JP1273404 A JP 1273404A JP 27340489 A JP27340489 A JP 27340489A JP H02263944 A JPH02263944 A JP H02263944A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
capacity
discharging
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1273404A
Other languages
Japanese (ja)
Other versions
JPH0639644B2 (en
Inventor
Hidekazu Doi
土井 英和
Tatsumori Yabuki
矢吹 立衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1273404A priority Critical patent/JPH0639644B2/en
Publication of JPH02263944A publication Critical patent/JPH02263944A/en
Publication of JPH0639644B2 publication Critical patent/JPH0639644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain the hydrogen storage Ni-Zr series alloy having high hydrogen occluding and discharging capacity and low dissociation pressure of equilibrium hydrogen in the region of room temp. and having excellent alkali resistance at a low cost by specifying the compsn. constituted of Ti, Zr, Mn, W, Fe and Ni. CONSTITUTION:The hydrogen storage Ni-Zr series alloy has the compsn. contg., by weight, 5 to 20% Ti, 10 to 37% Zr, 5 to 30% Mn, 0.01 to 15% W and 1 to 30% Fe, furthermore contg., at need, one or both of 0.05 to 6% Cr and 0.01 to 5% Al and the balance Ni with inevitable impurities and has an MgZn2-type crystal structure, which shows excellent corrosion resistance and durability in an alkaline electrolytic soln., has high hydrogen occluding and discharging capacity and low dissociation pressure of equilibrium hydrogen in the region of room temp., has high hydrogen oxidizing capacity, is hard to pulverize, causes no pollution and is low-cost. Thus, by using the alloy as the active material in the negative electrode, the closed type Ni hydrogen storage battery having high discharging capacity and showing preferable capacity such as prolonged charging discharging cycle life, excellent rapid charging- discharging properties and low self-discharging can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn2型結晶構造、すなわち六方晶C
14型結晶構造をもった水素吸蔵NlZr系合金、並び
にこの水素吸蔵Ni− Zr系合金を負極活物質として
用いてなる密閉型Nl−水素蓄電池に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention is based on MgZn2 type crystal structure, that is, hexagonal C
The present invention relates to a hydrogen-absorbing NlZr alloy having a type 14 crystal structure and a sealed Nl-hydrogen storage battery using this hydrogen-absorbing Ni-Zr alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

一般に、密閉型Nl−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、Nl正極と、さらにセパ
レータおよびアルカリ電解液で構成され、かつ前記負極
を構成する水素吸蔵合金には、 (a)  室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed Nl-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, an Nl positive electrode, a separator, and an alkaline electrolyte, and the hydrogen storage alloy constituting the negative electrode includes: a) High hydrogen absorption and release ability near room temperature.

(b)PCT曲線における室温付近の温度でのプラトー
圧に相当する平衡水素解離圧が比較的低い(5気圧以下
)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(C)  アルカリ電解液中で耐食性および耐久性(耐
劣化性)がある。
(C) Corrosion resistance and durability (deterioration resistance) in alkaline electrolytes.

(d)  水素酸化能(触媒作用)が大きい。(d) High hydrogen oxidation ability (catalytic action).

<e>  水素の吸蔵・放出の繰返しに伴う微粉化が起
り難い。
<e> Pulverization due to repeated absorption and release of hydrogen is unlikely to occur.

(r)無(低)公害である。(r) No (low) pollution.

(g)  低コストである。(g) It is low cost.

以上(a)〜(g)の性質を具備することが望まれ、さ
らにこのような性質を具備した水素吸蔵合金を負極の活
物質として用いてなる密閉型Ni−水素蓄電池は、大き
な放電容量、長い充・放電サイクル寿命、すぐれた急速
充・放電特性、および低自己放電などの好ましい性能を
発揮するようになることも良く知られるところである。
It is desirable to have the properties (a) to (g) above, and a sealed Ni-hydrogen storage battery using a hydrogen storage alloy having such properties as the active material of the negative electrode has a large discharge capacity, It is also well known that they exhibit favorable performances such as long charge/discharge cycle life, excellent rapid charge/discharge characteristics, and low self-discharge.

したがって、特に密閉型Ni−水素蓄電池の負極を構成
する活物質として用いるのに適した水素吸蔵合金の開発
が盛んに行なわれ、例えば特開昭61−45583号公
報に記載されるM g Z n Z型結晶構造、すなわ
ち六方晶C14型結晶構造をもった水素吸蔵合金はじめ
、多数の水素吸蔵合金が提案されている。
Therefore, the development of hydrogen storage alloys particularly suitable for use as active materials constituting the negative electrode of sealed Ni-hydrogen storage batteries has been actively carried out. A large number of hydrogen storage alloys have been proposed, including hydrogen storage alloys having a Z-type crystal structure, that is, a hexagonal C14-type crystal structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Nl−水素蓄電池の負極活物質として用いる場合
に要求される上記の性質をすべて満足して具備するもの
ではなく、より一層の開発が望まれているのが現状であ
る。
However, none of the hydrogen storage alloys that have already been proposed satisfies all of the above properties required for use as negative electrode active materials in sealed Nl-hydrogen storage batteries, and further development is desired. The current situation is that

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 TI =5〜20%、  Zr:10〜37%、Mn 
: 5〜30%、  W:0.01〜15%、Fe:1
〜30%、 を含有し、さらに必要に応じて、 Cr1.05〜6%およびAl2 : 0.01〜59
fi、のうちの1種または2種、 を含有し、残りがNlと不可避不純物からなる組成を存
する水素吸蔵Ni−Zr系合金は、M g Z n 2
型結晶構造(六方晶C14型結晶構造)をもち、密閉型
Ni−水素蓄電池の負極活物質として用いる場合に要求
される上記(a)〜(g)の性質を十分満足した状態で
具備し、したがってこれを負極活物質として用いてなる
密閉型Ni−水素蓄電池は、大きなエネルギー密度と電
気容量をもち、かつ長いサイクル寿命を示すようになる
ほか、自己放電が小さくなり、さらに高率光・放電特性
にもすぐれ、無公害および低コストと合わせて、すぐれ
た性能を発揮するようになるという知見を得たのである
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. % indicates weight%), TI = 5-20%, Zr: 10-37%, Mn
: 5-30%, W: 0.01-15%, Fe: 1
~30%, and further optionally Cr1.05~6% and Al2: 0.01~59
A hydrogen-absorbing Ni-Zr alloy containing one or two of fi, with the remainder consisting of Nl and unavoidable impurities, is M g Z n 2
type crystal structure (hexagonal C14 type crystal structure), and fully satisfies the above properties (a) to (g) required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery, Therefore, a sealed Ni-hydrogen storage battery using this as a negative electrode active material has high energy density and electric capacity, has a long cycle life, has low self-discharge, and has a high rate of light and discharge. They found that it has excellent characteristics, is non-polluting, and is low cost, and will exhibit excellent performance.

この発明は上記知見にもとづいてなされたものであって
、 T1:5〜20%、   Zr  : 10〜37%、
Mn  : 5〜30%、  W:o、ot〜15%、
Fe:1〜30%、 を含有し、さらに必要に応じて、 Cr:0.05〜6%および、J:o、ot〜5%、の
うちの1種または2f!I。
This invention was made based on the above findings, and includes: T1: 5-20%, Zr: 10-37%,
Mn: 5-30%, W: o, ot-15%,
Contains Fe: 1 to 30%, and if necessary, Cr: 0.05 to 6% and J: o, ot to 5%, or 2f! I.

を含有し、残りがNlと不可避不純物からなる組成を有
するMgZn2型結晶構造(六方晶C14型結晶構造)
をもった水素吸蔵Ni Zr系合金、およびこの水素吸
蔵Ni Zr系合金を負極活物質として用いてなる密閉
型Ni−水素蓄電池に特徴を有するものである。
MgZn2 type crystal structure (hexagonal C14 type crystal structure) with a composition containing Nl and unavoidable impurities.
The present invention is characterized by a hydrogen-absorbing Ni-Zr-based alloy having the following characteristics, and a sealed Ni-hydrogen storage battery using this hydrogen-absorbing Ni-Zr-based alloy as a negative electrode active material.

つぎに、この発明の水素吸蔵Ni−Zr系合金において
、成分組成を上記の通りに限定した理由を説明する。
Next, the reason why the composition of the hydrogen-absorbing Ni--Zr alloy of the present invention is limited as described above will be explained.

(a)TIおよびZr これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
める作用があるが、その含有量がそれぞれT175%未
満およびZr:10%未満では前記作用に所望の効果が
得られず、一方TIの含有量が20%を越えると、平衡
水素解離圧が例えば5気圧以上に上昇するようになり、
大きな放電容量を確保するためには高い水素解離圧を必
要とするようになって蓄電池として好ましくないものと
なり、またZrの含有量が37%を越えると、放電容量
の水素解離圧依存の点では問題はないが、水素吸蔵・放
出能が低下するようになることから、その含有量を、そ
れぞれTI+5〜20%、Zr:10〜37%と定めた
(a) TI and Zr These components, when coexisting, provide the alloy with desirable hydrogen storage and release properties, and have the effect of lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atmospheres or less. However, if the T content is less than 175% and the Zr content is less than 10%, the desired effect cannot be obtained, whereas if the TI content exceeds 20%, the equilibrium hydrogen dissociation pressure may exceed, for example, 5 atm. began to rise,
In order to ensure a large discharge capacity, a high hydrogen dissociation pressure is required, making it undesirable as a storage battery, and if the Zr content exceeds 37%, the dependence of the discharge capacity on the hydrogen dissociation pressure will deteriorate. Although there is no problem, the hydrogen storage and desorption ability decreases, so the contents were determined to be TI+5 to 20% and Zr: 10 to 37%, respectively.

(b)  Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、#i電池の負極活物質としての実用に際して自
己放電を抑制する作用があるが、その含有量が5%未満
では前記作用に所望の効果が得られず、一方その含有量
が30%を越えると、水素吸蔵・放出特性が損なわれる
ようになることから、その含有量を5〜30%と定めた
(b) Mn The Mn component not only improves hydrogen storage and desorption ability, but also improves the corrosion resistance and durability of the alloy in alkaline electrolytes, and also has the ability to prevent self-discharge when used as a negative electrode active material for #i batteries. It has a suppressing effect, but if its content is less than 5%, the desired effect cannot be obtained in the said effect, while if its content exceeds 30%, hydrogen storage and release properties will be impaired. , its content was determined to be 5 to 30%.

(e)  W W成分には、アルカリ電解液中での合金の耐食性を一段
と向上させると共に、耐久性も向上させ、さらに蓄電池
の負極活物質としての実用に際して自己放電を抑制する
作用があるが、その含有量が0.015未満では前記作
用に所望の効果が得られず、一方、その含有量が15%
を越えると、水素吸蔵・放出特性が損なわれるようにな
ることから、その含有量を0.01〜15%と定めた。
(e) W The W component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte, improving durability, and suppressing self-discharge when used as a negative electrode active material for storage batteries. If the content is less than 0.015, the desired effect cannot be obtained; on the other hand, if the content is less than 15%
If the content exceeds 0.01% to 15%, the hydrogen storage/release properties will be impaired.

(d)  Fe Fc成分には、水素化物を一段と安定化し、もって蓄電
池性能の安定化に寄りする作用があるほか、Niの一部
代替成分として用いてもNiによってもたらされる作用
効果が損なわれることがないので、経済性を考慮して含
有されるが、その含有量が1%未満で前記作用に所望の
効果が得られず、一方その含有量が3096を越えると
、水素吸蔵能が低下するようになることから、その含有
量を1〜30%と定めた。
(d) Fe The Fc component has the effect of further stabilizing the hydride and thereby stabilizing the storage battery performance, and even if it is used as a partial substitute for Ni, the effects brought about by Ni will be impaired. However, if the content is less than 1%, the desired effect will not be obtained, while if the content exceeds 3096, the hydrogen storage capacity will decrease. Therefore, the content was determined to be 1 to 30%.

(e)  CrおよびAI これらの成分には、水素吸蔵・放出能を低下させること
なく、アルカリ電解液中での耐食性を一段と向上させる
作用があるので、必要に応じて含有されるが、その含有
量がそれぞれCr:0.05%未満およびl!:0.0
1%未満では所望の耐食性向上効果が得られず、一方そ
の含−amがそれぞれCr: 6%およびAf):5%
を越えると、水素吸蔵・放出能が低下するようになるこ
とから、その含有量をそれぞれCr:0.05〜6%、
へΩ二〇、O1〜5%と定めた。
(e) Cr and AI These components have the effect of further improving corrosion resistance in an alkaline electrolyte without reducing the hydrogen storage and desorption ability, so they are included as necessary. Cr: less than 0.05% and l!, respectively. :0.0
If the content is less than 1%, the desired effect of improving corrosion resistance cannot be obtained, and on the other hand, the -am content is Cr: 6% and Af): 5%, respectively.
If the content exceeds Cr: 0.05 to 6%, the hydrogen storage and desorption ability will decrease, respectively.
The resistance was determined to be 20Ω and 1 to 5%.

〔実 施 例〕〔Example〕

つぎに、この発明の水素吸蔵Ni−Zr系合金を実施例
により具体的に説明する。
Next, the hydrogen-absorbing Ni--Zr alloy of the present invention will be specifically explained with reference to Examples.

通常の高周波誘導溶解炉を用い、A「雰囲気中にてそれ
ぞれ第1表にボされる成分組成のNi合金溶湯を調製し
、銅鋳型に°鋳造してインゴットとした後、このインゴ
ットをA「雰囲気中、900〜1000℃の範囲内の所
定温度に5時間保持の条件で焼鈍し、ついでショークラ
ッシャを用い、粗粉砕して直径:2mm以下の粗粒とし
、さらにボールミルを用いて微粉砕して350n+es
h以下の粒度とすることによりいずれもM g Z n
 2型結晶構造をもった本発明水素吸蔵合金1〜20、
比較水素吸蔵合金1〜9、および従来水素吸蔵合金をそ
れぞれ製造した。
Using an ordinary high-frequency induction melting furnace, prepare molten Ni alloys having the compositions shown in Table 1 in an atmosphere of A, and cast them into copper molds to form ingots. Annealed in an atmosphere at a predetermined temperature within the range of 900 to 1000°C for 5 hours, then coarsely crushed using a show crusher to obtain coarse particles with a diameter of 2 mm or less, and then finely crushed using a ball mill. te350n+es
By setting the particle size to h or less, M g Z n
Hydrogen storage alloys 1 to 20 of the present invention having type 2 crystal structure,
Comparative hydrogen storage alloys 1 to 9 and conventional hydrogen storage alloys were each manufactured.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにポリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した後
、95%の多孔度を有する市販のNlウィスカー不織6
1に充填し、乾燥し、さらに加圧して、平面寸法: 4
2mm X 35mmにして、厚さ: 0.60〜0.
85m+sの形状(活物質充填量:約2.8g)とし、
これの−辺にリードとなるN!薄板を溶接により取付け
て負極を製造し、一方正極として同寸法のNi焼結板を
2枚用意し、これを前記負極の両側に配置し、30%K
OH水溶液を装入することにより密閉型Nl−水素蓄電
池を製造した。
Next, various powdered hydrogen storage alloys obtained as a result are used as active materials, and a 2% aqueous solution of polyvinyl alcohol (PVA) is added thereto to form a paste, which has a porosity of 95%. Commercially available Nl whisker non-woven 6
1, dried, and further pressurized, planar dimension: 4
2mm x 35mm, thickness: 0.60~0.
The shape is 85 m + s (active material filling amount: about 2.8 g),
N is the lead on the - side of this! A negative electrode is manufactured by attaching a thin plate by welding, while two Ni sintered plates of the same size are prepared as positive electrodes and placed on both sides of the negative electrode.
A sealed Nl-hydrogen storage battery was manufactured by charging an OH aqueous solution.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量をn+定できるようにした
The various storage batteries obtained as a result were all open batteries, and the capacity of the positive electrode was made significantly larger than the capacity of the negative electrode, so that the capacity of the negative electrode could be set to n+.

また、上記比較水素吸蔵合金1〜9は、これを構成する
成分含有量(第1表に※印を付したもの)が、この発明
の範囲から外れたものである。
Furthermore, the component contents (those marked with * in Table 1) of the Comparative Hydrogen Storage Alloys 1 to 9 are outside the scope of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度:
0.2C,充電電気量:負極容量の130%の条件で充
・放電試験を行ない、1回の充電と放電を1サイクルと
し、100サイクル後、200サイクル後、および30
0サイクル後における放電容量をそれぞれ測定し、さら
に上記の各種粉末状水素吸蔵合金を負極として用い、い
ずれも正極規制のAAサイズ(容量: 1000100
Oの密閉型Nl−水素蓄電池をそれぞれ組立て、これに
ついて自己放電試験を行ない、その結果を第1表に示し
た。
Next, for these various storage batteries, the charging and discharging speed:
A charging/discharging test was conducted under the conditions of 0.2C, charging electricity amount: 130% of the negative electrode capacity, one charge and discharge was one cycle, and after 100 cycles, 200 cycles, and 30
The discharge capacity after 0 cycles was measured, and each of the above-mentioned powdered hydrogen storage alloys was used as a negative electrode.
A sealed type Nl-hydrogen storage battery was assembled and subjected to a self-discharge test, and the results are shown in Table 1.

さらに、詳述すれば第1表に示される粉末状水素吸蔵合
金粉末を用い、平面サイズを90mw X 4(1mm
s厚さ: 0.80〜0.65mmとして、容u : 
1450〜1500mAh(活物質充填量:約6g)と
する以外は、上記の充放電試験で用いた蓄電池の負極板
と同一の条件で負極板を製造し、一方正極板は、95%
の多孔度を有するNlウィスカー不織布に水酸化ニッケ
ル(Nl(OH) 2)を活物質として充填し、乾燥し
、さらにプレス加工した後、リードを取付けて、平面寸
法: 70nos X 40mm、厚さ: 0.65〜
0.70mmの形状(容量: 1000−1050rA
Ah)とすることにより製造し、この結果得ら°れた負
titと正極板を、セパレータを介してうず巻き状にし
た状態で、電解液と共にケース(これは○端子と兼用)
の中に収容した構造の密閉型Ni  −水素蓄電池を製
造した。
Furthermore, in detail, using the powdered hydrogen storage alloy powder shown in Table 1, the planar size was 90 mw x 4 (1 mm
Thickness: 0.80-0.65mm, volume u:
The negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charge/discharge test, except that the charge was 1450 to 1500 mAh (active material filling amount: approximately 6 g), while the positive electrode plate was manufactured at 95%
A Nl whisker nonwoven fabric with a porosity of 2 is filled with nickel hydroxide (Nl(OH)2) as an active material, dried, and further pressed, and then a lead is attached to the fabric. Planar dimensions: 70nos x 40mm, thickness: 0.65~
0.70mm shape (capacity: 1000-1050rA
The negative tit and positive electrode plate obtained as a result are formed into a spiral shape with a separator interposed between them, and are placed in a case together with an electrolyte (this also serves as the ○ terminal).
A sealed type Ni-hydrogen storage battery was manufactured.

なお、上記の各種密閉型Ni−水素蓄電池において、正
極容量より負極容量を大きくしたのは、正極律則の蓄電
池を構成するためである。
In addition, in the various sealed Ni-hydrogen storage batteries described above, the reason why the negative electrode capacity is made larger than the positive electrode capacity is to configure a storage battery with a positive electrode rule.

また、自己放電試験は、まず室温で[1,2C(200
mA)で7時間充電し、ついで蓄電池を45℃に温度を
セットしである恒温槽中に開路状態(電池に負荷をかけ
ない状態)で、1週間放置および2週間放置し、放置後
、とり出して、室温で0.2C(200mA)放電を行
ない、容量残存率を求めることにより行なった。
In addition, the self-discharge test was first conducted at room temperature [1,2C (200C)
mA) for 7 hours, then the storage battery was set at a temperature of 45°C and left in an open circuit state (no load applied to the battery) in a thermostatic oven for one week and then for two weeks. The battery was discharged at 0.2 C (200 mA) at room temperature, and the remaining capacity was determined.

さらに、上記の各種の水素吸蔵合金について、一般にH
uey試験と呼ばれている方法を用い、試験片を上記の
インゴットより切り出してプラスチック樹脂に埋め込み
、腐食面をエメリーベーパー#600で研磨仕上げした
状態で、コールドフィンガー型コンデンサー付三角フラ
スコに装入し、沸騰した30%KOH水溶液中に144
時間保持の条件でアルカリ電解液腐食試験を行ない、試
験後の腐食減量を測定した。これらの測定結果も第1表
に示した。
Furthermore, regarding the various hydrogen storage alloys mentioned above, generally H
Using a method called the Uey test, a test piece was cut from the above ingot, embedded in plastic resin, the corroded surface was polished with Emery Vapor #600, and then placed in an Erlenmeyer flask with a cold finger condenser. , 144 in a boiling 30% aqueous KOH solution.
An alkaline electrolyte corrosion test was carried out under the condition of holding time, and the corrosion loss after the test was measured. The results of these measurements are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明水素吸蔵合金1〜2
0は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを負極
活物質として用いてなる蓄電池は、いずれも高容量であ
り、かつ従来水素吸蔵合金を用いた蓄電池に比して充・
放電サイクルを繰り返した場合の容量低下が著しく小さ
いという好ましい結果を示すのに対して、比較水素吸蔵
合金1〜9に見られるように、構成成分のうちのいずれ
かの含有量でもこの発明の範囲から外れると、アルカリ
電解液に対する耐食性が低下したり、またこれを蓄電池
の負極活物質として用いた場合には、蓄電池の放電容量
や自己放電に劣化傾向が現われるようになることが明ら
かです。
From the results shown in Table 1, hydrogen storage alloys 1 to 2 of the present invention
0 exhibits superior corrosion resistance to alkaline electrolytes compared to conventional hydrogen storage alloys, and furthermore, storage batteries using these as negative electrode active materials have high capacity and are superior to conventional hydrogen storage alloys. Compared to storage batteries using alloys, charging and
On the other hand, as seen in Comparative Hydrogen Storage Alloys 1 to 9, even if the content of any of the constituent components is within the scope of the present invention, It is clear that if the material is removed from the surface, the corrosion resistance against alkaline electrolytes will decrease, and if it is used as a negative electrode active material in a storage battery, there will be a tendency for the storage battery's discharge capacity and self-discharge to deteriorate.

上述のように、この発明の水素吸蔵Ni−Zr系合金は
、アルカリ電解液に対する耐食性にすぐれているほか、
特に密閉型Nl  −水素蓄電池の負極活物質として用
いた場合に、負極活物質に要求される特性をすべて十分
満足する状態で具備しているので、蓄電池の自己放電が
著しく低減し、さらに長いサイクル寿命に互って大きな
放電容量が確保されるようになるなど工業上有用な特性
を有するのである。
As mentioned above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance against alkaline electrolytes, and
In particular, when used as a negative electrode active material in a sealed Nl-Hydrogen storage battery, it fully satisfies all the characteristics required for a negative electrode active material, significantly reducing self-discharge of the storage battery and resulting in a longer cycle time. It has industrially useful characteristics, such as ensuring a large discharge capacity throughout its life.

Claims (4)

【特許請求の範囲】[Claims] (1)Ti:5〜20%、Zr:10〜37%、Mn:
5〜30%、W:0.01〜15%、Fe:1〜30%
、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(1) Ti: 5-20%, Zr: 10-37%, Mn:
5-30%, W: 0.01-15%, Fe: 1-30%
A hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure, characterized in that it has a composition (by weight %) of the following, with the remainder consisting of Ni and unavoidable impurities.
(2)Ti:5〜20%、Zr:10〜37%、Mn:
5〜30%、W:0.01〜15%、Fe:1〜30%
、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有するMgZn_2型結晶構造をもった水
素吸蔵Ni−Zr系合金を負極活物質として用いてなる
密閉型Ni−水素蓄電池。
(2) Ti: 5-20%, Zr: 10-37%, Mn:
5-30%, W: 0.01-15%, Fe: 1-30%
A sealed Ni-hydrogen storage battery using, as a negative electrode active material, a hydrogen-absorbing Ni-Zr alloy having a MgZn_2 type crystal structure having a composition (by weight %) of Ni and unavoidable impurities.
(3)Ti:5〜20%、Zr:10〜37%、Mn:
5〜30%、W:0.01〜15%、Fe:1〜30%
、 を含有し、さらに、 Cr:0.05〜6%およびAl:0.01〜5%、の
うちの1種または2種、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn_2型結
晶構造をもった水素吸蔵Ni−Zr系合金。
(3) Ti: 5-20%, Zr: 10-37%, Mn:
5-30%, W: 0.01-15%, Fe: 1-30%
, and further contains one or two of Cr: 0.05-6% and Al: 0.01-5%, with the remainder consisting of Ni and unavoidable impurities (more than %) having a MgZn_2 type crystal structure.
(4)Ti:5〜20%、Zr:10〜37%、Mn:
5〜30%、W:0.01〜15%、Fe:1〜30%
、 を含有し、さらに、 Cr:0.05〜6%およびAl:0.01〜5%、の
うちの1種または2種、 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)を有するMgZn_2型結晶構造をもった水
素吸蔵Ni−Zr系合金を負極活物質として用いてなる
密閉型Ni−水素蓄電池。
(4) Ti: 5-20%, Zr: 10-37%, Mn:
5-30%, W: 0.01-15%, Fe: 1-30%
, and further contains one or two of Cr: 0.05-6% and Al: 0.01-5%, with the remainder consisting of Ni and unavoidable impurities (more than A sealed Ni-hydrogen storage battery using a hydrogen-absorbing Ni-Zr alloy having a MgZn_2-type crystal structure with %) as a negative electrode active material.
JP1273404A 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery Expired - Lifetime JPH0639644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273404A JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-330423 1988-12-27
JP33042388 1988-12-27
JP1273404A JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH02263944A true JPH02263944A (en) 1990-10-26
JPH0639644B2 JPH0639644B2 (en) 1994-05-25

Family

ID=18232443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273404A Expired - Lifetime JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH0639644B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Also Published As

Publication number Publication date
JPH0639644B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JPH02263944A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JPH02194140A (en) Hydrogen storage ni-based alloy and closed ni-hydrogen battery
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JPH02277738A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery
JPH02263945A (en) Hydrogen storage ni-zr series alloy and closed-type ni-hydrogen storage battery
JPH02277739A (en) Ni-zr hydrogen storage alloy and hermetically sealed-type ni-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16