JPH05247568A - Hydrogen storage alloy electrode and battery using them - Google Patents

Hydrogen storage alloy electrode and battery using them

Info

Publication number
JPH05247568A
JPH05247568A JP3282212A JP28221291A JPH05247568A JP H05247568 A JPH05247568 A JP H05247568A JP 3282212 A JP3282212 A JP 3282212A JP 28221291 A JP28221291 A JP 28221291A JP H05247568 A JPH05247568 A JP H05247568A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
storage alloy
equilibrium pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3282212A
Other languages
Japanese (ja)
Inventor
Shoichiro Tateishi
昭一郎 立石
Shuichi Wada
秀一 和田
Kozo Kajita
耕三 梶田
Toshio Doi
俊雄 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Publication of JPH05247568A publication Critical patent/JPH05247568A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To develop a hydrogen strage alloy small in hydrogen equilibrium pressure at ordinary temp. and having excellent characteristics by adding Ni, rare earth metals and specified elements to at least two kinds of metals among Ti, Zr and V. CONSTITUTION:The hydrogen storage alloy of Ti-Zr-Ni base, Ti-V-Ni base, Ti-Zr-V-Ni base or the like obtd. by adding Ni to at least >= two kinds of elements among Ti, Zr and V is manufactured by melting respective raw material metals. Then misch metal contg. rare earth metallic elements is added to the same alloy at a ratio of 0.1 to 11atomic%. At this time, the quantity of the misch metal is regulated to <20atomic% to Ni. Or, for improving the corrosion resistance reactivity, activating physical properties of the hydrogen storage aklloy, one or more kinds among Al, Ba, Ca, Co, Cr, Fe, Mg, Mn, Sn and Si are added thereto in such a manner that their total content is regulated to the ratio of 1 to 30atomic% to the total content of Ti, Zr, V and Ni in the hydrogen storage alloy, and it may be used as an electrode material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度に水素を蓄え、
かつ水素の吸蔵・放出が高速な水素吸蔵合金、電極およ
びこれを用いた電池に係わるものである。
BACKGROUND OF THE INVENTION The present invention stores hydrogen in high density,
The present invention also relates to a hydrogen storage alloy, an electrode and a battery using the same, which can store and release hydrogen at high speed.

【0002】[0002]

【従来の技術】水素吸蔵合金は、単位体積あたりに液体
水素に匹敵する密度の水素を貯えることが可能なため近
年注目されており、水素貯蔵容器や電池の電極への利
用、また水素の吸蔵・放出時に大量の熱を出し入れでき
ることから蓄熱材としての利用が研究されている。
2. Description of the Related Art Hydrogen storage alloys have been drawing attention in recent years because they can store hydrogen at a density equivalent to that of liquid hydrogen per unit volume, and can be used for hydrogen storage containers and electrodes of batteries, and also for storing hydrogen. -Since a large amount of heat can be taken in and out at the time of release, its use as a heat storage material has been studied.

【0003】水素吸蔵合金を実用化するにあたっては、
水素吸蔵量が多いこと以外に、次のような性質が求めら
れる。すなわち 1.活性化が容易であること。 2.
常温で使用できること。 3.水素吸蔵・放出の反応が
可逆的であること。 4.水素との反応速度が大きいこ
と。 5.水素吸蔵能力が酸素やメタンガス等によって
劣化しにくいこと。 6.水素吸蔵・放出を繰り返す時
の微粉化が起こりにくいこと、等である。
To put hydrogen storage alloy into practical use,
In addition to having a large hydrogen storage capacity, the following properties are required. That is, 1. Easy to activate. 2.
Can be used at room temperature. 3. The hydrogen storage / release reaction is reversible. 4. The reaction rate with hydrogen is high. 5. The hydrogen storage capacity is not easily deteriorated by oxygen or methane gas. 6. That is, pulverization is less likely to occur when hydrogen is repeatedly stored and released.

【0004】水素吸蔵合金のうち、Ti−Zr−Ni
系、Ti−V−Ni系、Zr−V−Ni系、Ti−Zr
−V−Ni系合金は、上記1〜6の性質に優れているた
め、電極用材料などへの研究がなされている。これらの
系の合金を電池などに応用する際には、常温における合
金の水素平衡圧を低減させることが、安全面などから要
求される。
Among hydrogen storage alloys, Ti-Zr-Ni
System, Ti-V-Ni system, Zr-V-Ni system, Ti-Zr
Since the -V-Ni-based alloys are excellent in the above properties 1 to 6, research into electrode materials and the like has been conducted. When the alloys of these systems are applied to batteries and the like, it is required to reduce the hydrogen equilibrium pressure of the alloys at room temperature for safety reasons.

【0005】しかし、水素平衡圧を低減させるために、
むやみにこれらの系の組成を変化させると、上記1〜5
の性質が劣化する。そこで、このような性質を劣化させ
ることなく合金の水素平衡圧を低減する方法として、例
えば特開昭55−149102が提案されている。これ
は、本来的に水素平衡圧が高いTi系合金に、そもそも
水素平衡圧が低いLa−Ni系合金の粉末を混合して、
Ti系合金の水素平衡圧を下げるというものである。
However, in order to reduce the hydrogen equilibrium pressure,
If the composition of these systems is changed indiscriminately, the above 1-5
Will deteriorate in nature. Therefore, as a method of reducing the hydrogen equilibrium pressure of the alloy without deteriorating such properties, for example, JP-A-55-149102 has been proposed. This is because the Ti-based alloy, which originally has a high hydrogen equilibrium pressure, is mixed with the powder of La-Ni-based alloy, which has a low hydrogen equilibrium pressure in the first place.
This is to lower the hydrogen equilibrium pressure of the Ti-based alloy.

【0006】しかし、このように単に2つの水素吸蔵合
金粉末を混合するだけでは、水素平衡圧低減効果にはお
のずと限界がある。例えば、Ti−Zr−V−Ni系水
素吸蔵合金と、Mm−Ni系(Mmはミッシュメタル)
水素吸蔵合金を粉末の状態で混合したときの圧力−組成
−等温線図(P−C線図)を図1に掲げる。
However, the effect of reducing the hydrogen equilibrium pressure is naturally limited only by mixing the two hydrogen storage alloy powders in this way. For example, Ti-Zr-V-Ni-based hydrogen storage alloy and Mm-Ni-based (Mm is misch metal)
FIG. 1 shows a pressure-composition-isothermal line diagram (PC line diagram) when the hydrogen storage alloy is mixed in a powder state.

【0007】図1を見ると、粉末の混合物の水素平衡圧
の低減能力は、水素平衡圧の低いほうの合金によって決
定づけられてしまうことがわかる。従ってまた水素平衡
圧を充分に低減するためにはTi、Zr、V、Niのい
ずれかに該当する金属の合計量に対して、大量に水素平
衡圧の低い合金を必要とすることになり、このような意
味からも不経済であり、合金としてのTi−Zr−V−
Ni系合金の特有の性質が発揮しにくいため、この方法
は不利であるといえる。
It can be seen from FIG. 1 that the ability of the powder mixture to reduce the hydrogen equilibrium pressure is determined by the alloy having the lower hydrogen equilibrium pressure. Therefore, in order to sufficiently reduce the hydrogen equilibrium pressure, a large amount of an alloy having a low hydrogen equilibrium pressure is required with respect to the total amount of metals corresponding to Ti, Zr, V, and Ni. From this point of view, it is uneconomical and Ti-Zr-V-as an alloy
It can be said that this method is disadvantageous because it is difficult to exhibit the peculiar properties of the Ni-based alloy.

【0008】[0008]

【発明が解決しようとする課題】本発明は、Ti−Zr
−Ni系、Ti−V−Ni系、Zr−V−Ni系、Ti
−Zr−V−Ni系水素吸蔵合金において、上記1〜6
の性質を保持しつつ、水素平衡圧を充分に低減させるこ
とのできる合金系を開発することを目的とする。
The present invention is directed to Ti-Zr.
-Ni system, Ti-V-Ni system, Zr-V-Ni system, Ti
-Zr-V-Ni-based hydrogen storage alloy, the above-mentioned 1 to 6
The object of the present invention is to develop an alloy system capable of sufficiently reducing the hydrogen equilibrium pressure while maintaining the above properties.

【0009】[0009]

【課題を解決するための手段】そこで本発明者らは上記
の目的をふまえて種々検討した結果、Ti−Zr−Ni
系、Ti−V−Ni系、Zr−V−Ni系、Ti−Zr
−V−Ni系水素吸蔵合金に対して、第一に、単体にお
いて水素との結合力が強い金属を合金の結晶格子中に取
り込むことが必要であること、第二に、そのような金属
としてさらに、Ti、Zr、V、 Niより原子半径が
大きく結晶格子のすきまを大きくできる金属にする必要
があることに思い至った。 そこで、Ti−Zr−Ni
系、Ti−V−Ni系、Zr−V−Ni系、Ti−Zr
−V−Ni系水素吸蔵合金に、希土類元素を溶解させて
添加することによって、水素平衡圧を充分に低減させる
ことができることを究明したのである。
The inventors of the present invention have conducted various studies based on the above-mentioned object, and as a result, Ti-Zr-Ni
System, Ti-V-Ni system, Zr-V-Ni system, Ti-Zr
With respect to -V-Ni-based hydrogen storage alloys, firstly, it is necessary to incorporate into the crystal lattice of the alloy a metal having a strong bonding force with hydrogen in a simple substance, and secondly, as such a metal. Furthermore, it has been thought that it is necessary to use a metal that has a larger atomic radius than Ti, Zr, V, and Ni and can increase the gap of the crystal lattice. Therefore, Ti-Zr-Ni
System, Ti-V-Ni system, Zr-V-Ni system, Ti-Zr
It has been clarified that the hydrogen equilibrium pressure can be sufficiently reduced by dissolving and adding the rare earth element to the -V-Ni-based hydrogen storage alloy.

【0010】希土類元素であれば以上の合金系の水素平
衡圧を低減させることができるが、希土類の種々の金属
元素の混合物であるミッシュメタルを用いれば経済的に
も有利である。このミッシュメタルには、La、Ce、
Pd、Smなどの金属が含まれており、これらの元素が
水素平衡圧低減に各々効果を発揮するのである。
If the rare earth element is used, the hydrogen equilibrium pressure of the above alloy system can be reduced, but it is economically advantageous to use misch metal which is a mixture of various rare earth metal elements. For this misch metal, La, Ce,
Metals such as Pd and Sm are contained, and these elements exert their respective effects in reducing the hydrogen equilibrium pressure.

【0011】このような単体もしくは混合物の形での希
土類金属は、Ti、Zr、V、Niのいずれかに該当す
る金属の合計量に対して0.1at%以上添加するのが
好ましく、上限としては11at%以下にするのが望ま
しい。そのうちでもNiに対して20at%未満にする
のがより好ましい。さらに付言すれば、Ti、Zr、
V、Niのいずれかに該当する金属の合計量に対して
0.2at%から4at%添加するのが最も好ましい。
The rare earth metal in the form of a simple substance or a mixture is preferably added in an amount of 0.1 at% or more with respect to the total amount of the metals corresponding to any of Ti, Zr, V and Ni. Is preferably 11 at% or less. Among them, it is more preferable that the content of Ni is less than 20 at%. In addition, Ti, Zr,
It is most preferable to add 0.2 at% to 4 at% of the total amount of metals corresponding to V or Ni.

【0012】合金の溶製にあたっては公知の各種溶解方
法が適用可能であるが、撹はん力の大きいアーク溶解
炉、もしくは高周波加熱炉の使用が好ましい。またA
l、Ba、Ca、Co、Cr、Fe、Mg、Mn、S
n、Siから選ばれた少なくとも一種類以上の元素をさ
らに添加することで、耐食性、反応速度、活性化特性な
どをより向上させることができる。
Although various known melting methods can be applied to the melting of the alloy, it is preferable to use an arc melting furnace or a high-frequency heating furnace with a large stirring force. Also A
l, Ba, Ca, Co, Cr, Fe, Mg, Mn, S
By further adding at least one element selected from n and Si, the corrosion resistance, reaction rate, activation characteristics and the like can be further improved.

【0013】[0013]

【実施例】以下この発明を実施例のより説明する。 実施例1 本発明の実施例1にあたっては、添加する元素には希土
類中、比較的原子半径が大きくクラーク数も大きいLa
を選んだ。
EXAMPLES The present invention will now be described by way of examples. Example 1 In Example 1 of the present invention, La is a rare earth element having a relatively large atomic radius and a large Clark number.
I chose.

【0014】(合金の作製)合金の原料には、市販の純
度99.9%のTi、99.5%のNi、99%のZ
r、99.9%のV、99.9%のCr金属を用いた。
この各原料金属をひょう量し、アーク溶解炉の水冷銅る
つぼに入れ、約2000℃の温度で10回繰り返し溶解
し、得られた合金の組成を分析したところ、Ti17.20
Zr17.2023.66Ni41.94Cr7.53となった。この合
金をサンプル1とする。
(Preparation of Alloy) As a raw material of the alloy, commercially available Ti having a purity of 99.9%, Ni of 99.5% and Z of 99% are commercially available.
r, 99.9% V, 99.9% Cr metal was used.
The respective raw materials metal and weighing, put into a water-cooled copper crucible of an arc furnace, where the dissolved repeated 10 times at a temperature of about 2000 ° C., was analyzed composition of the obtained alloy, Ti 17.20
Zr 17.20 V 23.66 Ni 41.94 Cr 7.53 was obtained. This alloy is referred to as Sample 1.

【0015】このサンプル1のTi、Zr、V、Niの
合計量に対して5.11at%のLaを添加して、再び
約2000℃の温度で10回繰り返し溶解し、得られた
合金の組成を分析したところ、Ti17.20Zr17.20
23.66Ni41.94Cr7.53La5.11となった(サンプル2
とする)。
The composition of the obtained alloy was obtained by adding 5.11 at% of La to the total amount of Ti, Zr, V and Ni of Sample 1 and melting it again at a temperature of about 2000 ° C. for 10 times. Was analyzed to find that Ti 17.20 Zr 17.20 V
23.66 Ni 41.94 Cr 7.53 La 5.11 was obtained (Sample 2
And).

【0016】このようにして作製した合金に純度7Nの
水素ガスを3気圧の圧力で加えると、約10分ほどで活
性化が始まり、水素を吸蔵しだした。
When hydrogen gas having a purity of 7N was added to the alloy thus produced at a pressure of 3 atm, activation started in about 10 minutes and hydrogen was occluded.

【0017】水素の吸蔵が止まった後、室温で真空引き
を1時間行い、その後再び水素を吸蔵させる操作を活性
化が終わるまで繰り返した。活性化終了後、300℃の
温度のもと10Paの真空下で脱水素化した後、ジーベ
ルツ法にて水素吸蔵量と水素平衡圧の関係を調べた。こ
の結果を図2の曲線aに示す。
After the absorption of hydrogen was stopped, vacuuming was performed at room temperature for 1 hour, and then the operation of absorbing hydrogen again was repeated until the activation was completed. After completion of activation, dehydrogenation was performed under a vacuum of 10 Pa at a temperature of 300 ° C., and then the relationship between the hydrogen storage amount and the hydrogen equilibrium pressure was examined by the Sibelts method. The result is shown by the curve a in FIG.

【0018】図2によると、サンプル1の合金にこの合
金中のTi、Zr、V、Niの合計量に対して5.11
at%のLaを添加する(Niに対してはLaは12.
18at%である)だけで水素平衡圧が1/6以下に低
下することが読み取れ、本発明の効果があることが判
る。
According to FIG. 2, the alloy of Sample 1 has 5.11 with respect to the total amount of Ti, Zr, V and Ni in this alloy.
At% La is added (for Ni, La is 12.
It can be read that the hydrogen equilibrium pressure decreases to ⅙ or less with only 18 at%), and it is understood that the effect of the present invention is obtained.

【0019】また光学顕微鏡での観察から、Laを添加
するともとのTi−Zr−V−Ni系合金と別の新たな
相が生じていることがわかった。水素平衡圧の低下に
は、この新しい相がなんらかの影響を及ぼしていると思
われる。サンプル1に三徳金属(株)製のミッシュメタル
(Mm)(組成:La23at%、Ce46at%、P
r11at%、Nd19at%、Sm1at%)を、添
加量を変化させて合金サンプル3〜6を作製した。各組
成とサンプル番号(丸付き数字)を次に示す。 1.Ti17.20Zr17.2023.66Ni41.94Cr7.53 2.La5.11Ti17.20Zr17.2023.66Ni41.94Cr
7.53 3.Mm1.42Ti17.20Zr17.2023.66Ni41.94Cr
7.53 4.Mm5.11Ti17.20Zr17.2023.66Ni41.94Cr
7.53 5.Mm11.51Ti17.20Zr17.2023.66Ni41.94
7.53 6.Mm19.68Ti17.20Zr17.2023.66Ni41.94
7.53
From the observation with an optical microscope, it was found that when La was added, a new phase different from the original Ti-Zr-V-Ni alloy was generated. It seems that this new phase has some effect on the decrease in hydrogen equilibrium pressure. Sample 1 includes Misch metal (Mm) manufactured by Santoku Metal Co., Ltd. (composition: La23at%, Ce46at%, P
r11at%, Nd19at%, Sm1at%) was added to the alloy samples 3 to 6 by changing the addition amount. The compositions and sample numbers (circled numbers) are shown below. 1. Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 Cr 7.53 2. La 5.11 Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 Cr
7.53 3. Mm 1.42 Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 Cr
7.53 4. Mm 5.11 Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 Cr
7.53 5. Mm 11.51 Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 C
r 7.53 6. Mm 19.68 Ti 17.20 Zr 17.20 V 23.66 Ni 41.94 C
r 7.53

【0020】合金の作製方法及び活性化方法は、サンプ
ル1の場合と同じである。活性化終了後、水素吸蔵量と
水素平衡圧の関係を調べた結果を図3に示す。図3によ
り、Mmの添加はTi−Zr−V−Ni系合金の水素平
衡圧低減に効果があることが判る。特に、水素吸蔵合金
を電池に応用するにあたっては、水素圧を安全面からは
1気圧以下にすることが望ましく、電気特性の面からは
0.01気圧以上にすることが望ましいので、Mmの添
加量は、0〜5.11at%が好ましいことが図3より
判る。
The method for producing the alloy and the method for activating the alloy are the same as those for sample 1. FIG. 3 shows the results of examining the relationship between the hydrogen storage amount and the hydrogen equilibrium pressure after completion of activation. From FIG. 3, it can be seen that the addition of Mm is effective in reducing the hydrogen equilibrium pressure of the Ti-Zr-V-Ni-based alloy. In particular, when the hydrogen storage alloy is applied to a battery, it is desirable that the hydrogen pressure be 1 atm or less from the viewpoint of safety, and 0.01 atm or more from the viewpoint of electrical characteristics. It can be seen from FIG. 3 that the amount is preferably 0 to 5.11 at%.

【0021】また光学顕微鏡の観察から、Mmを添加す
るともとのTi−Zr−V−Ni系合金と別の新たな相
が生じていることがわかった。水素平衡圧の低下には、
この新しい相がなんらかの影響を及ぼしていると思われ
る。またX線結晶解析の結果から、Mmの添加量に伴
い、合金の結晶の格子定数が大きくなっていることがわ
かった。水素平衡圧が低下したのは、希土類元素がTi
−Zr−V−Ni合金に固溶し、格子定数が大きくなっ
たため、結晶に水素が入りやすくなった結果だと考えら
れる。
From the observation with an optical microscope, it was found that when Mm was added, a new phase different from the original Ti-Zr-V-Ni alloy was generated. To reduce the hydrogen equilibrium pressure,
This new phase seems to have some influence. From the result of X-ray crystal analysis, it was found that the lattice constant of the crystal of the alloy increased with the addition amount of Mm. The hydrogen equilibrium pressure decreased because the rare earth element was Ti
It is considered that this is because hydrogen easily enters the crystal because the lattice constant is increased due to the solid solution in the -Zr-V-Ni alloy.

【0022】実施例2 実施例2にあたっては、CoおよびFeを含むTi−Z
r−V−Ni系合金にMmを添加した。合金作製にあた
って原料のCo、Feには純度99.9%のものを使用
した。その他の合金の作製方法は実施例1に同じであ
る。
Example 2 In Example 2, Ti-Z containing Co and Fe was used.
Mm was added to the r-V-Ni based alloy. In preparing the alloy, Co and Fe used as raw materials had a purity of 99.9%. The method for producing the other alloys is the same as in Example 1.

【0023】作製した合金サンプル7〜11の組成を次
に示す。 7.Ti15Zr1521Ni31Cr6Co6Fe6 8.Mm1.3Ti15Zr1521Ni31Cr6Co6Fe6 9.Mm2.7Ti15Zr1521Ni31Cr6Co6Fe6 10.Mm4.7Ti15Zr1521Ni31Cr6Co6Fe6 11.Mm18Ti15Zr1521Ni31Cr6Co6Fe6
The compositions of the produced alloy samples 7 to 11 are shown below. 7. Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6 8. Mm 1.3 Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6 9. Mm 2.7 Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6 10. Mm 4.7 Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6 11. Mm 18 Ti 15 Zr 15 V 21 Ni 31 Cr 6 Co 6 Fe 6

【0024】これらの合金を実施例1と同じ方法で活性
化させた後、水素吸蔵量と水素平衡圧の関係を調べた結
果を図4に示す。図4により、Mmの添加はCr、C
o、Feを含むTi−Zr−V−Ni系合金の水素平衡
圧低減に効果があることがわかる。特に、水素吸蔵合金
を電池に応用するにあたっては、水素圧を安全面からは
1気圧以下にすることが望ましく、電気特性の面からは
0.01気圧以上にすることが望ましいので、Mmの添
加量は、0.5at%が好ましいことが図4よりわか
る。
After activating these alloys by the same method as in Example 1, the relationship between the hydrogen storage amount and the hydrogen equilibrium pressure was examined, and the results are shown in FIG. According to FIG. 4, the addition of Mm is Cr, C
It can be seen that it is effective in reducing the hydrogen equilibrium pressure of the Ti-Zr-V-Ni-based alloy containing o and Fe. In particular, when the hydrogen storage alloy is applied to a battery, it is desirable that the hydrogen pressure be 1 atm or less from the viewpoint of safety, and 0.01 atm or more from the viewpoint of electrical characteristics. It can be seen from FIG. 4 that the amount is preferably 0.5 at%.

【0025】また光学顕微鏡の観察では、Mmを添加す
ると実施例1と同様の、もとのTi−Zr−V−Ni系
合金と別の新たな相が見られた。
Observation with an optical microscope revealed that when Mm was added, a new phase similar to that of the original Ti-Zr-V-Ni-based alloy similar to that of Example 1 was observed.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

図1は従来例としてのTi−Zr−V−Ni系水素吸蔵
合金と、Mm−Ni系(Mmはミッシュメタル)水素吸
蔵合金を粉末の状態で混合したときの圧力−組成−等温
線図(P−C線図)、図2、図3、図4は本発明の、3
0℃における水素平衡圧−水素吸蔵量特性を示す図であ
る。
FIG. 1 is a pressure-composition-isothermal diagram when a Ti-Zr-V-Ni-based hydrogen storage alloy as a conventional example and an Mm-Ni-based (Mm is Misch metal) hydrogen storage alloy are mixed in a powder state. (P-C diagram), FIG. 2, FIG. 3, and FIG.
It is a figure which shows the hydrogen equilibrium pressure-hydrogen storage amount characteristic in 0 degreeC.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 俊雄 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Doi 1-88, Tora, Ibaraki, Osaka Prefecture Hitachi Maxell, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ti、Zr、Vから選ばれた少なくとも
2種類の元素と、Niと希土類元素とを含むことを特徴
とする水素吸蔵合金。
1. A hydrogen storage alloy comprising at least two kinds of elements selected from Ti, Zr and V, and Ni and a rare earth element.
【請求項2】 請求項1に記載の水素吸蔵合金におい
て、Ti、Zr、V、Niのいずれかに該当する金属の
合計量に対して希土類元素の量が、少なくとも0.1a
t%以上であることを特徴とする水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, wherein the amount of rare earth element is at least 0.1a based on the total amount of metals corresponding to any one of Ti, Zr, V and Ni.
A hydrogen storage alloy characterized by being at least t%.
【請求項3】 請求項1記載の水素吸蔵合金において、
Ti、Zr、V、Niのいずれかに該当する金属の合計
量に対して希土類元素の量が、11at%以下であるこ
とを特徴とする水素吸蔵合金。
3. The hydrogen storage alloy according to claim 1, wherein
A hydrogen storage alloy, wherein the amount of rare earth element is 11 at% or less with respect to the total amount of metals corresponding to Ti, Zr, V, and Ni.
【請求項4】 請求項1記載の水素吸蔵合金において、
希土類元素の量が、Niに対して20at%未満である
ことを特徴とする水素吸蔵合金。
4. The hydrogen storage alloy according to claim 1, wherein
A hydrogen storage alloy, wherein the amount of rare earth element is less than 20 at% with respect to Ni.
【請求項5】 請求項1記載の水素吸蔵合金において、
さらにAl、Ba、Ca、Co、Cr、Fe、Mg、M
n、Sn、Siから選ばれた少なくとも1種類以上の元
素を添加したことを特徴とする水素吸蔵合金。
5. The hydrogen storage alloy according to claim 1, wherein
Furthermore, Al, Ba, Ca, Co, Cr, Fe, Mg, M
A hydrogen storage alloy, wherein at least one element selected from n, Sn, and Si is added.
【請求項6】 請求項5記載の水素吸蔵合金において、
Al、Ba、Ca、Co、Cr、Fe、Mg、Mn、S
n、Siから選ばれた少なくとも1種類以上の元素の合
計量がTi、Zr、V、Niのいずれかに該当する金属
の合計量に対して 1at%〜30at%であることを
特徴とする水素吸蔵合金。
6. The hydrogen storage alloy according to claim 5, wherein
Al, Ba, Ca, Co, Cr, Fe, Mg, Mn, S
Hydrogen in which the total amount of at least one element selected from n and Si is 1 at% to 30 at% with respect to the total amount of metals corresponding to any one of Ti, Zr, V, and Ni. Storage alloy.
【請求項7】 請求項1から請求項6記載の水素吸蔵合
金の合金を主成分とすることを特徴とする電極。
7. An electrode comprising an alloy of the hydrogen storage alloy according to claim 1 as a main component.
【請求項8】 請求項1から請求項6記載の水素吸蔵合
金を用いた電池。
8. A battery using the hydrogen storage alloy according to claim 1.
JP3282212A 1990-10-11 1991-10-02 Hydrogen storage alloy electrode and battery using them Pending JPH05247568A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27281490 1990-10-11
JP2-272814 1990-10-11

Publications (1)

Publication Number Publication Date
JPH05247568A true JPH05247568A (en) 1993-09-24

Family

ID=17519127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3282212A Pending JPH05247568A (en) 1990-10-11 1991-10-02 Hydrogen storage alloy electrode and battery using them

Country Status (1)

Country Link
JP (1) JPH05247568A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268514A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode
JPH0869796A (en) * 1994-08-22 1996-03-12 Hon Kuochii Hydrogen preservation material,hydride electrode,hydrogen preservation device and nickel hydride battery
US5738736A (en) * 1995-07-18 1998-04-14 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5810981A (en) * 1995-03-09 1998-09-22 Mitsubishi Materials Corporation Three phase hydrogen occluding alloy and electrode made of the alloy
US5885378A (en) * 1995-07-12 1999-03-23 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5951945A (en) * 1995-06-13 1999-09-14 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
CN103031481A (en) * 2012-12-18 2013-04-10 中国科学院长春应用化学研究所 Quasicrystal complex phase hydrogen storage alloy containing magnesium, titanium, vanadium and nickel and preparation method thereof
CN113718153A (en) * 2021-08-27 2021-11-30 中国科学院江西稀土研究院 Normal-temperature activated rare earth hydrogen storage alloy and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268514A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode
JPH0869796A (en) * 1994-08-22 1996-03-12 Hon Kuochii Hydrogen preservation material,hydride electrode,hydrogen preservation device and nickel hydride battery
US5810981A (en) * 1995-03-09 1998-09-22 Mitsubishi Materials Corporation Three phase hydrogen occluding alloy and electrode made of the alloy
US5951945A (en) * 1995-06-13 1999-09-14 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5885378A (en) * 1995-07-12 1999-03-23 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5738736A (en) * 1995-07-18 1998-04-14 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
CN103031481A (en) * 2012-12-18 2013-04-10 中国科学院长春应用化学研究所 Quasicrystal complex phase hydrogen storage alloy containing magnesium, titanium, vanadium and nickel and preparation method thereof
CN113718153A (en) * 2021-08-27 2021-11-30 中国科学院江西稀土研究院 Normal-temperature activated rare earth hydrogen storage alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4370163A (en) Hydrogen storage alloy and process for making same
US4161402A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
US4744946A (en) Materials for storage of hydrogen
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
JP2000104135A (en) Ternary hydrogen storage alloy and its production
Sandrock The metallurgy and production of rechargeable hydrides
JPS6364511B2 (en)
US4576640A (en) Hydrogen storage material
EP0184427B1 (en) Composition for reversably absorbing and desorbing hydrogen
JP3397979B2 (en) Hydrogen storage alloy
EP0248607B1 (en) Composition for reversably absorbing and desorbing hydrogen
JPS61199045A (en) Hydrogen occluding alloy
JPS6256939B2 (en)
EP0127161B1 (en) Hydrogen storage metal material
JPH0397827A (en) Titanium-chromium-copper series hydrogen storage alloy
JPH09316571A (en) Hydrogen storage alloy
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS583025B2 (en) Metal materials for hydrogen storage
JPS6141975B2 (en)
JP2781290B2 (en) Manufacturing method of hydrogen storage alloy
JPS5841333B2 (en) Alloy for hydrogen storage
JPH1030138A (en) Hydrogen storage body
JPH11106847A (en) Production of hydrogen storage alloy, alloy thereof and electrode using the alloy
Khatamian et al. The effect of the addition of carbon on the hydrogen-absorbing properties of FeTi

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010710