JPS6141975B2 - - Google Patents

Info

Publication number
JPS6141975B2
JPS6141975B2 JP58080950A JP8095083A JPS6141975B2 JP S6141975 B2 JPS6141975 B2 JP S6141975B2 JP 58080950 A JP58080950 A JP 58080950A JP 8095083 A JP8095083 A JP 8095083A JP S6141975 B2 JPS6141975 B2 JP S6141975B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen storage
present
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58080950A
Other languages
Japanese (ja)
Other versions
JPS59208037A (en
Inventor
Shuichiro Ono
Kei Nomura
Etsuo Akiba
Kimyuki Jinno
Sakae Higano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsubishi Steel KK
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Steel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Steel KK filed Critical Agency of Industrial Science and Technology
Priority to JP58080950A priority Critical patent/JPS59208037A/en
Publication of JPS59208037A publication Critical patent/JPS59208037A/en
Publication of JPS6141975B2 publication Critical patent/JPS6141975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素貯蔵用合金に関し、より詳細には
比較的低温で、好ましくは室温付近の温度で容易
に水素を吸蔵および放出することができ、かつこ
の吸蔵および放出が安定して可逆的であり、工業
的規模で使用可能な水素貯蔵用合金に関する。 従来、水素貯蔵用合金としては、たとえば、
LaNi5、Mg2Ni、TiFeなどが知られている。これ
ら合金の水素化物は、La、Mg、Tiなどの金属単
体の水素化物に比して低温で水素を放出すること
ができる。 しかしながら、LaNi5は高価であり、Mg2Niの
水素化物の水素の解離平衡圧はさほど高くなく、
TiFeは活性化が困難であるなどの欠点があり、
これらの合金を工業的規模の水素貯蔵用に使用す
ることは困難であつた。 一方、TiMn1.5なる組成の合金が水素を良く吸
蔵することが見出され、この合金の水素貯蔵用合
金としての応用が種々検討され、その後この合金
の展開として(Ti1-xZrx)Mなる組成の合金(た
だしMは金属を表わす)を水素貯蔵材として利用
せんとする、いくつかの提案がなされた。 たとえば、特公昭55−44145、56−5292、56−
15772、56−21814、56−31341などでは、Mとし
てMn、Cu、Co、Cr、Mo、Fe、Vなどを用いる
こと、およびMとして1種類の金属ではなく、2
種類、または3種類の金属を用いる、全体として
3成分系ないし5成分系の合金が開示されてい
る。 これらの系の合金の水素化物は、室温付近の温
度で高い水素平衡圧を有し、合金の成分の種類と
割合によつて平衡圧を加減できるとされている。 そこで本発明は、これら開示された合金を更に
発展させて、より安価に製造することができ、水
素の吸蔵、放出をより安定に、かつ可逆的に行な
うことができる、工業的規模で使用可能な水素貯
蔵用合金を開発すべくなされたものであり、
Ti、Zr、Mn、Fe、VおよびAlの比較的安価な金
属より成り、比較的低温で水素の吸蔵、放出がで
きる6成分系の水素貯蔵用合金を提供するもので
ある。 すなわち、本発明の水素貯蔵用合金は、一般式
Ti1-xZrx(Mn1-a-b-cFeaVbAlcyで表わされる組
成を有し、式中xは0.2≦x≦0.8、yは1.5≦y≦
2.0、aは0.01≦a≦0.5、bは0.05≦b≦0.3、c
は0.01≦c≦0.1の範囲の数であるとを特徴とす
るものである。 本発明の水素貯蔵用合金は、粉末X線回折法の
結果、金相的に単一相であつた。更に本合金につ
いて水素化および放出反応を繰り返し実施した場
合でも、合金の水素化による第2相の出現などは
認められなかつた。この時脱水素した合金は出発
時の合金相に完全に戻つていることを確認した。
従つて本発明の合金は、水素貯蔵材料として好適
であることを見出したものである。 本発明の水素貯蔵用合金において、xが0.2よ
りも小、または0.8よりも大のとき、あるいはy
が1.5よりも小、または2.0よりも大の場合は、水
素の吸蔵、放出性が悪くなる。 aが0.01より小のときは、水素化物のプラトー
特性が悪くなり、aが0.5より大のときは、水素
吸蔵量が低下する。 bが0.05よりの小のときは、初期の活性化処理
が必要であり、水素化反応速度が低下し、0.3よ
り大のときには合金の粉砕性が悪くなる。 また、cが0.01より小のときは安価なフエロー
バナジムの使用が不可能となり、0.1よりも大の
ときは、水素吸蔵量が低下する欠点があり不適で
ある。このように本発明の水素貯蔵用合金におけ
る成分範囲の限定は、臨界的な意味があり、優れ
た効果を発揮するものである。 本発明の水素貯蔵用合金は、たとえばアルゴン
のような不活性ガスの雰囲気中で通常の合金製造
方法、たとえば高周波炉を用いる方法、またはア
ークメルト法などにより原料金属を上記組成範囲
で溶融して容易に製造することができる。使用す
る金属材料は、純度97〜98%以下の工業的品位の
もので良いが、合金水素化物の有効水素量を大き
くすることを考慮すれば、純度99%以上のものが
好ましい。 本発明の合金は、前述のように6成分から成る
単一相の金属間化合物であり、かつ粉砕しやす
い。 更に水素化反応を行なう際、高温で排気するな
どの活性化処理の必要がなく、室温で排気した
後、1〜10気圧の水素を容器に導入すれば、容易
に水素を吸蔵する。 本発明の合金の特徴は、比較的低温で水素の吸
蔵、放出を安定に、可逆的に行なうことができ、
一方、水素化物の解離平衡圧は、合金の組成を変
えることにより、すなわちx、y、a、b、およ
びcを変化させることで昇・降圧の操作が可能な
ことである。 本発明の水素貯蔵用合金は、以上の特性を有す
るため、実用的に必要な解離平衡圧を有し、有効
水素量の多い合金を設計することができる。 以上述べたように、本発明の水素貯蔵用合金に
よれば、工業的品位の原料金属を前記一般式の組
成範囲内に調整し、公知の合金製造法により容易
に製造することができる。 したがつて、本発明の水素貯蔵用合金は、水素
の工業的貯蔵、輸送、熱貯蔵、化学昇圧機、化学
エンジン等に好ましく利用することができる。 以下、本発明を実施例にもとづき詳述する。 実施例 1 原材料は純度99.9%のTi、99.7%のZr、99.9%
のMn、Fe、VおよびAlであり、Vについてはフ
エローバナジム(JIS1号)も併用した。 そして前述した本発明の組成範囲の、下記表に
示す組成の合金を作製した。 試料No.1〜10の合金を大豆大に粗粉砕した
後、耐圧容器に入れ、真空排気した後に、室温で
約50気圧の水素を導入すると、直ちに、あるいは
数分の誘導期間の後に水素を吸蔵した。水素を十
分に吸蔵すれば合金は微粉砕される。
The present invention relates to an alloy for hydrogen storage, and more particularly, an alloy that can easily store and release hydrogen at relatively low temperatures, preferably at a temperature around room temperature, and that the storage and release are stable and reversible. , concerning hydrogen storage alloys that can be used on an industrial scale. Conventionally, hydrogen storage alloys include, for example,
Known examples include LaNi 5 , Mg 2 Ni, and TiFe. The hydrides of these alloys can release hydrogen at lower temperatures than the hydrides of simple metals such as La, Mg, and Ti. However, LaNi 5 is expensive, and the dissociation equilibrium pressure of hydrogen in Mg 2 Ni hydride is not very high.
TiFe has drawbacks such as being difficult to activate.
It has been difficult to use these alloys for industrial scale hydrogen storage. On the other hand, it was discovered that an alloy with the composition TiMn 1.5 can absorb hydrogen well, and various applications of this alloy as a hydrogen storage alloy were investigated . ) Several proposals have been made to utilize alloys having the composition M (where M represents a metal) as hydrogen storage materials. For example, Tokuko Sho 55-44145, 56-5292, 56-
15772, 56-21814, 56-31341, etc., Mn, Cu, Co, Cr, Mo, Fe, V, etc. are used as M, and two metals are used instead of one type of M.
Generally ternary to five-component alloys using different metals or three different metals are disclosed. It is said that the hydrides of these alloys have a high hydrogen equilibrium pressure at temperatures around room temperature, and that the equilibrium pressure can be adjusted by changing the types and proportions of the alloy components. Therefore, the present invention further develops these disclosed alloys so that they can be manufactured at lower cost, absorb and release hydrogen more stably and reversibly, and can be used on an industrial scale. This was done to develop a hydrogen storage alloy.
The present invention provides a six-component hydrogen storage alloy that is made of relatively inexpensive metals such as Ti, Zr, Mn, Fe, V, and Al and can store and release hydrogen at relatively low temperatures. That is, the hydrogen storage alloy of the present invention has the general formula
Ti 1-x Zr x (Mn 1-abc Fe a V b Al c ) It has a composition represented by y , where x is 0.2≦x≦0.8, and y is 1.5≦y≦
2.0, a is 0.01≦a≦0.5, b is 0.05≦b≦0.3, c
is a number in the range of 0.01≦c≦0.1. As a result of powder X-ray diffraction, the hydrogen storage alloy of the present invention was found to have a single phase in terms of metal phase. Furthermore, even when hydrogenation and release reactions were repeatedly carried out on this alloy, no appearance of a second phase due to hydrogenation of the alloy was observed. It was confirmed that the dehydrogenated alloy had completely returned to the starting alloy phase.
Therefore, the alloy of the present invention has been found to be suitable as a hydrogen storage material. In the hydrogen storage alloy of the present invention, when x is smaller than 0.2 or larger than 0.8, or when y
When is smaller than 1.5 or larger than 2.0, hydrogen absorption and release properties deteriorate. When a is smaller than 0.01, the plateau characteristics of the hydride deteriorate, and when a is larger than 0.5, the hydrogen storage capacity decreases. When b is smaller than 0.05, an initial activation treatment is required and the hydrogenation reaction rate decreases, and when b is larger than 0.3, the grindability of the alloy becomes poor. Furthermore, when c is smaller than 0.01, it is impossible to use inexpensive ferro-vanadium, and when c is larger than 0.1, it is unsuitable because it has the drawback of decreasing hydrogen storage capacity. As described above, the limitation of the range of ingredients in the hydrogen storage alloy of the present invention has a critical meaning and exhibits excellent effects. The hydrogen storage alloy of the present invention can be produced by melting raw metals in the above composition range by a normal alloy manufacturing method, such as a method using a high frequency furnace or an arc melt method, in an atmosphere of an inert gas such as argon. Can be easily manufactured. The metal material used may be of industrial grade with a purity of 97 to 98% or less, but in consideration of increasing the effective hydrogen amount of the alloy hydride, one with a purity of 99% or more is preferable. As mentioned above, the alloy of the present invention is a single-phase intermetallic compound consisting of six components, and is easily crushed. Furthermore, when carrying out the hydrogenation reaction, there is no need for activation treatment such as evacuation at high temperature, and hydrogen can be easily occluded by introducing hydrogen at 1 to 10 atm into the container after evacuation at room temperature. The alloy of the present invention is characterized by being able to store and release hydrogen stably and reversibly at relatively low temperatures;
On the other hand, the dissociation equilibrium pressure of a hydride can be raised or lowered by changing the composition of the alloy, that is, by changing x, y, a, b, and c. Since the hydrogen storage alloy of the present invention has the above characteristics, it is possible to design an alloy that has a practically necessary dissociation equilibrium pressure and a large amount of effective hydrogen. As described above, according to the hydrogen storage alloy of the present invention, industrial grade raw material metal can be adjusted to fall within the composition range of the general formula, and it can be easily manufactured by a known alloy manufacturing method. Therefore, the hydrogen storage alloy of the present invention can be preferably used in hydrogen industrial storage, transportation, heat storage, chemical boosters, chemical engines, etc. Hereinafter, the present invention will be explained in detail based on examples. Example 1 Raw materials are 99.9% pure Ti, 99.7% Zr, 99.9% pure
Mn, Fe, V and Al, and for V, ferro-vanadium (JIS No. 1) was also used. Then, alloys having the compositions shown in the table below, which fall within the composition range of the present invention described above, were produced. After coarsely pulverizing the alloys of sample Nos. 1 to 10 into soybean-sized pieces, they are placed in a pressure-resistant container, evacuated, and then hydrogen at about 50 atm at room temperature is introduced. The hydrogen is removed immediately or after an induction period of several minutes. It was absorbed. If enough hydrogen is absorbed, the alloy will be finely pulverized.

【表】 上記表には水素の吸蔵、放出を5回繰り返した
後の金属水素化物の水素吸蔵量をwt%で示し
た。 表から本発明の水素貯蔵用合金は、約1.6wt%
以上の高濃度の水素を吸蔵した水素化物を生成す
ることがわかる。 試料No.1〜3でy値を比較すると、y=1.5の
場合が水素吸蔵量が最も大きく、y=2.0では減
少する。これに対して、吸蔵した水素を室温で放
出させる操作を行なつた場合、y=1.5のものは
分解反応による放出速度や遅く、かつ室温では完
全に水素の放出ができず、完全に脱水素させて元
の合金にもどすためには加熱を必要とした。 y=1.7のものは、水素化、分解速度が比較的
早く、室温で完全に放出させることが可能であ
り、y値は好ましくは1.7であることがわかつ
た。 またx値については、xが小さい試料の方がx
値の大きなものよりも室温での反応速度が大き
く、第1回目の水素化反応が開始されるまでの誘
導時間も短かかつた。 更にx値が大きくなり、つまりZr量が増すと、
室温での水素の放出が困難となり、試料No.10の
場合、約150℃の加熱が必要であつた。a、bお
よびcは本発明の前述した組成範囲では優れた金
属水素化物が得られるが、Al量が比較的多い試
料No.7では、若干水素吸蔵量が低下することが
認められた。 第1図には、試料No.2の合金の水素化物につ
いて温度を変化させた場合の分解平衡圧(気圧)
と水素吸蔵量(wt%)との関係を示す。第1図
において曲線Aは30℃、Bは60℃、Cは100℃の
場合である。試料No.2の合金は、Ti0.8 Zr0.2
(Mn0.8 Fe0.04 V0.15 Al 0.01)1.7 H2.81の水
素化物を生成する。この試料は水素吸蔵量が
1.75wt%付近までプラトー特性を有している。 第2図には、試料No.10の合金の水素化物の温
度を変化させた場合の分解平衡圧と水素吸蔵量と
の関係を示す。第2図において曲線Dは100℃、
曲線Eは160℃の場合である。この試料は、x=
0.8とZr量が多く、100℃、160℃と比較的高温で
水素化物の分解平衡圧を測定した。 第2図の試料Ti0.2 Zr0.8(Mn0.8 Fe0.04
V0.15 Al 0.01)1.7 H3.0の水素化物となる。こ
の水素化物は0.25〜1.65wt%の範囲で極めて良好
なるプラトー特性を有することがわかる。この水
素貯蔵用合金の使用温度域は、室温〜200℃まで
の広い範囲である。 ところで、金属水素化物の水素を貯蔵、輸送、
熱貯蔵、化学昇圧機、化学エンジン等に使用する
場合、室温付近で水素の高い平衡を有する金属水
素化物は、水素を放出させるときは有利である
が、繰返し使用するための水素を吸蔵させる場合
には、高圧水素を必要として不利になる。この
点、本発明による合金は、x、y、a、bおよび
cを変化させることにより、使用温度範囲に適し
た6成分系合金をつくることにより、平衡圧を変
化させることができるので、合金の設計上有利で
あるし、実用機器の開発に対して大きな効果を示
すものである。
[Table] The above table shows the hydrogen storage amount of the metal hydride in wt% after repeating hydrogen storage and release five times. From the table, the hydrogen storage alloy of the present invention is approximately 1.6wt%
It can be seen that a hydride is produced that absorbs hydrogen at a high concentration. Comparing the y values of Samples No. 1 to 3, the hydrogen storage amount is the largest when y=1.5, and decreases when y=2.0. On the other hand, when an operation is performed to release the occluded hydrogen at room temperature, the release rate due to the decomposition reaction in the case of y = 1.5 is slow, and hydrogen cannot be completely released at room temperature, resulting in complete dehydrogenation. Heating was required to restore the alloy to its original state. It was found that when y=1.7, the hydrogenation and decomposition rate is relatively fast, and it is possible to completely release the compound at room temperature, and the y value is preferably 1.7. Also, regarding the x value, samples with smaller x
The reaction rate at room temperature was higher than those with large values, and the induction time until the first hydrogenation reaction was started was also short. Furthermore, when the x value increases, that is, the amount of Zr increases,
It became difficult to release hydrogen at room temperature, and in the case of sample No. 10, heating to about 150°C was required. For samples a, b, and c, excellent metal hydrides can be obtained in the composition ranges described above of the present invention, but in sample No. 7, which has a relatively large amount of Al, it was observed that the hydrogen storage capacity was slightly decreased. Figure 1 shows the decomposition equilibrium pressure (atmospheric pressure) when changing the temperature for the hydride of sample No. 2 alloy.
The relationship between and hydrogen storage capacity (wt%) is shown. In FIG. 1, curve A is for 30°C, curve B for 60°C, and curve C for 100°C. The alloy of sample No. 2 is Ti0.8 Zr0.2
(Mn0.8 Fe0.04 V0.15 Al 0.01) 1.7 Generates hydride of H2.81. This sample has a hydrogen storage capacity of
It has plateau characteristics up to around 1.75wt%. FIG. 2 shows the relationship between the decomposition equilibrium pressure and the hydrogen storage amount when the temperature of the hydride of the alloy of sample No. 10 is changed. In Figure 2, curve D is 100℃,
Curve E is for the case of 160°C. This sample has x=
The decomposition equilibrium pressure of hydrides was measured at relatively high temperatures of 100°C and 160°C with a high Zr content of 0.8. The sample in Fig. 2 Ti0.2 Zr0.8 (Mn0.8 Fe0.04
V0.15 Al 0.01) 1.7 Becomes a hydride of H3.0. It can be seen that this hydride has extremely good plateau characteristics in the range of 0.25 to 1.65 wt%. This hydrogen storage alloy can be used in a wide range of temperatures from room temperature to 200°C. By the way, hydrogen from metal hydrides can be stored, transported,
When used in heat storage, chemical boosters, chemical engines, etc., metal hydrides with high hydrogen equilibrium near room temperature are advantageous when releasing hydrogen, but when storing hydrogen for repeated use. However, high pressure hydrogen is required, which is disadvantageous. In this respect, the alloy according to the present invention can change the equilibrium pressure by changing x, y, a, b, and c to create a six-component alloy suitable for the operating temperature range. This is advantageous in terms of design and has a great effect on the development of practical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の水素貯蔵用合金
の温度変化に対する水素吸蔵量と分解平衡圧力と
の関係を示す図である。
FIGS. 1 and 2 are diagrams showing the relationship between the hydrogen storage amount and decomposition equilibrium pressure with respect to temperature changes in the hydrogen storage alloy of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式Ti1-xZrx(Mn1-a-b-cFeaVbAlcyで表
わされる組成を有し、式中xは0.2≦x≦0.8、y
は1.5≦y≦2.0、aは0.01≦a≦0.5、bは0.05≦
b≦0.3、cは0.01≦c≦0.1の範囲の数であるこ
とを特徴とする水素貯蔵用合金。
1 It has a composition represented by the general formula Ti 1-x Zr x (Mn 1-abc Fe a V b Al c ) y , where x is 0.2≦x≦0.8, y
is 1.5≦y≦2.0, a is 0.01≦a≦0.5, b is 0.05≦
A hydrogen storage alloy, characterized in that b≦0.3 and c are numbers in the range of 0.01≦c≦0.1.
JP58080950A 1983-05-11 1983-05-11 Alloy for storing hydrogen Granted JPS59208037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080950A JPS59208037A (en) 1983-05-11 1983-05-11 Alloy for storing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080950A JPS59208037A (en) 1983-05-11 1983-05-11 Alloy for storing hydrogen

Publications (2)

Publication Number Publication Date
JPS59208037A JPS59208037A (en) 1984-11-26
JPS6141975B2 true JPS6141975B2 (en) 1986-09-18

Family

ID=13732775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080950A Granted JPS59208037A (en) 1983-05-11 1983-05-11 Alloy for storing hydrogen

Country Status (1)

Country Link
JP (1) JPS59208037A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141741A (en) * 1984-08-02 1986-02-28 Daido Steel Co Ltd Hydrogen occluding alloy
JPS63286547A (en) * 1987-05-18 1988-11-24 Sanyo Electric Co Ltd Hydrogen-occluding alloy
KR100361908B1 (en) * 2000-06-21 2002-11-23 한국에너지기술연구원 Titanium-zirconium-based Laves phase alloy for hydrogen storage

Also Published As

Publication number Publication date
JPS59208037A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
Oelerich et al. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials
JP3528599B2 (en) Hydrogen storage alloy
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
US4744946A (en) Materials for storage of hydrogen
JPS6242979B2 (en)
US4359396A (en) Hydride of beryllium-based intermetallic compound
JPS6141978B2 (en)
JPS5830380B2 (en) Mitsushi metal alloy for hydrogen storage
US4783329A (en) Hydriding solid solution alloys having a body centered cubic structure stabilized by quenching near euctectoid compositions
JPS6141975B2 (en)
JPS5837374B2 (en) Mitsushi Metal for Hydrogen Storage - Calcium Alloy
JPS626739B2 (en)
JPS61199045A (en) Hydrogen occluding alloy
US5803995A (en) Calcium-aluminum system hydrogen absorbing alloy
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JPS5848481B2 (en) Hydrogen storage materials
EP0127161A1 (en) Hydrogen storage metal material
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPS6369701A (en) Metallic material for occluding hydrogen
JPS6310215B2 (en)
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JP3451320B2 (en) Hydrogen storage alloy
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS6048580B2 (en) Alloy for hydrogen storage