JP3451320B2 - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JP3451320B2
JP3451320B2 JP2000325778A JP2000325778A JP3451320B2 JP 3451320 B2 JP3451320 B2 JP 3451320B2 JP 2000325778 A JP2000325778 A JP 2000325778A JP 2000325778 A JP2000325778 A JP 2000325778A JP 3451320 B2 JP3451320 B2 JP 3451320B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
storage alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000325778A
Other languages
Japanese (ja)
Other versions
JP2002129264A (en
Inventor
博之 竹下
哲男 境
信宏 栗山
秀明 田中
哲 清林
信彦 竹市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000325778A priority Critical patent/JP3451320B2/en
Publication of JP2002129264A publication Critical patent/JP2002129264A/en
Application granted granted Critical
Publication of JP3451320B2 publication Critical patent/JP3451320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金、及
び水素貯蔵タンク用水素貯蔵媒体に関する。
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy and a hydrogen storage medium for a hydrogen storage tank.

【0002】[0002]

【従来の技術】Ti2Niは、図1に示す立方晶のE93
型構造を有する合金であり、水素と反応して水素化物T
2NiH3を形成する。この合金は、比較的安価で水素
吸蔵量が約2重量%と比較的大きいが、水素化物が化学
的に安定であり、水素圧力−組成−温度(PCT)特性
を示す図2から明らかなように、180℃という高温で
あっても、吸蔵水素のごく一部を放出するに過ぎない。
また、この水素化物は、高温では不均化反応によりTi
2とTiNi3に分解して水素放出能力を失い易いとい
う欠点がある。このため、Ti2Niは、水素吸蔵材料
としては、水素放出特性、耐久性等について満足のいく
特性を有するものではない。
2. Description of the Related Art Ti 2 Ni is a cubic E9 3 shown in FIG.
It is an alloy having a type structure and reacts with hydrogen to produce hydride T
i 2 NiH 3 is formed. This alloy is relatively inexpensive and has a relatively large hydrogen storage capacity of about 2% by weight, but the hydride is chemically stable, and the hydrogen pressure-composition-temperature (PCT) characteristics are shown in FIG. Moreover, even at a high temperature of 180 ° C., only a part of the stored hydrogen is released.
In addition, this hydride has a disproportionation reaction that causes Ti
It has a drawback that it is easily decomposed into H 2 and TiNi 3 and loses its ability to release hydrogen. Therefore, Ti 2 Ni as a hydrogen storage material does not have satisfactory hydrogen release characteristics and durability.

【0003】このため、該合金を構成するTi又はNi
を他の金属元素へ置換することが試みられている。しか
しながら、この場合、図3に模式的に示すように、PC
T曲線のプラトー、即ち、PCT曲線において圧力一定
で水素濃度が変化する平らな部分が置換によって傾き、
水素の取出しのために、より大きなエネルギーが必要と
なり、例えば、水素を取り出すためにより高温とするこ
とが必要となること等が問題となっている。
Therefore, Ti or Ni which constitutes the alloy is
Attempts have been made to replace the element with another metal element. However, in this case, as shown schematically in FIG.
The plateau of the T curve, that is, the flat part of the PCT curve where the hydrogen concentration changes at a constant pressure, is inclined by the substitution,
A larger energy is required to take out hydrogen, and for example, a higher temperature is required to take out hydrogen, which is a problem.

【0004】[0004]

【発明の解決しようとする課題】本発明の主な目的は、
良好な水素吸蔵特性と水素放出特性を有し、耐久性に優
れた新規な水素吸蔵合金を提供することである。
The main object of the present invention is to:
An object of the present invention is to provide a novel hydrogen storage alloy having excellent hydrogen storage characteristics and hydrogen release characteristics and excellent in durability.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記した課
題に鑑みて鋭意研究を重ねた結果、Ti2Niで表され
る立方晶のE93型構造を有する合金に、O、N及びC
から選ばれた少なくとも一種の元素を特定量固溶させる
ことによって、Ti2Niの水素放出特性、耐久性等が
改善され、上記した目的を達成し得る水素吸蔵合金が得
られることを見出し、ここに本発明を完成するに至っ
た。
Means for Solving the Problems The present inventor has conducted extensive research in view of the problems described above, the alloy having E9 3 type structure of cubic crystal represented by Ti 2 Ni, O, N and C
It has been found that by solid-solving a specific amount of at least one element selected from the above, the hydrogen desorption characteristics of Ti 2 Ni, the durability, etc. are improved, and a hydrogen storage alloy capable of achieving the above-mentioned object can be obtained. The present invention has been completed.

【0006】即ち、本発明は、下記の水素吸蔵合金及び
水素貯蔵媒体を提供するものである。 1. 一般式:TiaNibXc (式中、XはN及びCから選ばれた少なくとも一種の元
素であり、3.9≦a≦4.1;1.9≦b≦2.1;
0<c≦1である)で表される立方晶のE93型構造の
相を含む水素吸蔵合金。 2. 一般式:TiaNibXc (式中、XはN及びCから選ばれた少なくとも一種の元
素であり、3.9≦a≦4.1;1.9≦b≦2.1;
0<c≦1である)で表される立方晶のE93型構造の
相を50体積%以上含む水素吸蔵合金。 . 一般式:TiaNibXcにおいて、0.3≦c
≦1である上記項1又は2に記載の水素吸蔵合金。 . 上記項1〜のいずれかに記載の水素吸蔵合金か
らなる水素貯蔵タンク用水素貯蔵媒体。
That is, the present invention provides the following hydrogen storage alloy and hydrogen storage medium. 1. General formula: TiaNibXc (In the formula, X is at least one element selected from N and C, and 3.9 ≦ a ≦ 4.1; 1.9 ≦ b ≦ 2.1;
0 <a hydrogen-absorbing alloy comprising a phase of E9 3 type structure of cubic crystal represented by a c ≦ 1). 2. General formula: TiaNibXc (In the formula, X is at least one element selected from N and C, and 3.9 ≦ a ≦ 4.1; 1.9 ≦ b ≦ 2.1;
0 <hydrogen storage alloy containing 50% by volume or more phases of the E9 3 type structure of cubic crystal represented by a c ≦ 1). 3 . General formula: In TiaNibXc, 0.3 ≦ c
The hydrogen storage alloy according to the above item 1 or 2 , wherein ≦ 1. 4 . Hydrogen storage tank for hydrogen storage medium comprising a hydrogen storage alloy according to any one of items 1-3.

【0007】[0007]

【発明の実施の形態】本発明の水素吸蔵合金は、 一般式:TiaNibXc (式中、XはN及びCから選ばれた少なくとも一種の元
素であり、3.9≦a≦4.1;1.9≦b≦2.1;
0<c≦1である)で表される立方晶のE93型構造の
相を含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy of the present invention has a general formula: TiaNibXc (where X is at least one element selected from N and C, and 3.9 ≦ a ≦ 4.1; 1). 9 ≦ b ≦ 2.1;
0 <those including a phase of E9 3 type structure of cubic crystal represented by a c ≦ 1).

【0008】この様な水素吸蔵合金は、立方晶のE93
型構造を有するTi2Niに、酸素、窒素及び炭素から
選ばれた少なくとも一種の元素が固溶した非金属元素侵
入型合金であり、Ti2Niと比較して、水素吸蔵特性
と水素放出特性が大きく改善されたものである。
Such a hydrogen storage alloy has a cubic crystal structure of E9 3
It is a non-metal element interstitial alloy in which at least one element selected from oxygen, nitrogen and carbon is solid-solved in Ti 2 Ni having a type structure, and hydrogen storage characteristics and hydrogen release characteristics are compared with Ti 2 Ni. Is a great improvement.

【0009】本発明の水素吸蔵合金では、優れた水素吸
蔵特性及び放出特性を示すためには、上記した一般式:
TiNi(式中、X、a、b及びcは上記に同
じ)で表される立方晶のE93型構造の相が水素吸蔵合
金中に50体積%以上含まれることが好ましく、70体
積%以上含まれることが好ましく、90体積%以上含ま
れることがより好ましく、上記した相の単相からなるこ
とが最も好ましい。上記した相以外の相については、特
に限定はないが、例えば、副相として、TiNi、Ti
X等が含まれる場合がある。
In order to exhibit excellent hydrogen storage characteristics and desorption characteristics, the hydrogen storage alloy of the present invention has the above general formula:
(Wherein, X, a, b and c are the same as above) Ti a Ni b X c that phase E9 3 type structure of cubic crystal represented by is contained 50% or more by volume in the hydrogen storage alloy preferably , 70 vol% or more, more preferably 90 vol% or more, and most preferably a single phase of the above-mentioned phases. There is no particular limitation on the phases other than the above-mentioned phases, but for example, TiNi, Ti may be used as the sub-phase.
X and the like may be included.

【0010】また、上記した一般式において、XはN及
びCから選ばれた少なくとも一種の元素であることが好
ましい。上記一般式においてXがN及びCから選ばれた
少なくとも一種の元素である相を含む水素吸蔵合金は、
特に、室温付近での最大水素吸蔵量が大きく、また、2
MPa〜0.03MPa程度の圧力範囲下での水素放出
容量が大きい点で優れた特性を有するものである。
In the above general formula, X is preferably at least one element selected from N and C. A hydrogen storage alloy containing a phase in which X is at least one element selected from N and C in the above general formula is
Especially, the maximum hydrogen storage capacity near room temperature is large, and
It has excellent characteristics in that it has a large hydrogen releasing capacity under a pressure range of about MPa to 0.03 MPa.

【0011】本発明の水素吸蔵合金は、例えば、各元素
の割合が目的とする合金の組成比となるように原料を混
合し、非酸化性雰囲気中で加熱して合金化させることに
よって製造することができる。
The hydrogen storage alloy of the present invention is produced, for example, by mixing the raw materials so that the ratio of each element is the composition ratio of the target alloy, and heating in a non-oxidizing atmosphere to alloy. be able to.

【0012】原料としては、例えば、Ti源及びNi源
としては、それぞれ、Ti粉末及びNi粉末を用いるこ
とができる。O源、N源及びC源としては、それぞれ、
TiO2、TiN及びTiCの各粉末を用いることがで
きるが、これらに限定されず、酸素、窒素、炭素等を含
む各種のTi化合物、Ni化合物等を原料とすることが
できる。
As the raw material, for example, Ti powder and Ni powder can be used as the Ti source and the Ni source, respectively. As the O source, the N source, and the C source, respectively,
Each powder of TiO 2 , TiN, and TiC can be used, but not limited to these, various Ti compounds containing oxygen, nitrogen, carbon, etc., Ni compounds, etc. can be used as raw materials.

【0013】これらの原料を目的とする組成比となるよ
うに混合し、非酸化性雰囲気中で加熱することによっ
て、本発明の水素吸蔵合金を得ることができる。非酸化
性雰囲気としては、例えば、真空雰囲気、Heガス等の
不活性ガス雰囲気、水素ガス等の還元性雰囲気等を挙げ
ることができる。加熱温度は、800℃〜目的物の融点
未満の温度とすることが好ましく、この範囲内の温度に
おいて、できるだけ高温で加熱することによって、上記
した一般式で表される立方晶のE93型構造の相を多く
含む、単相に近い合金を短時間で得ることが可能とな
る。加熱時間は、目的とする合金が形成される時間とす
ればよく、具体的な加熱時間は、加熱温度によって異な
るが、例えば、5時間〜10日間程度の時間とすればよ
い。
The hydrogen storage alloy of the present invention can be obtained by mixing these raw materials in a desired composition ratio and heating them in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a vacuum atmosphere, an inert gas atmosphere such as He gas, and a reducing atmosphere such as hydrogen gas. The heating temperature is preferably a temperature lower than the melting point of 800 ° C. ~ desired compound at a temperature within this range, as much as possible by heating at a high temperature, the above-mentioned cubic represented by the general formula E9 3 type structure It is possible to obtain an alloy close to a single phase containing a large number of phases in a short time. The heating time may be the time for forming the desired alloy, and the specific heating time may be, for example, about 5 hours to 10 days, although it depends on the heating temperature.

【0014】また、上記した製造方法以外にも、Ti金
属粉とNi金属粉を原料として、酸素、窒素、炭素等を
含む雰囲気中、例えば、アンモニア雰囲気中などで加熱
することによっても、目的とする水素吸蔵合金を得るこ
とができる。
In addition to the above-mentioned manufacturing method, the object can be obtained by heating Ti metal powder and Ni metal powder as raw materials in an atmosphere containing oxygen, nitrogen, carbon, etc., for example, in an ammonia atmosphere. It is possible to obtain a hydrogen storage alloy that does.

【0015】本発明の水素吸蔵合金は、Ti2Niとは
異なって、活性化処理が不要であり、特別な前処理を行
うことなく、室温、3MPa程度の水素雰囲気下で水素
吸蔵を開始する。これは、タンクに該合金を充填し、水
素を入れれば水素吸蔵性能を示すことを意味するため、
水素吸蔵用途においては重要な特性である。また、Ti
2Niは、室温付近の温度では、水素ガスとの気−固相
反応によって水素を放出することはないが、本発明の水
素吸蔵合金は、室温付近の温度で、数気圧の水素圧力と
いう、水素吸蔵材料に要求される水素吸蔵放出条件下
で、水素化物の形成に伴うプラトー領域を示し、可逆的
に水素を吸蔵・放出する。
Unlike Ti 2 Ni, the hydrogen storage alloy of the present invention does not require activation treatment, and starts hydrogen storage under a hydrogen atmosphere at room temperature and about 3 MPa without special pretreatment. . This means that if the tank is filled with the alloy and hydrogen is filled, it exhibits hydrogen storage performance.
This is an important property in hydrogen storage applications. Also, Ti
2 Ni is at a temperature of around room temperature gas of hydrogen gas - but never releases hydrogen by solid phase reaction, the hydrogen storage alloy of the present invention, at temperatures near room temperature, that the hydrogen pressure of several atmospheres, Under the hydrogen storage / release conditions required for hydrogen storage materials, it exhibits a plateau region associated with the formation of hydrides, and reversibly stores and releases hydrogen.

【0016】本発明の水素吸蔵合金における平均質量数
が、それぞれ46.4(Ti4Ni2O)、46.1(T
4Ni2N)、及び45.8(Ti4Ni2C)であるこ
とから、2MPaにおける最大水素吸蔵量は、それぞ
れ、0.92重量%(Ti4Ni2O、0℃)、1.43
重量%(Ti4Ni2N、0℃)、及び1.48重量%
(Ti4Ni2C、40℃)である。印加する水素圧を増
加させるか、温度をより低温にすることにより、最大水
素吸蔵量をより増加することができる。
The hydrogen storage alloys of the present invention have average mass numbers of 46.4 (Ti 4 Ni 2 O) and 46.1 (T, respectively).
i 4 Ni 2 N) and 45.8 (Ti 4 Ni 2 C), the maximum hydrogen storage amount at 2 MPa is 0.92 wt% (Ti 4 Ni 2 O, 0 ° C.), 1 .43
% By weight (Ti 4 Ni 2 N, 0 ° C.), and 1.48% by weight
(Ti 4 Ni 2 C, 40 ° C.). The maximum hydrogen storage amount can be further increased by increasing the applied hydrogen pressure or lowering the temperature.

【0017】Westlakeのモデル他の経験的モデルに基づ
いた水素占有位置の検討に従うと、水素はこれらのE9
3型構造化合物中の8a及び96gサイトを完全占有で
きる。このため、これらの化合物の最大水素吸蔵量は、
理論的にH/M=0.93、又は1.96重量%(Ti
4Ni2O)、1.98重量%(Ti4Ni2N)、及び
1.99重量%(Ti4Ni2C)となる。
According to Westlake's model and a study of hydrogen occupancy positions based on other empirical models, hydrogen is found in these E9
It can completely occupy the 8a and 96g sites in the type 3 structure compound. Therefore, the maximum hydrogen storage capacity of these compounds is
Theoretically H / M = 0.93, or 1.96 wt% (Ti
4 Ni 2 O), 1.98 wt% (Ti 4 Ni 2 N), and 1.99 wt% (Ti 4 Ni 2 C).

【0018】また、本発明の水素吸蔵合金は、Ti2
iと比べると水素解離圧が2〜3桁高く、プラトーの傾
きがフラットである。
The hydrogen storage alloy of the present invention is made of Ti 2 N
The hydrogen dissociation pressure is 2-3 orders of magnitude higher than i, and the slope of the plateau is flat.

【0019】このため、0.01〜1MPaの圧力範囲
での有効水素吸蔵量は、Ti2Niが20℃で0.2重
量%にも満たないのに対して、Ti4Ni2N及びTi4
Ni2Cではそれぞれ1.11重量%(0℃)及び1.
06重量%(60℃)と非常に大きく、著しい改善が認
められる。金属元素置換の場合には、このような劇的な
解離圧の変化とプラトーの平坦さを両立できないため
に、本発明の水素吸蔵合金による優れた効果は、侵入型
の非金属元素添加によるものと考えられる。
Therefore, the effective hydrogen storage amount in the pressure range of 0.01 to 1 MPa is less than 0.2% by weight of Ti 2 Ni at 20 ° C., whereas the effective hydrogen storage amount is less than 0.2% by weight of Ti 4 Ni 2 N and Ti. Four
For Ni 2 C, 1.11 wt% (0 ° C.) and 1.
It is as very large as 06% by weight (60 ° C), and a remarkable improvement is recognized. In the case of metal element substitution, since such a dramatic change in dissociation pressure and flatness of the plateau cannot be achieved at the same time, the excellent effect of the hydrogen storage alloy of the present invention is due to the addition of an interstitial non-metal element. it is conceivable that.

【0020】本発明の水素吸蔵合金は、この様な優れた
特性を利用して、水素吸蔵合金としての公知の各種用途
に用いることができる。
The hydrogen storage alloy of the present invention can be used for various known uses as a hydrogen storage alloy by utilizing such excellent properties.

【0021】例えば、本発明の水素吸蔵合金は、室温付
近の温度、10気圧以下の水素圧力という、水素貯蔵材
料に要求される水素吸蔵放出条件下で、気固相反応によ
り可逆的に水素を吸蔵・放出できる。このため、本発明
の水素吸蔵合金は、水を熱冷媒として使用でき、気体水
素を室温付近の温度で安全に貯蔵し、必要に応じて貯蔵
水素を取り出すために用いる、水素貯蔵タンク用水素貯
蔵媒体として有用性が高いものである。
For example, the hydrogen storage alloy of the present invention can reversibly generate hydrogen by a gas-solid state reaction under a temperature near room temperature, a hydrogen pressure of 10 atm or less, which is required for hydrogen storage materials. Can store and release. Therefore, the hydrogen storage alloy of the present invention, water can be used as a heat refrigerant, is used to safely store gaseous hydrogen at a temperature near room temperature, and to take out stored hydrogen as needed, hydrogen storage tank hydrogen storage It is highly useful as a medium.

【0022】本発明の水素吸蔵合金は、上記した水素貯
蔵媒体としての用途に用いる場合には、上記した一般式
において、cの値が、0.3≦c≦1程度であることが
好ましく、0.5≦c≦1程度であることがより好まし
く、0.7≦c≦1程度であることが更に好ましい。
When the hydrogen storage alloy of the present invention is used for the above-mentioned use as a hydrogen storage medium, the value of c in the above general formula is preferably 0.3 ≦ c ≦ 1. It is more preferable that 0.5 ≦ c ≦ 1 and more preferable that 0.7 ≦ c ≦ 1.

【0023】[0023]

【発明の効果】本発明の水素吸蔵合金は、優れた水素吸
蔵特性と水素放出特性を有し、耐久性が良好である。特
に、本発明の水素吸蔵合金は、気体水素を室温付近の温
度で安全に貯蔵し、貯蔵水素を取り出すことが可能であ
り、水素貯蔵タンク用水素貯蔵媒体として非常に有用で
ある。
EFFECTS OF THE INVENTION The hydrogen storage alloy of the present invention has excellent hydrogen storage characteristics and hydrogen desorption characteristics, and has good durability. In particular, the hydrogen storage alloy of the present invention can safely store gaseous hydrogen at temperatures near room temperature and take out stored hydrogen, and is very useful as a hydrogen storage medium for hydrogen storage tanks.

【0024】[0024]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。 実施例1 酸素、窒素、及び炭素源として、それぞれTiO2、T
iN及びTiCの各粉末を用い、更に、Ti源及びNi
源として、Ti及びNiの各粉末を用いて、Ti57.1
28.614.3(X=O、N又はC)という組成となるよ
うに、各原料粉末を混合し、真空中で圧粉成型して、ペ
レット(直径13mm、厚さ1mm)を製造した。
EXAMPLES The present invention will be described in more detail with reference to examples. Example 1 TiO 2 , T as oxygen, nitrogen and carbon sources, respectively
iN and TiC powders are used, and further, Ti source and Ni are used.
Using Ti and Ni powders as sources, Ti 57.1 N
Each raw material powder was mixed so as to have a composition of i 28.6 X 14.3 (X = O, N or C), and powder-molded in vacuum to produce pellets (diameter 13 mm, thickness 1 mm).

【0025】次いで、得られたペレットをArアーク熔
解した後、高真空中で900℃で72時間保持すること
によって、水素吸蔵合金を得た。
Next, the obtained pellets were melted by Ar arc and then held in a high vacuum at 900 ° C. for 72 hours to obtain a hydrogen storage alloy.

【0026】得られた各水素吸蔵合金についての粉末X
線回折結果を図4に示す。図4から明らかなように、各
水素吸蔵合金は、Ti2Niと同様の立方晶のE93型構
造の相を含むものである。
Powder X for each of the obtained hydrogen storage alloys
The line diffraction result is shown in FIG. As apparent from FIG. 4, each of the hydrogen storage alloy is one that comprises a phase of E9 3 type structure similar cubic and Ti 2 Ni.

【0027】また、元素分析装置付き電子顕微鏡を用い
て各試料のTi2Ni型合金相中の非金属軽元素の濃度
を調べたところ、いずれも14原子%であり、酸素、窒
素及び炭素の何れを添加した場合にも、14原子%まで
固溶でき、Ti4Ni2X(X=O、N又はC)という組
成で表されることが判った。酸素、窒素、及び炭素の占
有位置は、何れもE93型構造における16cなる変則
Ti八面体の中心であった。Ti4Ni2X(X=O、N
又はC)で表される立方晶のE93型構造の相の存在割
合は、酸素含有合金では98%、窒素含有合金では90
%、炭素含有合金では50%であった。副相はいずれも
TiNi及びTiX(X=O、N又はC)相であった。
Further, when the concentration of the non-metal light element in the Ti 2 Ni type alloy phase of each sample was examined by using an electron microscope equipped with an elemental analysis device, it was found to be 14 atom%, and the concentration of oxygen, nitrogen and carbon was It was found that whichever the addition was made, it was possible to form a solid solution up to 14 atomic%, and the composition was represented by Ti 4 Ni 2 X (X = O, N or C). Oxygen, nitrogen, and occupies the position of the carbon were both centers of 16c becomes irregular Ti octahedra in E9 3 type structure. Ti 4 Ni 2 X (X = O, N
Or the presence ratio of the phases of cubic E9 3 type structure represented by C) is 98% in the oxygen-containing alloy, 90 in the nitrogen-containing alloy
% And 50% for carbon-containing alloys. Both sub-phases were TiNi and TiX (X = O, N or C) phases.

【0028】各水素吸蔵合金について、ジーベルツ型装
置を用いて水素化特性を平衡論的に調べた。
The hydrogenation characteristics of each hydrogen storage alloy were investigated equilibrium using a Sibelts type apparatus.

【0029】副相の内、TiXは水素との反応が認めら
れなかった。TiNiについては、別に同一温度でPC
T特性を測定し、各試料について、TiNi相のPCT
特性への寄与を補正することによって、Ti4Ni2
(X=O、N又はC)相のPCT曲線を求めた。
Among the sub-phases, TiX was not observed to react with hydrogen. For TiNi, PC at the same temperature
T characteristics were measured, and for each sample, PCT of TiNi phase
By correcting the contribution to the characteristics, Ti 4 Ni 2 X
The PCT curve of the (X = O, N or C) phase was determined.

【0030】TiNi相のPCT曲線を図5に示し、T
4Ni2X(X=O、N又はC)相のPCT曲線を図6
〜図8に示す。
The PCT curve of the TiNi phase is shown in FIG.
The PCT curve of the i 4 Ni 2 X (X = O, N or C) phase is shown in FIG.
~ Shown in FIG.

【0031】また、本発明の水素吸蔵合金とTi2Ni
の特性を比較するために、Ti4Ni 2N、Ti4Ni2
及びTi2NiについてのPCT曲線を図9に示す。T
2NiのPCT特性は気固相反応に基づいて求めるこ
とができないので、図9におけるTi2NiのPCT曲
線は、6N−KOH水溶液中で正極にニッケル水酸化
物、負極にTi2Ni合金を使用して電気化学的方法に
よって求めたものである。
Further, the hydrogen storage alloy of the present invention and Ti2Ni
To compare the characteristics of TiFourNi 2N, TiFourNi2C
And Ti2The PCT curve for Ni is shown in FIG. T
i2PCT characteristics of Ni should be determined based on gas-solid reaction.
Therefore, Ti in FIG.2Ni's PCT song
The wire is nickel hydroxide on the positive electrode in 6N-KOH aqueous solution.
Object, negative electrode Ti2Electrochemical method using Ni alloy
Therefore, it is obtained.

【0032】図9から判る様に、本発明の水素吸蔵合金
は、Ti2Niと比べると、水素解離圧が2〜3桁上昇
し、プラトーの傾きについては、Ti2Niと比べる
と、フラットであり、特に、室温付近の温度にて優れた
水素吸蔵放出特性を有することが確認できた。
[0032] As seen from FIG. 9, the hydrogen storage alloy of the present invention is different from the Ti 2 Ni, hydrogen dissociation pressure increases 2-3 digits, for plateau slope, as compared to Ti 2 Ni, flat In particular, it was confirmed that it has excellent hydrogen storage / release characteristics at a temperature around room temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素吸蔵合金の結晶構造を示す模式
図。
FIG. 1 is a schematic diagram showing a crystal structure of a hydrogen storage alloy of the present invention.

【図2】Ti2NiのPCT特性を示すグラフ。FIG. 2 is a graph showing PCT characteristics of Ti 2 Ni.

【図3】置換型合金のPCT特性を模式的に示すグラ
フ。
FIG. 3 is a graph schematically showing the PCT characteristics of a substitutional alloy.

【図4】本発明の水素吸蔵合金及びTi2Niについて
の粉末X線回折結果を示す図面。
FIG. 4 is a drawing showing powder X-ray diffraction results for the hydrogen storage alloy of the present invention and Ti 2 Ni.

【図5】TiNiのPCT特性を示すグラフ。FIG. 5 is a graph showing PCT characteristics of TiNi.

【図6】Ti4Ni2OのPCT特性を示すグラフ。FIG. 6 is a graph showing the PCT characteristics of Ti 4 Ni 2 O.

【図7】Ti4Ni2NのPCT特性を示すグラフ。FIG. 7 is a graph showing the PCT characteristics of Ti 4 Ni 2 N.

【図8】Ti4Ni2CのPCT特性を示すグラフ。FIG. 8 is a graph showing PCT characteristics of Ti 4 Ni 2 C.

【図9】Ti4Ni2N、Ti4Ni2C及びTi2Niに
ついてのPCT特性を示すグラフ。
FIG. 9 is a graph showing PCT characteristics of Ti 4 Ni 2 N, Ti 4 Ni 2 C and Ti 2 Ni.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清林 哲 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 竹市 信彦 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (56)参考文献 特開 平9−274912(JP,A) 特開 昭60−221961(JP,A) 国際公開95/017531(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C22C 14/00 C01B 3/00 C01B 31/30 C01G 53/00 F17C 11/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Kiyobayashi 1-831 Midorigaoka, Ikeda-shi, Osaka Inside Institute of Industrial Science and Technology, Institute of Industrial Technology (72) Inventor Nobuhiko Takeichi 1-8, Midorigaoka, Ikeda-shi, Osaka No. 31 Inside Institute of Industrial Science and Technology, Institute of Industrial Technology (56) References JP-A-9-274912 (JP, A) JP-A-60-221961 (JP, A) International Publication 95/017531 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 14/00 C01B 3/00 C01B 31/30 C01G 53/00 F17C 11/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式:TiaNibXc (式中、XはN及びCから選ばれた少なくとも一種の元
素であり、3.9≦a≦4.1;1.9≦b≦2.1;
0<c≦1である)で表される立方晶のE93型構造の
相を含む水素吸蔵合金。
1. A general formula: TiaNibXc (where X is at least one element selected from N and C, and 3.9 ≦ a ≦ 4.1; 1.9 ≦ b ≦ 2.1;
0 <a hydrogen-absorbing alloy comprising a phase of E9 3 type structure of cubic crystal represented by a c ≦ 1).
【請求項2】一般式:TiaNibXc (式中、XはN及びCから選ばれた少なくとも一種の元
素であり、3.9≦a≦4.1;1.9≦b≦2.1;
0<c≦1である)で表される立方晶のE93型構造の
相を50体積%以上含む水素吸蔵合金。
2. A general formula: TiaNibXc (wherein X is at least one element selected from N and C, and 3.9 ≦ a ≦ 4.1; 1.9 ≦ b ≦ 2.1;
0 <c ≦ 1 a is) in cubic E9 3 -type structure phase 50 vol% or more including hydrogen-absorbing alloys represented.
【請求項3】一般式:TiaNibXcにおいて、0.
3≦c≦1である請求項1又は2に記載の水素吸蔵合
金。
3. In the general formula: TiaNibXc, 0.
The hydrogen storage alloy according to claim 1 or 2 , wherein 3 ≦ c ≦ 1.
【請求項4】請求項1〜のいずれかに記載の水素吸蔵
合金からなる水素貯蔵タンク用水素貯蔵媒体。
4. A hydrogen storage medium for a hydrogen storage tank, which comprises the hydrogen storage alloy according to any one of claims 1 to 3 .
JP2000325778A 2000-10-25 2000-10-25 Hydrogen storage alloy Expired - Lifetime JP3451320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325778A JP3451320B2 (en) 2000-10-25 2000-10-25 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325778A JP3451320B2 (en) 2000-10-25 2000-10-25 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2002129264A JP2002129264A (en) 2002-05-09
JP3451320B2 true JP3451320B2 (en) 2003-09-29

Family

ID=18803083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325778A Expired - Lifetime JP3451320B2 (en) 2000-10-25 2000-10-25 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3451320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107245606B (en) * 2017-05-26 2018-09-25 西安赛特思迈钛业有限公司 A kind of preparation method of Ti-Ni alloy large-scale casting ingot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221961A (en) * 1984-04-18 1985-11-06 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode
EP0750050A4 (en) * 1993-12-22 1997-09-24 Toshiba Kk Hydrogen-absorbing alloy and alkaline secondary cell using the same
JP3035605B2 (en) * 1996-04-05 2000-04-24 工業技術院長 Hydrogen storage electrode

Also Published As

Publication number Publication date
JP2002129264A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
Gasiorowski et al. Hydriding properties of nanocrystalline Mg2− xMxNi alloys synthesized by mechanical alloying (M= Mn, Al)
Gamo et al. Formation and properties of titanium-manganese alloy hydrides
Zhang et al. Dehydriding properties of ternary Mg2Ni1− xZrx hydrides synthesized by ball milling and annealing
Kagawa et al. Absorption of hydrogen by vanadium-rich V Ti-based alloys
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
JP4986101B2 (en) Hydrogen storage material and method for producing the same
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
JP2002513086A (en) Magnesium mechanical alloy for thermal hydrogen storage
Zhong et al. Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn
US4347082A (en) Mischmetal alloy for storage of hydrogen
Kandavel et al. The effect of non-stoichiometry on the hydrogen storage properties of Ti-substituted AB2 alloys
KR0144594B1 (en) Hydrogen accumulated alloy of ti-mn
Sinha et al. The hyperstoichiometric ZrMn1+ xFe1+ y− H2 system I: Hydrogen storage characteristics
JP3451320B2 (en) Hydrogen storage alloy
JPS6141978B2 (en)
Dutta et al. Synthesis, structural characterization and hydrogenation behaviour of the new hydrogen storage composite alloy La 2 Mg 17-x wt% LaNi 5
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JP2022543642A (en) Hydrogen storage alloy
Suzuki et al. Hydrogen absorption-desorption characteristics of Ti-Co-Fe alloys
JPS5848481B2 (en) Hydrogen storage materials
JPS6369701A (en) Metallic material for occluding hydrogen
JPS6310215B2 (en)
JPS6141975B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3451320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term