JPS5839218B2 - Rare earth metal quaternary hydrogen storage alloy - Google Patents

Rare earth metal quaternary hydrogen storage alloy

Info

Publication number
JPS5839218B2
JPS5839218B2 JP56097781A JP9778181A JPS5839218B2 JP S5839218 B2 JPS5839218 B2 JP S5839218B2 JP 56097781 A JP56097781 A JP 56097781A JP 9778181 A JP9778181 A JP 9778181A JP S5839218 B2 JPS5839218 B2 JP S5839218B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
pressure
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56097781A
Other languages
Japanese (ja)
Other versions
JPS581040A (en
Inventor
明彦 加藤
啓介 小黒
泰章 大角
正典 中根
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56097781A priority Critical patent/JPS5839218B2/en
Publication of JPS581040A publication Critical patent/JPS581040A/en
Publication of JPS5839218B2 publication Critical patent/JPS5839218B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は希土類金属を含む四元系水素吸蔵用合金に関し
、より詳細には、金属水素化物の形態で多量の水素を吸
蔵でき、しかもわずかの加熱で容易に、かつ速やかに水
素を放出でき、その水素の吸蔵圧と放出圧の差、即ちヒ
ステリシスの極めて小さい新規にして実用上極めて有用
なる希土類金属四元系水素吸蔵用合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quaternary hydrogen storage alloy containing a rare earth metal. The present invention relates to a novel and practically extremely useful quaternary rare earth metal hydrogen storage alloy that can rapidly release hydrogen and has an extremely small difference between the hydrogen storage pressure and the release pressure, that is, hysteresis.

水素は資源的な制限がなくクリーンであること、輸送、
貯蔵が容易なこと等から化石燃料に代る新しいエネルギ
ー源として注目されている。
Hydrogen has no resource limitations and is clean, transportable,
Because it is easy to store, it is attracting attention as a new energy source to replace fossil fuels.

しかし、水素は常温で気体であり、しかも液化温度が極
めて低温であるために、その貯蔵技術の開発が重要とな
る。
However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, it is important to develop storage technology for hydrogen.

この貯蔵方法として近年注目されているのが、金属に水
素を吸蔵させ金属水素化物として貯蔵する方法である。
A storage method that has attracted attention in recent years is a method in which hydrogen is absorbed into a metal and stored as a metal hydride.

又、金属と水素の吸蔵放出反応は可逆的であり、反応に
伴って相当量の反応熱が発生吸収され、水素の吸蔵放出
圧力は温度に依存することを利用して冷暖房装置あるい
は熱エネルギー0圧力(機械)エネルギー変換装置など
に応用する研究が行なわれている。
In addition, the absorption/desorption reaction between metals and hydrogen is reversible, and a considerable amount of reaction heat is generated and absorbed during the reaction, and hydrogen absorption/desorption pressure depends on temperature. Research is being conducted to apply it to pressure (mechanical) energy conversion devices.

かかる水素吸蔵材料として要求される性質としては、安
価かつ資源的に豊富であること、活性化が容易で水素吸
蔵量が大きいこと、室温付近で適当な水素吸蔵放出平衡
圧を有し、吸蔵放出のヒステリシスが小さいこと、水素
吸蔵放出反応が可逆的であり、その速度が大きいことな
どがあげられる。
The properties required for such a hydrogen storage material are that it is inexpensive and abundant in terms of resources, that it is easy to activate and has a large hydrogen storage capacity, that it has an appropriate hydrogen storage and desorption equilibrium pressure near room temperature, and that it has an appropriate hydrogen storage and desorption equilibrium pressure. The hysteresis of hydrogen is small, the hydrogen absorption and release reaction is reversible, and its speed is high.

ところで代表的な公知の水素吸蔵材料としては、例えば
LaNi5 、FeTiが知られている。
By the way, typical known hydrogen storage materials include, for example, LaNi5 and FeTi.

しかしながらこれらの合金は、水素の吸蔵放出反応が可
逆的であり、水素吸蔵量も大きいものの、水素吸蔵、放
出反応の速度が遅く、活性化が容易とは云えず、しかも
ヒステリシスが太きい等の欠点があり、実用上大きな問
題があった。
However, although these alloys have reversible hydrogen storage and release reactions and a large hydrogen storage capacity, the hydrogen storage and release reactions are slow, activation is not easy, and they have large hysteresis. There were drawbacks and major practical problems.

そこで本発明者らは、これら従来の問題点を解消すべく
鋭意検討を行ない、希土類金属、ニッケル、マンガン、
ならびにチタン、ジルコニウム、バナジウムおよびニオ
ブからなる群から選ばれた一種の金属元素より構成され
た四元系合金が上記諸条件を具備し、従来の合金に比べ
て極めて有用である事を見出し、発明を2戒するに至っ
た。
Therefore, the present inventors conducted intensive studies to solve these conventional problems, and found that rare earth metals, nickel, manganese,
The inventor discovered that a quaternary alloy composed of a metal element selected from the group consisting of titanium, zirconium, vanadium, and niobium satisfies the above conditions and is extremely useful compared to conventional alloys. I have come to give two commandments.

即ち本発明は、一般式RNi5xMnyMtzで表わさ
れる希土類金属四元系の水素吸蔵用合金である。
That is, the present invention is a rare earth metal quaternary hydrogen storage alloy represented by the general formula RNi5xMnyMtz.

ただし、式中Rは希土類金属原子を表わし、Mtはチタ
ン、ジルコニウム、バナジウムおよびニオブからなる群
から選ばれた一種の金属原子であり、Xは0.01〜2
.0の範囲の数、yは0.01〜2.0の範囲の数、2
は0.2以下の数であり、5.0≦5−x+y+z≦5
.2なる関係が成立する。
However, in the formula, R represents a rare earth metal atom, Mt is a metal atom selected from the group consisting of titanium, zirconium, vanadium, and niobium, and X is 0.01 to 2
.. A number in the range of 0, y is a number in the range of 0.01 to 2.0, 2
is a number less than or equal to 0.2, and 5.0≦5−x+y+z≦5
.. Two relationships are established.

ここで希土類金属原子Rは単一金属の場合のみならず、
混合金属ミツシュメタルMmをも含む。
Here, the rare earth metal atom R is not only a single metal, but also
Also includes mixed metal Mitsushimetal Mm.

ミツシュメタルは一般にランタン25〜35咎(重量、
以下1司じ)、セリウム40〜50%、プラセオジウム
1〜15φ、ネオジウム4〜15東サマリウム+カドリ
ニウム1〜7多、鉄0.1〜5饅、珪素0.1〜1幅、
マグネシウム0.1〜2φ、アルミニウム0.1〜1饅
等からなるものであり、すでに国内で市販されている。
Mitsushmetal generally weighs 25 to 35 lanterns (weight,
(hereinafter referred to as 1), cerium 40-50%, praseodymium 1-15φ, neodymium 4-15 east samarium + cadrinium 1-7, iron 0.1-5, silicon 0.1-1 width,
It is made of magnesium 0.1-2φ, aluminum 0.1-1mm, etc., and is already commercially available in Japan.

本発明の水素吸蔵用合金の組成は以下のように説明され
る。
The composition of the hydrogen storage alloy of the present invention is explained as follows.

即ち、本発明の合金は基本的には希土類金属Rとニッケ
ルとの合金RNi5のニッケルの一部をマンガンで置換
したRNi5−αMnCt系合金において、Mn(7)
一部をチタン、ジルコニウム、バナジウムおよびニオ
ブからなる群から選ばれた一種の金属Mtで置換するか
、もしくはRN i 5−αMnα系合金にチタン、ジ
ルコニウム、バナジウムおよびニオブからなる群から選
ばれた一種の金属Mtを添加したものである。
That is, the alloy of the present invention is basically an RNi5-αMnCt alloy in which a part of the nickel in the alloy RNi5 of rare earth metal R and nickel is replaced with manganese.
A part of the metal Mt is substituted with a metal Mt selected from the group consisting of titanium, zirconium, vanadium and niobium, or a metal Mt selected from the group consisting of titanium, zirconium, vanadium and niobium is substituted in the RN i 5-αMnα alloy. The metal Mt is added.

一般に希土類金属Rとニッケルは、CaCu5型の六方
晶を形成し、RN i 5なる金属化合物となることが
知られているが、LaNi5以外のものは室温付近での
水素吸蔵放出圧力が高い。
It is generally known that the rare earth metal R and nickel form a CaCu5-type hexagonal crystal and become a metal compound called RN i 5, but materials other than LaNi5 have a high hydrogen absorption and release pressure near room temperature.

例えばMmNi5では20〜40気圧、CeNi5やS
mNi5では40〜80気圧である。
For example, MmNi5 has a pressure of 20 to 40 atm, CeNi5 and S
For mNi5, the pressure is 40 to 80 atmospheres.

そこでニッケルの一部をマンガンで置換すると水素吸蔵
放出圧を低減させることができる。
Therefore, if part of the nickel is replaced with manganese, the hydrogen absorption and release pressure can be reduced.

即ち、希土類金属とニッケルとの合金RNi5において
、ニッケルの一部をマンガンで置換した合金をRNi5
−αMnαで表わすと、αを0.01〜2.0の範囲で
調整したとき、水素吸蔵放出圧の低下が顕著である。
That is, in alloy RNi5 of rare earth metal and nickel, an alloy in which part of nickel is replaced with manganese is RNi5.
When expressed as -αMnα, when α is adjusted in the range of 0.01 to 2.0, the hydrogen storage and desorption pressure decreases significantly.

好ましくはαは0.1〜1.0の範囲である。Preferably α is in the range of 0.1 to 1.0.

このαは本発明の合金RNi5 xMnyMtzにお
けるXおよびyに相当するから、上記αの範囲はXおよ
びyの範囲となる。
Since this α corresponds to X and y in the alloy RNi5 xMnyMtz of the present invention, the range of α is the range of X and y.

Xおよびyが2.0より大きくなると、吸蔵水素の放出
が困難となり、高温加熱と時にはこれに減圧を組合せな
ければならないという問題点を生ずる。
When X and y are larger than 2.0, it becomes difficult to release the stored hydrogen, resulting in the problem that high temperature heating and sometimes depressurization must be combined.

またXおよびyが0.01より小さいとMnの置換量が
少なすぎて水素吸蔵放出圧を低下させることが困難にな
る。
Moreover, if X and y are smaller than 0.01, the amount of Mn substitution will be too small, making it difficult to lower the hydrogen storage and release pressure.

しかしながら合金RNi5−αMnαは、Mnの導入に
よって一方では水素吸蔵圧と水素放出圧の差、即ちヒス
テリシスが大きくなる。
However, in the alloy RNi5-αMnα, the difference between the hydrogen storage pressure and the hydrogen release pressure, that is, the hysteresis, increases due to the introduction of Mn.

例えば、MmNi4.5Mno、5の組成の合金では、
水素吸蔵圧が50℃で約8気圧、水素放出圧が約4気圧
であり、ヒステリシスは約4気圧もある。
For example, in an alloy with a composition of MmNi4.5Mno,5,
The hydrogen storage pressure is about 8 atm at 50°C, the hydrogen release pressure is about 4 atm, and the hysteresis is about 4 atm.

ヒステリシスが大きいと、水素吸蔵放出の操作をするた
めに、水素吸蔵用合金もしくはその金属水素化物をより
大きな温度差で加熱、冷却するか、あるいはより大きな
圧力差で水素加圧、減圧しなければならず、水素貯蔵能
力、水素化反応熱を有効に利用することができない。
If the hysteresis is large, the hydrogen storage alloy or its metal hydride must be heated and cooled with a larger temperature difference, or the hydrogen must be pressurized or depressurized with a larger pressure difference in order to perform hydrogen storage and release operations. Therefore, hydrogen storage capacity and hydrogenation reaction heat cannot be used effectively.

このヒステリシスの問題は、合金RNi5+ ctMn
αのMnの一部を更にチタン、ジルコニウム、バナジウ
ムおよびニオブからなる群から選ばれた一種の金属Mt
で置換するか、もしくはRN i 5−αMnαにチタ
ン、ジルコニウム、バナジウムおよびニオブからなる群
から選ばれた一種の金属Mtを添加することによって解
決される。
This hysteresis problem is caused by the alloy RNi5+ ctMn
A part of Mn in α is further replaced with a kind of metal Mt selected from the group consisting of titanium, zirconium, vanadium and niobium.
or by adding a metal Mt selected from the group consisting of titanium, zirconium, vanadium, and niobium to RN i 5-αMnα.

合金RN i 5−αMnαのMnの一部を上記金属M
tで置換した形態では、本発明の合金RNi5 xM
nyMtzにおいて、x = y + z、かつy≧Z
なる関係が成立し、Zは0.2以下、5x+y+z−5
である。
A part of the Mn of the alloy RN i 5-αMnα is added to the metal M
In the t-substituted form, the alloy of the invention RNi5 xM
In nyMtz, x = y + z, and y≧Z
The following relationship is established, Z is 0.2 or less, 5x+y+z-5
It is.

また、この場合の本発明の合金はRNi5型の六方晶形
の金属化合物となる。
Moreover, the alloy of the present invention in this case becomes an RNi5-type hexagonal metal compound.

合金RNi5−αMn(1に上記金属Mtを添加した形
態では本発明の合金RNi5 xMnyMtzにおい
てx=y、かつy≧2なる関係が成立し、2は0.2以
下、好ましくはo、i以下であり、5.0<5−x+
y + z≦5.2である。
In the form in which the above metal Mt is added to the alloy RNi5-αMn (1), the relationship x=y and y≧2 holds true in the alloy RNi5 xMnyMtz of the present invention, where 2 is 0.2 or less, preferably o, i or less. Yes, 5.0<5-x+
y + z≦5.2.

金属Mt添加時の本発明の合金の構造は明らかでないが
、基本的にはRNi5型の金属化合物である。
Although the structure of the alloy of the present invention when metal Mt is added is not clear, it is basically an RNi5 type metal compound.

2が0.2より大きくなると、合金の水素吸蔵量が減少
したり、水素吸蔵、放出圧曲線のプラトー域が2段状に
なる傾向が現出するので好ましくない。
When 2 is larger than 0.2, the hydrogen storage capacity of the alloy decreases, and the plateau region of the hydrogen storage and release pressure curve tends to become two-stage, which is not preferable.

上記の置換、又は添加の2つの典型的な例の他に、金属
MtがRN i 5−αMnαの一部と置換している場
合と、添加されている場合の両者に跨る範囲は当然に存
在する。
In addition to the above two typical examples of substitution or addition, there is naturally a range that spans both the case where metal Mt is substituted for a part of RN i 5-αMnα and the case where it is added. do.

金属Mtの存在により、例えば50℃で水素吸蔵放出圧
の差、ヒステリシスはMmN i4.5Mno、45T
iO,05では約1.4気圧、MmNi4.5Mn□、
5T io 、05では約1.4気圧、Mm N i4
、 r、 M nQ 、45vo、o5では約1.2
気圧、MmN i4,5 Mn0A5Nb□、 05で
は約1.3気圧であり、チタン、バナジウムおよびニオ
ブが置換および添加されていない従来の合金MmNi4
.5Mno、5に比べてヒステリシスが半分以下に減少
した。
Due to the presence of metal Mt, the difference in hydrogen absorption and release pressure and hysteresis at 50°C, for example, are reduced by MmN i4.5Mno, 45T
iO,05 is about 1.4 atm, MmNi4.5Mn□,
5T io , about 1.4 atm in 05, Mm N i4
, r, M nQ , about 1.2 for 45vo, o5
Atmospheric pressure, MmNi4,5 Mn0A5Nb□, 05 is about 1.3 atm, and the conventional alloy MmNi4 without titanium, vanadium and niobium substitution and addition
.. Hysteresis was reduced to less than half compared to 5Mno.5.

また、金属Mtの存在は、水素放出圧にはほとんど影響
を与えずに、かえって水素吸蔵圧のみを低減させるので
ヒステリシスが小さくなる。
Moreover, the presence of metal Mt has little effect on the hydrogen release pressure, and instead reduces only the hydrogen storage pressure, thereby reducing the hysteresis.

このことは金属水素化物反応装置の設計上有益である。This is beneficial in the design of metal hydride reactors.

なお、金属Mtの働きの詳細は不明であるが、上述のよ
うなヒステリシスに与える効果からしてRN i 5型
の金属化合物の結晶構造に微妙な変化を与えていること
は確実である。
Although the details of the function of the metal Mt are unknown, it is certain that it gives a subtle change to the crystal structure of the RN i 5 type metal compound, judging from the above-mentioned effect on hysteresis.

本発明の希土類金属四元系水素吸蔵用合金を製造するに
当っては、公知の各種方法を採用できるが、強光熔融法
の採用が好ましい。
In producing the rare earth metal quaternary hydrogen storage alloy of the present invention, various known methods can be employed, but the strong light melting method is preferably employed.

即ち、希土類金属、ニッケル、マンガンおよび金属Mt
の各成分を分取して混合した後、任意の形状にプレス成
形し次いでこの成形物を弧光熔融炉に装入し、不活性雰
囲気下で加熱熔融し放冷することにより容易に製造でき
る。
That is, rare earth metals, nickel, manganese and metal Mt
It can be easily produced by separating and mixing each component, press-molding it into an arbitrary shape, charging the molded product into an arc-light melting furnace, heating and melting it in an inert atmosphere, and allowing it to cool.

得られた水素吸蔵用合金は、その表面積を増大するため
通常通り粉末の形態で使用する。
The hydrogen storage alloy obtained is conventionally used in powder form in order to increase its surface area.

本発明の希土類金属四元系水素吸蔵用合金は、極めて容
易に活性化でき、活性化後は大量の水素を容易に、且つ
急速に吸蔵及び放出できる。
The rare earth metal quaternary hydrogen storage alloy of the present invention can be activated extremely easily, and after activation can easily and rapidly store and release a large amount of hydrogen.

活性化は合金をロータリーポンプで減圧下、80°Cに
加熱して脱ガスを行ない、次いで水素を吸蔵及び放出す
る操作を唯一回行なうことにより実施される。
Activation is carried out by heating the alloy to 80° C. under vacuum with a rotary pump to degas it, followed by a single hydrogen storage and desorption operation.

この水素の吸蔵放出操作、金属水素化物の形成は合金粉
末を適当な容器に充填、脱ガス操作のあと、室温で水素
を封入し、2okg/ca以下の水素圧を印加すること
により行なわれる。
This hydrogen absorption/desorption operation and the formation of metal hydride are carried out by filling a suitable container with alloy powder, degassing the container, then filling the container with hydrogen at room temperature and applying a hydrogen pressure of 2 ok/ca or less.

このように、本発明の希土類金属四元系水素吸蔵用合金
は水素印加が20 kg/air以下という低圧で、し
かも室温で数分以内の極めて短時間に行ない得る。
As described above, with the rare earth metal quaternary hydrogen storage alloy of the present invention, hydrogen can be applied at a low pressure of 20 kg/air or less and in an extremely short time, within several minutes, at room temperature.

この金属水素化物からの水素の放出は、室温で上記容器
を開放するだけで行ない得る。
The release of hydrogen from the metal hydride can be accomplished simply by opening the container at room temperature.

しかしながら、金属水素化物を室温以下に加熱するか、
減圧することにより、更に短時間に且つ効率よく水素を
放出することができる。
However, if the metal hydride is heated below room temperature,
By reducing the pressure, hydrogen can be released more efficiently and in a shorter time.

即ち、本発明の水素吸蔵用合金は従来の合金に比べて極
めて容易に活性化でき、活性化後水素吸蔵放出は高速で
行なえる。
That is, the hydrogen storage alloy of the present invention can be activated much more easily than conventional alloys, and can absorb and release hydrogen at high speed after activation.

このように本発明の希土類金属四元系水素吸蔵用合金は
、始めて開発された新規な合金にして、水素吸蔵材料と
して要求される諸性質を全て具備するものであり、特に
水素吸蔵放出圧のヒステリシスは従来の水素吸蔵用合金
に比べて大巾に改善され、水素吸蔵用合金としての水素
貯蔵能力、水素吸蔵放出反応に伴う反応熱を有効に利用
することができるのである。
As described above, the rare earth metal quaternary hydrogen storage alloy of the present invention is a novel alloy developed for the first time and has all the properties required as a hydrogen storage material, especially in terms of hydrogen storage and release pressure. The hysteresis is greatly improved compared to conventional hydrogen storage alloys, and the hydrogen storage capacity of the hydrogen storage alloy and the reaction heat accompanying the hydrogen storage and release reaction can be effectively utilized.

しかも、本発明の希土類金属四元系水素吸蔵用合金は水
素吸蔵放出反応の活性化が極めて容易であり、大量の水
素を密度高く吸蔵し得ると共に、室温付近の温度で水素
の吸蔵放出を行なうことができ、水素吸蔵放出を何度繰
返しても水素吸蔵用合金の性能劣化は実質的に認められ
ず、従って長期に亘る使用が可能であり、また酸素、窒
素、アルゴン、炭酸ガス等吸蔵ガス中の不純物による影
響は殆んど認められない、実用上極めて有用な水素吸蔵
材料と言うことができる。
Moreover, the rare earth metal quaternary hydrogen storage alloy of the present invention is extremely easy to activate the hydrogen storage/release reaction, and can store a large amount of hydrogen with high density, and can store and release hydrogen at a temperature near room temperature. No matter how many times hydrogen storage/release is repeated, there is virtually no deterioration in the performance of the hydrogen storage alloy, so it can be used for a long period of time. It can be said to be an extremely useful hydrogen storage material in practice, with almost no effects from impurities inside.

従って、本来の水素貯蔵材料としての用途はもとより、
水素吸蔵放出反応に伴う反応熱を利用する他の用途に対
しても卓越した効果を発揮する。
Therefore, in addition to its original use as a hydrogen storage material,
It also exhibits outstanding effects in other applications that utilize the reaction heat associated with hydrogen absorption and desorption reactions.

以下、本発明を実施例にもとづき具体的に説明する。Hereinafter, the present invention will be specifically explained based on Examples.

実施例 1 市販のミツシュメタル、ニッケル、マンガンおよび金属
Mt (Ti 、Zr 、V、又はNb )の原子数比
でMm:Ni :Mn :Mt=1 : 4.5 :
0.45 :0.05となるように分取し、これを高真
空アーク溶融炉の銅製ルツボに装入し、炉内を高純度ア
ルゴン雰囲気とした後、約2000°Cに加熱溶融し放
冷してMmN i4.5Mn□、45 T iO,05
MmN i4 、5Mn6.45zrO、、)5MmN
i4.5Mn□ 、45VO005およびMmN i4
.5 Mn□ 、45 Nbg 、05なる組成の合金
をそれぞれ得た。
Example 1 The atomic ratio of commercially available Mitsushi metal, nickel, manganese, and metal Mt (Ti, Zr, V, or Nb) is Mm:Ni:Mn:Mt=1:4.5:
0.45:0.05, this was charged into a copper crucible of a high vacuum arc melting furnace, and after creating a high purity argon atmosphere in the furnace, it was heated to about 2000°C and melted and left to stand. Cool and MmN i4.5Mn□,45T iO,05
MmN i4 , 5Mn6.45zrO, )5MmN
i4.5Mn□, 45VO005 and MmN i4
.. Alloys having compositions of 5 Mn□, 45 Nbg, and 05 were obtained, respectively.

得られた合金を120メツシユに粉砕し、その50gを
ステンレス製水素吸蔵、放出反応器に採取し、反応器を
排気装置に接続して、減圧下、80℃の温度に加熱して
脱ガスを行った。
The obtained alloy was pulverized into 120 meshes, 50 g of which was collected in a stainless steel hydrogen storage and release reactor, and the reactor was connected to an exhaust system and heated to a temperature of 80°C under reduced pressure to degas it. went.

次いで純度99.999%の水素を導入し、器内の水素
圧を10kg/aa以下に保持すると直ちに水素の吸蔵
が認められ、水素の吸蔵が完了した後、再び排気を行っ
て水素の放出を完了させた。
Next, hydrogen with a purity of 99.999% was introduced, and when the hydrogen pressure inside the vessel was maintained at 10 kg/aa or less, hydrogen absorption was immediately observed, and after the hydrogen absorption was completed, exhaust was performed again to release the hydrogen. Completed.

これらの合金はこの作業で活性化が完了した。Activation of these alloys was completed in this operation.

活性化された合金に反応器中で10に9/cut以下の
水素圧、室温下、純度99.999%の水素を導入し、
水素を吸蔵させた。
introducing hydrogen with a purity of 99.999% into the activated alloy in a reactor at a hydrogen pressure of less than 10/9/cut at room temperature;
It absorbed hydrogen.

一方、水素の放出は室温でも行なうことができるが、反
応器の加熱、または減圧下、あるいはこれらの両方を行
なうことによってより効率的に行なわれる。
On the other hand, hydrogen release can be carried out at room temperature, but is more efficiently carried out by heating the reactor and/or under reduced pressure.

上記の方法で夫々の希土類金属四元系水素吸蔵中*用合
金の水素吸蔵、放出に及ぼす圧力一温度の関係を求めた
Using the above method, the relationship between pressure and temperature on hydrogen storage and release of each rare earth metal quaternary hydrogen storage alloy was determined.

その1例としてMmN i 4 、5 Mn□ 、45
Tio、05−H系について圧力の対数−絶対温度の逆
数で表わしたのが第1図である。
One example is MmN i 4 , 5 Mn□ , 45
FIG. 1 shows the relationship between the logarithm of pressure and the reciprocal of absolute temperature for the Tio, 05-H system.

第1図において直線Aは水素吸蔵圧、直線Bは水素放出
圧を表わし、点線で示した直線CおよびDは比較例とし
てのMmN i 4 、5 Mn6.5の組成を有する
三元系水素吸蔵用合金を用いた場合を示し、直線Cは水
素吸蔵圧、直線りは水素放出圧を表わす。
In FIG. 1, the straight line A represents the hydrogen storage pressure, the straight line B represents the hydrogen release pressure, and the dotted lines C and D represent a ternary hydrogen storage system having a composition of MmN i 4 , 5 Mn 6.5 as a comparative example. The straight line C represents the hydrogen storage pressure, and the straight line represents the hydrogen release pressure.

第1図からも明らかなように本発明の合金は、比較例に
示した従来の水素吸蔵用合金に比べてヒステリシスが大
幅に改善されている。
As is clear from FIG. 1, the alloy of the present invention has significantly improved hysteresis compared to the conventional hydrogen storage alloy shown in the comparative example.

また下記第1表は上記で得た谷合金の水素吸蔵量と50
℃における水素吸蔵圧と水素放出圧の比、すなわちヒス
テリシス指数を示したもので、本発明の合金属1〜A4
は従来の合金MmNi4,3Mno、、:試料嵐5)に
比べてヒステリシス指数は小さく、水素吸蔵量もほぼ同
等であった。
In addition, Table 1 below shows the hydrogen storage capacity of the Tani alloy obtained above and 50
It shows the ratio of hydrogen absorption pressure to hydrogen release pressure at °C, that is, the hysteresis index, and it shows the ratio of hydrogen absorption pressure to hydrogen release pressure at °C, that is, the hysteresis index,
Compared to the conventional alloy MmNi4,3Mno, sample Arashi 5), the hysteresis index was smaller and the hydrogen storage capacity was almost the same.

実施例 2 実施例1と同様の方法でMmN ’14.5Mn0.5
Mto、o5(金属Mtとしても実施例1と同様、T
i、zr。
Example 2 MmN'14.5Mn0.5 in the same manner as Example 1
Mto, o5 (also as metal Mt, as in Example 1, T
i,zr.

V、Nbを用いた)を夫々製造して活性化し、水素吸蔵
放出実験を行ない、各合金について水素吸蔵放出に及ぼ
す圧力一温度の関係を求めた。
(using V and Nb) were produced and activated, hydrogen storage and desorption experiments were conducted, and the relationship between pressure and temperature on hydrogen storage and desorption was determined for each alloy.

その1例としてMmNi4.5Mn0,5Ti□、05
−H系について圧力の対数−絶対温度の逆数で表わした
のが第2図である。
One example is MmNi4.5Mn0,5Ti□,05
FIG. 2 shows the -H system expressed as logarithm of pressure-reciprocal of absolute temperature.

第2図において直線EおよびGは水素吸蔵圧、直線Fお
よびHは水素放出圧を表わし、点線で示した直線Gおよ
びHは実施例1と同様に比較例としてのMmN i4
、5 M nQ 、5の組成を有する三元系水素吸蔵合
金を用いた場合の圧力一温度線図である。
In FIG. 2, straight lines E and G represent hydrogen storage pressure, straight lines F and H represent hydrogen release pressure, and dotted lines G and H represent MmN i4 as a comparative example as in Example 1.
, 5 M nQ , is a pressure-temperature diagram when a ternary hydrogen storage alloy having a composition of 5 is used.

第2図からも明らかなように本発明の合金は、比較例の
合金に比べてヒステリシスが大幅に改善されている。
As is clear from FIG. 2, the alloy of the present invention has significantly improved hysteresis compared to the alloy of the comparative example.

また本発明の合金と比較例の合金を比較すると水素放出
圧は殆んど差がなく、水素吸蔵圧のみが低下しており、
従来の合金の圧力特性から大きくずれることがないから
、金属水素化物反応装置の設計に極めて有利である。
Furthermore, when comparing the alloy of the present invention and the alloy of the comparative example, there is almost no difference in the hydrogen release pressure, and only the hydrogen storage pressure decreases.
Since the pressure characteristics do not deviate significantly from those of conventional alloys, they are extremely advantageous in the design of metal hydride reactors.

下記第2表は上記で得た各合金の水素吸蔵量と50℃に
おける水素吸蔵圧と水素放出圧の比、すなわちヒステリ
シス指数を示したもので、従来の合金(MmNi4.5
Mno、5 :試料&10)に比べてヒステリシス指
数は小さく、水素吸蔵量もほぼ同等であった。
Table 2 below shows the hydrogen storage capacity of each alloy obtained above and the ratio of hydrogen storage pressure to hydrogen release pressure at 50°C, that is, the hysteresis index.
Mno, 5: Compared to sample &10), the hysteresis index was smaller and the hydrogen storage amount was almost the same.

実施例 3 実施例1と同様の方法でMmN i4.5 Mno、
5 Mt□、1(金属Mtとしても実施例1と同様、’
l’i、Zr。
Example 3 MmN i4.5 Mno,
5 Mt□, 1 (as in Example 1 as metal Mt, '
l'i, Zr.

V、Nbを用いた)を夫々製造して活性化し、水素吸蔵
、放出実験を行ない、谷合金について水素吸蔵放出に及
ぼす圧力一温度の関係を求めた。
(using V and Nb) were produced and activated, and hydrogen storage and release experiments were conducted to determine the relationship between pressure and temperature on hydrogen storage and release for Tani alloy.

その1例としてMmNi4.5Mn□、5V□、1−H
系について圧力の対数−絶対温度の逆数の関係を表わし
たのが第3図である。
One example is MmNi4.5Mn□, 5V□, 1-H
FIG. 3 shows the relationship between the logarithm of pressure and the reciprocal of absolute temperature for the system.

第3図において直線JおよびLは水素吸蔵圧、直線にお
よびMは水素放出圧を表わし、点線で示す直線りおよび
Mは実施例1と同様にMmN i 4 、5Mn□、5
の圧力一温度線図である。
In FIG. 3, straight lines J and L represent hydrogen storage pressure, and straight line M represents hydrogen release pressure, and straight lines shown by dotted lines and M represent MmN i 4 , 5Mn□, 5 as in Example 1.
It is a pressure-temperature diagram of .

第3図から明らかなように本発明の合金は、比較例の従
来の合金(MmN i4 、5 Mno、5 )に比べ
てヒステリシスが大幅に改善されている。
As is clear from FIG. 3, the alloy of the present invention has significantly improved hysteresis compared to the conventional alloy (MmN i4 , 5 Mno, 5 ) of the comparative example.

また実施例2と同様本発明の合金は従来の合金に比べて
水素放出圧の変化は少なく、水素吸蔵圧のみが低下して
いるので、金属水素化物反応装置の設計が容易である。
Further, as in Example 2, the alloy of the present invention shows less change in hydrogen release pressure than conventional alloys, and only the hydrogen storage pressure decreases, so that the metal hydride reactor can be easily designed.

向これらの合金のヒステリシス指数は1.20〜1.4
5で従来の合金より小さく、また水素吸蔵量も1.5〜
1.6重量幅で従来の合金(1,5重量%)とほぼ同等
であることが確認された。
The hysteresis index of these alloys is 1.20 to 1.4.
5, smaller than conventional alloys, and hydrogen storage capacity of 1.5~
It was confirmed that the weight width was 1.6%, which was almost the same as the conventional alloy (1.5% by weight).

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は本発明に係る希土類金属
四元系水素吸蔵用合金の実施例と従来の三元系合金の、
水素吸蔵放出に及ぼす圧力一温度の関係を示す図である
FIGS. 1, 2, and 3 show examples of rare earth metal quaternary hydrogen storage alloys according to the present invention and conventional ternary alloys.
FIG. 3 is a diagram showing the relationship between pressure and temperature on hydrogen absorption and desorption.

Claims (1)

【特許請求の範囲】 1一般式RNi5−xMnyMtzで示される希土類金
属四元系水素吸蔵用合金。 ただし、式中Rは希土類金属原子を表わし、Mtはチタ
ン、ジルコニウム、バナジウムおよびニオブからなる群
から選ばれた一種の金属原子であり、Xは0.01〜2
.0の範囲の数、yは0.01〜2.0の範囲の数、2
は0.2以下の数であり、5.0≦5−x+y+z≦5
.2なる関係が成立する。 2 x=y+z、かつy≧2である特許請求の範囲第
1項記載の希土類金属四元系水素吸蔵用合金。 3 x=y、y≧2であり、かつ2は0.1以下の数
である特許請求の範囲第1項記載の希土類金属四元系水
素吸蔵用合金。
[Claims] 1. A rare earth metal quaternary hydrogen storage alloy represented by the general formula RNi5-xMnyMtz. However, in the formula, R represents a rare earth metal atom, Mt is a metal atom selected from the group consisting of titanium, zirconium, vanadium, and niobium, and X is 0.01 to 2
.. A number in the range of 0, y is a number in the range of 0.01 to 2.0, 2
is a number less than or equal to 0.2, and 5.0≦5−x+y+z≦5
.. Two relationships are established. 2. The rare earth metal quaternary hydrogen storage alloy according to claim 1, wherein x=y+z and y≧2. 3. The rare earth metal quaternary hydrogen storage alloy according to claim 1, wherein x=y, y≧2, and 2 is a number of 0.1 or less.
JP56097781A 1981-06-23 1981-06-23 Rare earth metal quaternary hydrogen storage alloy Expired JPS5839218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56097781A JPS5839218B2 (en) 1981-06-23 1981-06-23 Rare earth metal quaternary hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56097781A JPS5839218B2 (en) 1981-06-23 1981-06-23 Rare earth metal quaternary hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS581040A JPS581040A (en) 1983-01-06
JPS5839218B2 true JPS5839218B2 (en) 1983-08-29

Family

ID=14201363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56097781A Expired JPS5839218B2 (en) 1981-06-23 1981-06-23 Rare earth metal quaternary hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS5839218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147039U (en) * 1984-09-01 1986-03-29 日本バイリ−ン株式会社 patch

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744946A (en) * 1982-02-09 1988-05-17 Japan Metals And Chemicals Co., Ltd. Materials for storage of hydrogen
JPS6070154A (en) * 1983-09-27 1985-04-20 Japan Metals & Chem Co Ltd Hydrogen storing material
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen
JPS6043451A (en) * 1983-08-15 1985-03-08 Daido Steel Co Ltd Material for storing hydrogen
US4996002A (en) * 1987-11-30 1991-02-26 Ergenics, Inc. Tough and porus getters manufactured by means of hydrogen pulverization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147039U (en) * 1984-09-01 1986-03-29 日本バイリ−ン株式会社 patch

Also Published As

Publication number Publication date
JPS581040A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
US4907948A (en) Non-evaporable ternary gettering alloy, particularly for the sorption of water and water vapor in nuclear reactor fuel elements
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JPS633019B2 (en)
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS5837374B2 (en) Mitsushi Metal for Hydrogen Storage - Calcium Alloy
JPS59143036A (en) Ternary alloy of rare earth element for occluding hydrogen
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS5947022B2 (en) Alloy for hydrogen storage
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPH0826424B2 (en) Hydrogen storage alloy and method for producing the same
JPH0570693B2 (en)
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
CN115595491B (en) Design and preparation method of ZrCo-based multi-element intermetallic compound with weak hydrogen absorption and desorption lattice distortion
JPH0242893B2 (en)
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPH0471985B2 (en)
JPS5947019B2 (en) Rare earth metal hydrogen storage alloy
JPS5841333B2 (en) Alloy for hydrogen storage
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS6048580B2 (en) Alloy for hydrogen storage
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy
JPS58167741A (en) Hydrogen occluding alloy
JPS6141975B2 (en)
JPS6159389B2 (en)