JPH0242893B2 - - Google Patents

Info

Publication number
JPH0242893B2
JPH0242893B2 JP62188998A JP18899887A JPH0242893B2 JP H0242893 B2 JPH0242893 B2 JP H0242893B2 JP 62188998 A JP62188998 A JP 62188998A JP 18899887 A JP18899887 A JP 18899887A JP H0242893 B2 JPH0242893 B2 JP H0242893B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
pressure
hydrogen storage
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62188998A
Other languages
Japanese (ja)
Other versions
JPS6372851A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62188998A priority Critical patent/JPS6372851A/en
Publication of JPS6372851A publication Critical patent/JPS6372851A/en
Publication of JPH0242893B2 publication Critical patent/JPH0242893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は水素吸蔵用合金に関し、特に本発明は
ジルコニウム系水素吸蔵用合金に関するものであ
る。 (従来の技術) 水素は、資源的には豊富な元素であり、これを
燃焼させても水が生成するだけであるから生態系
のバランスが崩されることはなく、また貯蔵,輸
送が容易であるなどの理由から将来のクリーンエ
ネルギーシステムにおける二次エネルギーの主体
になるものとみられている。 しかし水素は常温において気体であり、かつ液
化温度が極めて低いので、これを貯蔵する技術の
開発が大きな課題になつていた。上記課題を解決
する一つの方式として、水素を金属水素化物の形
で貯蔵する方式が注目されている。この方式によ
れば、150気圧の市販水素ボンベの2割以下の容
積、あるいは液体水素の8割以下の容積で同重量
の水素を貯蔵することができるばかりでなく、安
全性、取扱い易さの点で極めて優れているからで
ある。 さて、水素を金属水素化物の形で吸収し、次に
放出するに適した材料が水素吸蔵用合金であり、
かかる合金に水素を吸蔵させ、次にこれらの合金
から水素を放出させる際の金属水素化物の生成あ
るいは分解反応に伴う反応熱の発生または吸収を
利用して蓄熱装置,ヒートポンプ,熱エネルギ
ー・機械エネルギー変換装置などの広範な応用シ
ステムの開発が期待されている。 水素吸蔵材料に要求される性質は、 1) 安価であり資源的に豊富であること 2) 水素吸蔵量が大きいこと 3) 使用温度において好適な水素吸蔵・放出平
衡圧を有し、吸蔵圧と放出圧との差であるヒス
テリシスが小さいこと 4) 水素吸蔵・放出反応が可逆的であり、その
速度が大きいこと などが挙げられる。 ところで、二元系水素吸蔵用合金,とくに
ZrV2は、高い水素吸蔵能力を有し、活性化すな
わち合金の表面にある酸化膜,吸着ガス,付着水
分などの水素化を抑制する物質を除去する操作が
容易で、しかもヒステリシスが小さく、水素反応
速度が速く、ガス状不純物耐性が強い合金として
知られている。しかし、この合金は常温におい
て、平衡水素解離圧が10-8気圧と極度に安定な水
素化合物ZrV2H4.8を常温において生成し、その
水素放出には数百度以上の温度と10-5気圧の真空
度が必要であり、加えてLaNi5と同程度に高価で
あるという特徴を有する。上記の長所を維持しな
がら水素平衡圧を上げ、コスト低下を図つてつく
られたのがJournal of less―Common Metals,
73(1980)329―338により知られているラーバス
相擬二元系化合物Zr(Fe1-kVk2である。 (発明が解決しようとする問題点) 上記化合物の中で、特に性質の良いZr(Fe0.75
V0.252は平衡水素解離圧が40℃でまだ0.1気圧台
であり、かつプラトー域(種々の温度における平
衡水素圧と水素原子数/合金原子数の比との関係
を示す図、すなわちP―C―T線図において前記
比が変化しても平衡水素圧が余り変化しない比較
的平担な部分をプラトー域と呼称されている)が
ない。従つて、実際の水素貯蔵や蓄熱などシステ
ム応用に効率良く使えない合金系であつた。 本発明の目的は、前記合金系Zr(Fe1-kVk2
欠点を克服することにある。すなわち、プラトー
域のない低い平衡水素解離圧を、プラトー域を有
し常温〜100℃の範囲において1気圧程度以上に
なるようにし、且つ他の諸特性を向上させるとと
もに安価な合金を提供することにある。 (問題点を解決するための手段) 本発明の合金は、原子数組成で示性式が、Zrx
Ay(Fe1-kVk2で示されることを特徴とするジル
コニウム多元系水素吸蔵用合金であり、式中Aは
Ti,Nb,Moのなかから選ばれるいずれか少な
くとも一種の元素であり、0.4≦x≦1.0,0<y
≦0.6,0.2≦k≦0.3である。 (作用) 本発明者らは上述の公知合金Zr(Fe1-kVk2
Zrの一部をTi,Nb,Moの1種以上で置換する
か添加して水素吸蔵用合金の特性変化の推移を研
究したところ、全く予期に反してプラトー域を具
現し、そのプラトー圧が常温〜100℃において凡
そ1〜20気圧であり、水素有効放出量も多く、水
素吸蔵・放出速度も一層大きくなり、かつ水素最
大吸蔵量,ヒステリシス,活性化の容易さは従来
の良好な値を維持でき、安価にもなること、 を新規に知見して本発明を完成した。 本発明の合金においてxが0.4より小さいか、
yが0.6より大きいと、水素吸蔵量が低下し、P
―C―T線図で金属間化合物相(β相)がなくな
つてプラトー域が消失し、そしてヒステリシスが
大きくなる。また、xが1.0を超えて大きくなる
とラーバス相擬二元系化合物の化学量論組成が崩
れ、水素吸蔵・放出量が小さくなる。従つて、x
は0.4以上1.0以下、yは0.6以下とする必要があ
る。また、kの値については、0.2より小さくな
るに従い水素吸蔵量が極度に減少し、0.3より大
きくなるに従いプラトー域が消失し、平衡水素解
離圧が極度に低下するので、0.2≦k≦0.3とする
必要がある。 次に本発明合金の製造方法について述べる。 本発明合金を製造するには従来知られているジ
ルコニウム系水素吸蔵用合金の製造方法によるこ
とができるが、アーク溶融法によることが最も好
適である。そこで、以下にアーク溶融法による本
発明合金の製造方法を述べる。まず、Zr,Fe,
Vおよび金属Aの元素をそれぞれ秤量して混合し
た後、任意の形状にプレス成形し、この成形体を
アーク溶融炉に装入して不活性雰囲気下で加熱溶
融し、炉内で凝固させて室温まで冷却した後炉外
に取出す。この取り出した合金を均質にするた
め、この合金を真空にすることのできる容器内に
装入し、10-2Torr以下の高真空雰囲気中で1000
〜1100℃、8hr以上炉中に保持した後、水中に投
入して冷却するか、真空容器を炉外に取出し放冷
する。その後、合金の表面積を拡大して水素吸蔵
能力を高めるため破砕して粒状にする。 実施例 1 市販のZr,Fe,Ti,Nb,Mo,Ni(いずれも
純度99.9%以上),V(純度99.7%),Al(99.4%),
Mm(ミツシユメタル:希土類元素98.7%)を適
種適量秤量し、これを高真空アーク溶融炉の銅製
ルツボ内に装入し、炉内を99.99%Arの雰囲気と
した後、約2000℃に加熱溶融して約40gの、第1
表に示す試料No.1〜9(本発明合金材料)及びNo.
11,12(比較金材料)の合金11種(No.10,13を除
く)をそれぞれ製造した。なお、Mmは、La
28.2%,Ce 50.2%,Nd 15.4%、Pr 4.8%,Sm
0.1%,Fe 0.8%,Mg 0.3%,Al 0.2%の組成の
ものである。
(Industrial Application Field) The present invention relates to a hydrogen storage alloy, and particularly the present invention relates to a zirconium hydrogen storage alloy. (Conventional technology) Hydrogen is an abundant element in terms of resources, and burning it only produces water, so the balance of the ecosystem is not disrupted, and it is easy to store and transport. For these reasons, it is expected to become the main source of secondary energy in future clean energy systems. However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, developing technology to store it has become a major issue. As one method for solving the above problems, a method of storing hydrogen in the form of metal hydride is attracting attention. This method not only allows the same weight of hydrogen to be stored in less than 20% of the volume of commercially available 150-atm hydrogen cylinders, or 80% of the volume of liquid hydrogen, but also improves safety and ease of handling. This is because it is extremely superior in this respect. Now, a material suitable for absorbing hydrogen in the form of metal hydride and then releasing it is a hydrogen storage alloy.
Hydrogen is stored in such alloys, and then the generation or absorption of reaction heat accompanying the generation or decomposition reaction of metal hydrides when hydrogen is released from these alloys can be used to generate heat storage devices, heat pumps, thermal energy, and mechanical energy. The development of a wide range of application systems such as conversion devices is expected. The properties required of a hydrogen storage material are: 1) It should be inexpensive and abundant in terms of resources. 2) It should have a large hydrogen storage capacity. 3) It should have a suitable hydrogen storage/release equilibrium pressure at the operating temperature, and the hydrogen storage pressure should be equal to the storage pressure. The hysteresis, which is the difference with the release pressure, is small. 4) The hydrogen storage and release reaction is reversible and its speed is high. By the way, binary hydrogen storage alloys, especially
ZrV 2 has a high hydrogen storage capacity, is easy to activate, that is, removes substances that inhibit hydrogenation such as oxide films, adsorbed gas, and attached moisture on the surface of the alloy, and has small hysteresis. It is known as an alloy that has a fast reaction rate and strong resistance to gaseous impurities. However, this alloy produces an extremely stable hydrogen compound, ZrV 2 H 4.8 , with an equilibrium hydrogen dissociation pressure of 10 -8 atm at room temperature, and the hydrogen release requires a temperature of several hundred degrees or more and a pressure of 10 -5 atm. It requires a high degree of vacuum and is also as expensive as LaNi 5 . The Journal of Less-Common Metals was created with the aim of increasing the hydrogen equilibrium pressure and reducing costs while maintaining the above advantages.
73 ( 1980 ) 329-338 . (Problem to be solved by the invention) Among the above compounds, Zr (Fe 0.75
V 0.25 ) 2 has an equilibrium hydrogen dissociation pressure of 0.1 atm at 40°C, and a plateau region (a diagram showing the relationship between equilibrium hydrogen pressure and the ratio of the number of hydrogen atoms/number of alloy atoms at various temperatures, that is, P - In the CT diagram, there is no relatively flat part where the equilibrium hydrogen pressure does not change much even if the ratio changes, which is called a plateau region. Therefore, it was an alloy system that could not be used efficiently for system applications such as actual hydrogen storage or heat storage. The purpose of the present invention is to overcome the drawbacks of the alloy system Zr(Fe 1-k V k ) 2 . That is, to provide an alloy that has a low equilibrium hydrogen dissociation pressure without a plateau region and has a plateau region and becomes about 1 atm or more in the range of room temperature to 100° C., improves other properties, and is inexpensive. It is in. (Means for Solving the Problems) The alloy of the present invention has an atomic composition with a characteristic formula of Zr x
A zirconium multi-component hydrogen storage alloy characterized by the formula Ay(Fe 1-k V k ) 2 , where A is
At least one element selected from Ti, Nb, and Mo, 0.4≦x≦1.0, 0<y
≦0.6, 0.2≦k≦0.3. (Function) The present inventors investigated the above-mentioned known alloy Zr(Fe 1-k V k ) 2 .
When we studied the changes in the properties of hydrogen storage alloys by replacing or adding a portion of Zr with one or more of Ti, Nb, and Mo, we found that, completely unexpectedly, a plateau region was realized, and the plateau pressure increased. The pressure is approximately 1 to 20 atm at room temperature to 100℃, the effective hydrogen release amount is large, the hydrogen storage and release rate is even higher, and the maximum hydrogen storage amount, hysteresis, and ease of activation are better than conventional values. The present invention was completed based on the new findings that it can be maintained and inexpensive. In the alloy of the invention, x is less than 0.4, or
When y is larger than 0.6, the hydrogen storage capacity decreases and P
- In the CT diagram, the intermetallic compound phase (β phase) disappears, the plateau region disappears, and the hysteresis increases. Furthermore, when x increases beyond 1.0, the stoichiometric composition of the Rava phase binary compound collapses, and the amount of hydrogen absorption and release becomes small. Therefore, x
must be 0.4 or more and 1.0 or less, and y must be 0.6 or less. Regarding the value of k, as the value of k becomes smaller than 0.2, the hydrogen storage capacity decreases extremely, and as it becomes larger than 0.3, the plateau region disappears, and the equilibrium hydrogen dissociation pressure decreases extremely, so 0.2≦k≦0.3. There is a need to. Next, a method for manufacturing the alloy of the present invention will be described. Although the alloy of the present invention can be produced by conventionally known methods for producing zirconium-based hydrogen storage alloys, it is most preferable to use the arc melting method. Therefore, a method for manufacturing the alloy of the present invention using an arc melting method will be described below. First, Zr, Fe,
After weighing and mixing the elements V and metal A, they are press-formed into an arbitrary shape, the molded body is charged into an arc melting furnace, heated and melted in an inert atmosphere, and solidified in the furnace. After cooling to room temperature, take it out of the furnace. In order to make this extracted alloy homogeneous, it was charged into a container that can be evacuated, and heated at 1000°C in a high vacuum atmosphere of 10 -2 Torr or less.
After being kept in the furnace at ~1100°C for 8 hours or more, it is cooled by putting it into water, or the vacuum container is taken out of the furnace and left to cool. The alloy is then crushed into granules to increase its surface area and increase its hydrogen storage capacity. Example 1 Commercially available Zr, Fe, Ti, Nb, Mo, Ni (all purity 99.9% or higher), V (purity 99.7%), Al (99.4%),
Weigh the appropriate amount of Mm (Mitsuyu Metal: 98.7% rare earth elements), charge it into a copper crucible of a high vacuum arc melting furnace, create an atmosphere of 99.99% Ar in the furnace, and then heat and melt at approximately 2000℃. About 40g, 1st
Samples No. 1 to 9 (alloy materials of the present invention) and No. 1 shown in the table.
Eleven types of alloys (excluding Nos. 10 and 13) of Nos. 11 and 12 (comparative gold materials) were manufactured, respectively. In addition, Mm is La
28.2%, Ce 50.2%, Nd 15.4%, Pr 4.8%, Sm
The composition is 0.1%, Fe 0.8%, Mg 0.3%, and Al 0.2%.

【表】【table】

【表】 各ボタン状試料をそれぞれ石英管内に装入し、
ロータリー式真空ポンプと用いて10-2Torrの真
空下の加熱炉内で1100℃,8時間保持した後、試
料を常温の水中に投入して急冷する均質熱処理を
施した。その後−100メツシユに粉砕した。 合金の活性化ならびに水素の吸蔵・放出量の測
定方法を第1図に示す原理図について説明する。 ステンレス製水素吸蔵・放出反応器10には前
記粉砕した15gの水素吸蔵用合金試料12が収納
されており、前記反応器10はバルブ14を経て
リザーバー16に連結されている。リザーバー1
6はバルブ18を経て水素ボンベ20に、またバ
ルブ22を経てロータリー式真空ポンプ24に連
結されている。バルブ14とリザーバー16との
間に圧力変換器26,デジタル圧力指示計28が
配設されている。 反応器10を真空ポンプ24に接続して
10-2Torrの真空下40℃で脱気した。次に反応器
10を常温水で冷却しながら純度99.999%,圧力
40気圧の水素を反応器10内に導入して水素の吸
蔵を開始させた。水素の吸蔵が略終了した後再び
40℃で真空脱気した後、常温水で冷却しながら水
素加圧する操作を活性化が完了するまで繰り返し
た。 次に水素吸蔵・放出量を以下の如く測定した。 反応器10を40℃に保持した後真空ポンプ24
を運転し、バルブ14,22を開いてリザーバー
16と反応器10内を真空にした後バルブ14,
22を閉じる。バルブ18を開いてリザーバー1
6に数気圧の水素を導入し、バルブ18を閉じそ
の圧力Pt1と雰囲気温度T1Kを測定する。次いで
バルブ14を開き、リザーバー16内の水素を反
応器10へ導入し、試料が水素を吸蔵して平衡圧
になつたときの圧力Pe1を測定する。バルブ14
を閉じバルブ18を開いてリザーバー16内の水
素圧を数気圧増加させバルブ18を閉じ、その圧
力Pt2と雰囲気温度T2を測定する。バルブ14を
開いて反応器10を新たな水素を導入し、試料が
さらに水素を吸蔵して平衡圧になつたときの圧力
Pe2を測定する。この操作をPto(nは繰返し回数)
がおよそ40気圧になるまで繰返す。n回目の水素
吸蔵量は次の要領で算出される。 圧力P,体積V,水素ガスの絶対温度T,水素
ガスのモル数M,気体定数R,理想気体から実在
水素ガスへの補正係数Z(圧力,温度の関数)と
すると、 PV=MZRT の関係がある。これを利用してn回目のリザーバ
ーの水素圧Pto,Peoと反応器の水素圧(Pe(o-1)
Peoおよびそれぞれの測定時の雰囲気温度To
T(o+1),反応器の温度Tr(313K)からn回目の吸
蔵水素量を求めることができる。 リザーバー16にPtoの圧力を導入した状態で
反応器10(内部空間容積V1)とリザーバー1
6(内容積V2)の中にある水素ガスMoモルは式
(1)となる。 Mn=1/R ・(Pe(o-1)・V1/Z(Pe(o-1),Tr)・Tr +Pto・V2/Z(Pto,To)・To) …(1) 次にバルブ14を開き、合金試料12が新たに
水素ΔMnモル(H2分子換算)吸蔵して平衡圧
Peoに達したとき、上記Mnモルの水素量は反応器
10とリザーバー16の中で式(2)の通りに存在し
ている。 Mn=Peo/R ・(V1/Z(Peo,Tr)・Tr +V2/Z(Peo,T(o+1))・T(o+1)) +ΔMn …(2) 従つてn回目に合金試料に吸蔵された水素量
ΔMnモルは式(1),(2)を等しいとおいて式(3)の通
り計算される。 ΔMn=1/R・{(Pto/Z(Pto,To)・To
−Peo/Z(Peo,T(o+1))・T(o+1))・V2 −(Peo/Z(Peo,Tr)−Pe(o-1)/Z
(Pe(o-1),Tr))・V1/Tr}…(3) 式(3)を用いて各回の水素吸蔵量を算出し、水素
平衡圧と合金の水素吸蔵量との関係を得ることが
できる。 水素の放出量の測定はリザーバー16と反応器
10がほぼ40気圧の平衡水素圧になつた時から開
始する。バルブ14を閉じバルブ22を開き、リ
ザーバー16内の水素圧を数気圧減圧してバルブ
22を閉じる。圧力と雰囲気温度を測定する。次
いでバルブ14を開き反応器10内の水素をリザ
ーバー16に導入し、合金試料12に吸蔵された
水素を一部放出させ平衡になつた圧力を測定す
る。この操作を反応器10が真空になるまで繰返
す。水素放出量の算出は上記吸蔵の場合の算出方
法に準ずる。水素放出における平衡水素圧と合金
の水素放出量との関係を得ることができる。 このようにして等温における平衡水素圧力―組
成の関係を求めて、その結果を第1表の試料No.1
〜9及び11,12に示す。同表中試料No.11,12に示
す。同表中試料No.5,6は公知組成材料である。 第4表に示した比較用の公知組成材の試料No.11
は水素最大吸蔵量は多いが、プラトー域が無く平
衡水素解離圧は1気圧以下で非常に低い。従つ
て、1〜30気圧間の水素放出量すなわち水素有効
放出量が極度に小さくなり、水素吸蔵用合金とし
て適当な材料ではない。 このことから、比較材料としては、現在水素貯
蔵装置やヒートポンプなどのシステム応用に試用
されて広く知られているミツシユメタル系合金
(試料No.12)を用いた。 第1表から判るように、本発明合金試料No.1〜
9を公知材料No.12と比較すると次のとおりであ
る。 1) 本発明合金試料はどれもプラトー域を有し
ており、平衡水素解離圧は0.5〜6気圧の範囲
にある。 2) 水素最大吸蔵量は公知材とほぼ同等以上で
ある。 3) 水素吸蔵速度は公知材に比べどの試料もは
るかに大きい。 4) ヒステリシス指数は組成の特許請求の範囲
の限界に近いNo.3を除いて公知材料よりもずつ
と小さい。 5) 活性化はどの試料も1回の操作で完了し公
知材と同等以上に容易である。 実施例 2 第1表に示す本発明合金材料の試料No.10及び公
知の比較合金材料No.13を本実施例の対象とする。 これらの試料は実施例1に記したと同じ原料,
同じ方法でボタン状試料に溶製し、同じ均質熱処
理を施し、−100メツシユに粉砕した。 本実施例では活性化時の真空脱気温度は80℃と
し、水素の吸蔵・放出量を測定する場合の試料収
納反応器を試料No.10とNo.13については80℃に保持
した。その他の活性化,水素吸蔵・放出量測定方
法は実施例1と同じである。 第1表に示した公知比較材試料No.13は、同一組
成の試料No.11に比べて80℃と測定温度の上昇によ
り平衡水素解離圧は上がつたが、それでも1気圧
以下である。ヒステリシス指数,水素吸蔵速度,
水素最大吸蔵量は比較的良好な値であるがプラト
ー傾斜が大きく、水素有効放出量が小さく、やは
り水素吸蔵用合金としては適当な材料ではない。 第1表より、本発明合金材料の測定温度80℃で
ある試料No.10は、比較合金材料のNo.13に比べ次の
ことが判明した。 1) 平衡水素解離圧は1.7気圧と高い。 2) プラトー域をもち、プラトーの傾斜は比較
材より小さく、かつヒステリシスも小さい。 3) 水素最大吸蔵量は同等であり、水素有効放
出量は大きい。 4) 水素吸蔵速度は同等程度に速い。 5) 活性化も同等以上に容易である。 (発明の効果) 本発明合金は述上の諸特性を有することから、
本発明合金を使用することにより下記の如き効果
を挙げることができる。 1) 本発明合金はすべて平衡水素圧のプラトー
域を有しており、その解離圧は40℃で0.5〜6
気圧、80℃で1.7気圧である。合金組成を変化
させて平衡水素圧を1〜数気圧に変えることが
できるので、使い勝手の良い合金である。 2) 活性化は、常温での真空脱気、常温で30気
圧の水素加圧の操作1回だけで容易に終えるこ
とができる。 3) 水素最大吸蔵量,水素有効放出量は従来合
金と同等以上である。 4) 水素吸蔵・放出速度は従来合金に比べて大
きい。このことは、繰返し使用が迅速にでき、
仮に有効水素吸蔵・放出量が小さくても全体と
しては使用効率のよい合金となる。 5) ヒステリシスは従来合金に比べて同等以下
であるので、繰返し使用してもエネルギー損失
が小さい効率の良い使用ができる。 6) ジルコニウム合金系は元来、Mg系,Ti
系,希土類系合金に比べガス状不純物に耐える
性質が強いが、本発明合金も酸素,窒素,アル
ゴン,炭酸ガスなどの不純物による影響が殆ど
ない。 7) 水素吸蔵と放出を何回繰返しても合金自体
の劣化は実質的に認められない。 本発明のジルコニウム系水素吸蔵用合金は、以
上の通り水素吸蔵用材料として要求される諸性能
を全て具えており、特に水素最大吸蔵量,水素吸
蔵・放出速度,ヒステリシスは従来の水素吸蔵用
合金に比べて改善されている。この合金は活性化
が極めて容易で、大量の水素を密度高く吸蔵する
ことができ、水素の吸蔵・放出反応が完全に可逆
的に行われ、且つ、ガス状不純物に耐える性質が
強いなど、従来合金に比べ数々の特長を有する。 従つて、本発明合金は常温〜100℃で使用する
蓄熱装置,温度センサーなどには勿論、特に水素
吸蔵・輸送、水素分離・精製システムへの用途な
どに卓越した効果を発揮する。
[Table] Insert each button-shaped sample into a quartz tube,
After holding the sample at 1100°C for 8 hours in a heating furnace under a vacuum of 10 -2 Torr using a rotary vacuum pump, the sample was put into water at room temperature and rapidly cooled to perform homogeneous heat treatment. It was then ground to -100 mesh. The method for measuring the activation of the alloy and the amount of hydrogen absorbed and released will be explained with reference to the principle diagram shown in FIG. A hydrogen storage/release reactor 10 made of stainless steel contains 15 g of the pulverized hydrogen storage alloy sample 12, and the reactor 10 is connected to a reservoir 16 via a valve 14. reservoir 1
6 is connected to a hydrogen cylinder 20 via a valve 18 and to a rotary vacuum pump 24 via a valve 22. A pressure transducer 26 and a digital pressure indicator 28 are arranged between the valve 14 and the reservoir 16. Connect the reactor 10 to the vacuum pump 24
Degassed at 40° C. under a vacuum of 10 −2 Torr. Next, while cooling the reactor 10 with water at room temperature, the purity was maintained at 99.999% and the pressure was increased.
Hydrogen at 40 atmospheres was introduced into the reactor 10 to start hydrogen storage. After hydrogen storage is almost completed,
After vacuum degassing at 40°C, the operation of pressurizing hydrogen while cooling with room temperature water was repeated until activation was completed. Next, the amount of hydrogen absorption and release was measured as follows. After maintaining the reactor 10 at 40°C, the vacuum pump 24
After operating the valves 14 and 22 to create a vacuum in the reservoir 16 and the reactor 10, open the valves 14 and 22.
Close 22. Open valve 18 and open reservoir 1
Several atmospheres of hydrogen is introduced into the tank 6, the valve 18 is closed, and the pressure P t1 and the ambient temperature T 1 K are measured. Next, the valve 14 is opened, hydrogen in the reservoir 16 is introduced into the reactor 10, and the pressure P e1 when the sample absorbs hydrogen and reaches an equilibrium pressure is measured. Valve 14
is closed, the valve 18 is opened, the hydrogen pressure in the reservoir 16 is increased by several atmospheres, the valve 18 is closed, and the pressure P t2 and the ambient temperature T 2 are measured. Open the valve 14 and introduce new hydrogen into the reactor 10, and the pressure when the sample absorbs more hydrogen and reaches equilibrium pressure.
Measure P e2 . P to (n is the number of repetitions)
Repeat until the pressure reaches approximately 40 atm. The n-th hydrogen storage amount is calculated as follows. Assuming pressure P, volume V, absolute temperature T of hydrogen gas, number of moles of hydrogen gas M, gas constant R, and correction coefficient Z from ideal gas to real hydrogen gas (function of pressure and temperature), the relationship PV = MZRT. There is. Using this, the n-th reservoir hydrogen pressure P to , P eo and the reactor hydrogen pressure (P e(o-1) ,
P eo and the ambient temperature T o at the time of each measurement,
The amount of hydrogen stored for the nth time can be determined from T (o+1) and the reactor temperature T r (313K). With the pressure of P to introduced into the reservoir 16, the reactor 10 (internal space volume V 1 ) and the reservoir 1
6 (inner volume V 2 ) is expressed by the formula
(1) becomes. Mn=1/R ・(P e(o-1)・V 1 /Z(P e(o-1) , T r )・T r +P to・V 2 /Z(P to , T o )・T o ) ...(1) Next, open the valve 14, and the alloy sample 12 newly absorbs ΔMn moles of hydrogen (in terms of 2 molecules of H), and the equilibrium pressure
When P eo is reached, the amount of hydrogen in the above Mn mole is present in the reactor 10 and reservoir 16 as shown in equation (2). Mn=P eo /R ・(V 1 /Z (P eo , T r )・T r +V 2 /Z (P eo , T (o+1) )・T (o+1) ) +ΔMn …(2) Therefore, the amount ΔMn moles of hydrogen occluded in the alloy sample for the nth time is calculated according to equation (3), assuming equations (1) and (2) to be equal. ΔMn=1/R・{(P to /Z(P to , T o )・T o
−P eo /Z (P eo , T (o+1) )・T (o+1) )・V 2 −(P eo /Z (P eo , T r )−P e(o-1) /Z
(P e(o-1) , T r ))・V 1 /T r }...(3) Calculate the amount of hydrogen storage each time using equation (3), and calculate the hydrogen storage amount between the hydrogen equilibrium pressure and the hydrogen storage amount of the alloy. relationship can be obtained. Measurement of hydrogen release begins when reservoir 16 and reactor 10 reach an equilibrium hydrogen pressure of approximately 40 atmospheres. The valve 14 is closed, the valve 22 is opened, the hydrogen pressure in the reservoir 16 is reduced by several atmospheres, and the valve 22 is closed. Measure pressure and ambient temperature. Next, the valve 14 is opened, and the hydrogen in the reactor 10 is introduced into the reservoir 16, and some of the hydrogen occluded in the alloy sample 12 is released, and the pressure at equilibrium is measured. This operation is repeated until the reactor 10 is evacuated. The amount of hydrogen released is calculated in accordance with the calculation method for occlusion described above. The relationship between the equilibrium hydrogen pressure during hydrogen release and the hydrogen release amount of the alloy can be obtained. In this way, the relationship between equilibrium hydrogen pressure and composition at isothermal conditions was determined, and the results were used for sample No. 1 in Table 1.
~9 and 11 and 12. Shown in samples No. 11 and 12 in the same table. Samples Nos. 5 and 6 in the same table are materials with known compositions. Sample No. 11 of known composition material for comparison shown in Table 4
Although it has a large maximum hydrogen storage capacity, there is no plateau region and the equilibrium hydrogen dissociation pressure is very low at less than 1 atmosphere. Therefore, the hydrogen release amount, that is, the effective hydrogen release amount between 1 and 30 atmospheres is extremely small, and the material is not suitable as a hydrogen storage alloy. For this reason, the Mitsushi metal alloy (sample No. 12), which is widely known and currently used in system applications such as hydrogen storage devices and heat pumps, was used as a comparison material. As can be seen from Table 1, the invention alloy samples No. 1~
A comparison of No. 9 with known material No. 12 is as follows. 1) All of the alloy samples of the present invention have a plateau region, and the equilibrium hydrogen dissociation pressure is in the range of 0.5 to 6 atm. 2) The maximum hydrogen storage capacity is approximately equal to or higher than that of known materials. 3) The hydrogen absorption rate of all samples is much higher than that of known materials. 4) The hysteresis index is gradually smaller than known materials, except for No. 3, which is close to the limit of the claimed range of composition. 5) Activation of any sample can be completed in one operation and is easier than known materials. Example 2 Sample No. 10 of the alloy material of the present invention and No. 13 of the known comparative alloy material shown in Table 1 are the objects of this example. These samples were prepared using the same raw materials as described in Example 1,
A button-shaped sample was prepared in the same manner, subjected to the same homogeneous heat treatment, and ground into -100 mesh. In this example, the vacuum degassing temperature during activation was 80°C, and the sample storage reactor used to measure the amount of hydrogen absorption and release was maintained at 80°C for samples No. 10 and No. 13. Other activation methods and methods for measuring the amount of hydrogen absorption and release are the same as in Example 1. Although the equilibrium hydrogen dissociation pressure of known comparative material sample No. 13 shown in Table 1 was higher than that of sample No. 11 of the same composition due to the increase in measurement temperature of 80° C., it was still below 1 atm. Hysteresis index, hydrogen absorption rate,
Although the maximum hydrogen storage amount is relatively good, the plateau slope is large and the effective hydrogen release amount is small, so it is not a suitable material as a hydrogen storage alloy. From Table 1, it was found that sample No. 10, which is an alloy material of the present invention measured at a temperature of 80° C., has the following characteristics compared to No. 13, which is a comparative alloy material. 1) The equilibrium hydrogen dissociation pressure is as high as 1.7 atm. 2) It has a plateau region, the slope of the plateau is smaller than the comparative material, and the hysteresis is also smaller. 3) The maximum hydrogen storage capacity is the same, and the effective hydrogen release capacity is large. 4) The hydrogen absorption rate is equally fast. 5) Activation is equally or even easier. (Effects of the invention) Since the alloy of the present invention has the above-mentioned properties,
By using the alloy of the present invention, the following effects can be achieved. 1) All the alloys of the present invention have a plateau region of equilibrium hydrogen pressure, and the dissociation pressure is 0.5 to 6 at 40°C.
Atmospheric pressure is 1.7 atm at 80°C. It is an easy-to-use alloy because the equilibrium hydrogen pressure can be changed from 1 to several atmospheres by changing the alloy composition. 2) Activation can be easily completed with just one operation of vacuum degassing at room temperature and pressurization of hydrogen at 30 atm at room temperature. 3) The maximum hydrogen storage capacity and effective hydrogen release capacity are equal to or higher than those of conventional alloys. 4) The hydrogen absorption and release rate is higher than that of conventional alloys. This allows for quick and repeated use.
Even if the effective amount of hydrogen storage and release is small, the alloy can be used with good overall efficiency. 5) Since the hysteresis is the same or lower than that of conventional alloys, it can be used efficiently with little energy loss even when used repeatedly. 6) Zirconium alloys are originally Mg-based and Ti-based.
The alloy of the present invention has a stronger resistance to gaseous impurities than other rare earth alloys, but the alloy of the present invention is also almost unaffected by impurities such as oxygen, nitrogen, argon, and carbon dioxide. 7) No matter how many times hydrogen absorption and release are repeated, there is virtually no deterioration of the alloy itself. As mentioned above, the zirconium-based hydrogen storage alloy of the present invention has all the performances required as a hydrogen storage material, and in particular, the maximum hydrogen storage capacity, hydrogen storage/release rate, and hysteresis are superior to those of conventional hydrogen storage alloys. has been improved compared to. This alloy is extremely easy to activate, can store large amounts of hydrogen at high density, has completely reversible hydrogen storage and desorption reactions, and has strong resistance to gaseous impurities. It has many advantages compared to alloys. Therefore, the alloy of the present invention exhibits excellent effects not only in heat storage devices and temperature sensors used at room temperature to 100°C, but also particularly in applications such as hydrogen storage/transport and hydrogen separation/purification systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金の活性化並びに水素吸蔵・
放出量の測定方法の説明図である。 10…反応器、12…水素吸蔵用合金試料、1
4…バルブ、16…リザーバー、18…バルブ、
20…水素ボンベ、22…バルブ、24…ロータ
リー式真空ポンプ、26…圧力変換器、28…デ
ジタル式圧力指示計。
Figure 1 shows the activation and hydrogen storage of the alloy of the present invention.
FIG. 3 is an explanatory diagram of a method for measuring a release amount. 10...Reactor, 12...Hydrogen storage alloy sample, 1
4...Valve, 16...Reservoir, 18...Valve,
20...Hydrogen cylinder, 22...Valve, 24...Rotary vacuum pump, 26...Pressure transducer, 28...Digital pressure indicator.

Claims (1)

【特許請求の範囲】 1 原子数組成で示性式がZrxAy(Fe1-kVk2で示
されることを特徴とするジルコニウム系水素吸蔵
用合金〔但し、式中Aはチタン,ニオブ,モリブ
デンのなかから選ばれるいずれか少なくとも一種
の元素を示し、0.4≦x≦1.0,0<y≦0.6,0.2
≦k≦0.3である〕。
[Scope of Claims] 1. A zirconium-based hydrogen storage alloy characterized in that its atomic composition is represented by the formula Zr x Ay (Fe 1-k V k ) 2 [However, in the formula, A is titanium, Indicates at least one element selected from niobium and molybdenum, 0.4≦x≦1.0, 0<y≦0.6, 0.2
≦k≦0.3].
JP62188998A 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion Granted JPS6372851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62188998A JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62188998A JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59225103A Division JPS61104053A (en) 1984-10-27 1984-10-27 Zirconium-type hydrogen occluding alloy

Publications (2)

Publication Number Publication Date
JPS6372851A JPS6372851A (en) 1988-04-02
JPH0242893B2 true JPH0242893B2 (en) 1990-09-26

Family

ID=16233585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62188998A Granted JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Country Status (1)

Country Link
JP (1) JPS6372851A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210659A (en) * 1988-06-28 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy
EP0670575B1 (en) * 1993-12-13 1995-09-27 GESELLSCHAFT FÜR ANLAGEN- UND REAKTORSICHERHEIT ( GRS) mbH Device for removing free hydrogen from a gas mixture containing hydrogen and oxygen
CN108660338A (en) * 2018-05-18 2018-10-16 南京华东电子真空材料有限公司 A kind of zirconium ferrocolumbium and preparation method applied to vacuum electronic component
CN109225119A (en) * 2018-10-11 2019-01-18 南京恩瑞科技有限公司 A kind of preparation method of zirconium kind nonevaporable getter
CN110042304A (en) * 2019-04-22 2019-07-23 宁夏大学 A kind of high-pressure metal hydride composite hydrogen occluding tank high platform pressure hydrogen bearing alloy

Also Published As

Publication number Publication date
JPS6372851A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JPS633019B2 (en)
US5085944A (en) Rare earth metal-series alloys for storage of hydrogen
JPH0242893B2 (en)
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
JPH039175B2 (en)
US4446121A (en) Material for hydrogen absorption and desorption
JPS6310215B2 (en)
JPS61199045A (en) Hydrogen occluding alloy
JPS6158545B2 (en)
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
US4421718A (en) Alloy for occlusion of hydrogen
JPH0477061B2 (en)
US5028389A (en) Hydrogen storage materials of Zr-Ti-Cr-Fe
JPS5848481B2 (en) Hydrogen storage materials
JP4768111B2 (en) Hydrogen storage alloy
JPH04337045A (en) Hydrogen storage material
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPH0224764B2 (en)
JPS583025B2 (en) Metal materials for hydrogen storage
JPS6227534A (en) Zirconium alloy for hydrogen storage
JP4766414B2 (en) Hydrogen storage alloy
JP2002212663A (en) High capacity hydrogen occlusion alloy and production method therefor
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JP3338176B2 (en) Hydrogen storage material
JPS61276945A (en) Hydrogen occluding zirconium alloy