JPS583025B2 - Metal materials for hydrogen storage - Google Patents
Metal materials for hydrogen storageInfo
- Publication number
- JPS583025B2 JPS583025B2 JP52130049A JP13004977A JPS583025B2 JP S583025 B2 JPS583025 B2 JP S583025B2 JP 52130049 A JP52130049 A JP 52130049A JP 13004977 A JP13004977 A JP 13004977A JP S583025 B2 JPS583025 B2 JP S583025B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen
- hydrogen storage
- metal
- metal materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
【発明の詳細な説明】
本発明は、一般式Ti−Mn−M(ただし、MはV、C
r, Fe,Co,Nt,Cu及びMoよりなる群から
選んだ少なくとも1種の金属)で示される合金よりなり
、水素を高密度にしかも安全に貯蔵しうる実用的な水素
貯蔵用金属材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the general formula Ti-Mn-M (where M is V, C
The present invention relates to a practical metal material for hydrogen storage, which is made of an alloy represented by at least one metal selected from the group consisting of: r, Fe, Co, Nt, Cu, and Mo, and is capable of storing hydrogen at high density and safely. It is something.
従来より、ある種の金属、例えば周期律表の■−■族の
遷移金属は、水素と金属性の化合物を形成することが知
られている。BACKGROUND ART It has been known that certain metals, such as transition metals in groups 1-2 of the periodic table, form metallic compounds with hydrogen.
これらの金属水素化物は、例えばLaH3 + CeH
3 + TtH2 t ZrH2VH2,NbH2のよ
うに示され、金属原子1個に対して最大3個の水素原子
を固体の金属中に結合させる。These metal hydrides are, for example, LaH3 + CeH
It is shown as 3 + TtH2 t ZrH2VH2, NbH2, and a maximum of three hydrogen atoms are bonded to one metal atom in a solid metal.
そしてこれら単体金属材料は、それぞれ固有の温度およ
び圧力の水素雰囲気下で、水素を吸収してこれを高密度
で保有し得、更に温度または圧力条件あるいはそれらの
両方の条件を変化させることによって吸収水素を可逆的
に放出させ得るという性質を有している。Each of these single metal materials can absorb hydrogen and retain it at high density under a hydrogen atmosphere at a specific temperature and pressure, and can further absorb hydrogen by changing the temperature or pressure conditions or both. It has the property of being able to release hydrogen reversibly.
従って金属水素化物を形成する金属は水素を貯蔵および
保持する材料として使用することができる。Metals forming metal hydrides can therefore be used as materials for storing and retaining hydrogen.
しかし、これら単体金属材料は、現在水素貯蔵法として
一般に使われているガスボンベ方式や、液体水素方式に
比較すると幾つかの欠点を有している。However, these single metal materials have several drawbacks compared to the gas cylinder method and liquid hydrogen method that are currently commonly used as hydrogen storage methods.
例えば、上記の金属水素化物の多くは金属と水素の結合
力が大きいので、水素を吸収したり、水素を放出したり
する際に、苛酷な条件、即ち、例えばTiについて言え
ば、常圧付近で水素吸収を開始するためには、約400
℃以上の加熱が要求されるという欠点を持っている。For example, many of the above-mentioned metal hydrides have a strong bond between the metal and hydrogen, so when absorbing or releasing hydrogen, they must be operated under harsh conditions, i.e., in the case of Ti, near normal pressure. To start hydrogen absorption at about 400
It has the disadvantage of requiring heating above ℃.
またその後、見出されたTi系合金、即ち、FeTi,
Ti(あるいはZr)−Cu系合金、Ti(あるいはZ
r)−Ni系合金等は幾分水素の吸収および放出の条件
が緩和されたとはいえ、なお数100℃以上の加熱を比
較的長時間必要とする。Later, Ti-based alloys were discovered, namely FeTi,
Ti (or Zr)-Cu alloy, Ti (or Zr)
Although the hydrogen absorption and release conditions for r)-Ni alloys and the like have been somewhat relaxed, they still require heating at several hundred degrees centigrade or higher for a relatively long period of time.
これらに対して水素吸収および放出の操作条件が容易な
水素貯蔵材として、R−Ni5,R−Co5(R:希土
類元素)等の希土類元素の合金が見出された。On the other hand, alloys of rare earth elements such as R-Ni5 and R-Co5 (R: rare earth element) have been found as hydrogen storage materials with easy operating conditions for hydrogen absorption and release.
しかし、これらの材料は、単位重量あたりの水素貯蔵量
が他の水素貯蔵材に比べて比較的小さいこと、およまた
、本発明の合金の水素貯蔵用材料の特性を示すために、
第3図、第4図に、縦軸には水素解離平衡圧力(Pat
m)をとり、横軸には合金1gに対する水素吸収量(x
ccH2/g)をとったグラフに材料(合金)温度の等
温線(T℃)を引いたP−x−Tの関係図を示した。However, these materials have a relatively small amount of hydrogen storage per unit weight compared to other hydrogen storage materials, and in order to demonstrate the hydrogen storage material properties of the alloys of the present invention,
In Figures 3 and 4, the vertical axis shows the hydrogen dissociation equilibrium pressure (Pat
m), and the horizontal axis shows the hydrogen absorption amount (x
A P-x-T relationship diagram is shown in which a material (alloy) temperature isotherm (T° C.) is drawn on a graph of ccH2/g).
これらの図で、試料温度(T℃)はいずれも25℃の場
合であり、試料は先の第1表に示した試料記号A〜Jよ
り、第3図にはA(M=V)、D(M=Cr),E(M
=Fe),G(M=Co)を、第4図にはH(M=Ni
),I(M=Cu),J(M=Mo)をそれぞれ示した
。In these figures, the sample temperature (T°C) is 25°C, and the samples are numbered A (M=V), A (M=V), D(M=Cr), E(M
= Fe), G (M = Co), and H (M = Ni) in Figure 4.
), I (M=Cu), and J (M=Mo), respectively.
第1表及び第3〜4図から、本発明の合金は、吸収水素
量および放出水素量が比較的多く、さらに、各温度での
所定圧力が水素吸収量(x)に対してほぼ水平な圧力領
域、いわゆるプラトー圧が、室温で4〜20atmの範
囲に存在し、水素放出の際に加熱を必要としないことな
ど水素貯蔵用金属材料として非常に優れていることがわ
かる。From Table 1 and Figures 3 and 4, it can be seen that the alloy of the present invention has a relatively large amount of absorbed hydrogen and released hydrogen, and furthermore, the predetermined pressure at each temperature is almost horizontal to the amount of hydrogen absorbed (x). It can be seen that the pressure range, so-called plateau pressure, exists in the range of 4 to 20 atm at room temperature, and that it is very excellent as a metal material for hydrogen storage, as it does not require heating when releasing hydrogen.
またその他に本発明の合金の優れている点は,(1)格
子定数を最適値に調整された合金ではTi−Mn−M系
合金のM量はほぼ最大でも10原子%以下であり、Mが
高価なV、Mo等でも、既知水素貯蔵材料と比較してコ
スト的に安価な材料であること、
(2)水素の吸収・放出時のスピードが十分速いこと、
(3)金属水素化物の反応での生成熱量(−ΔHf)は
、6〜8Kcal/molH2付近の値を持ち、生成熱
量が小さいことから水素放出による吸熱ロスが小さく水
素貯蔵用合金として適していること、
(4)初期水素化が極めて容易であること、などである
。Other advantages of the alloy of the present invention are (1) In an alloy whose lattice constant is adjusted to an optimal value, the M content of the Ti-Mn-M alloy is approximately 10 atomic % or less at most; Even though V, Mo, etc. are expensive, it is a material that is cheaper in cost compared to known hydrogen storage materials, (2) the speed at which hydrogen is absorbed and released is sufficiently high, and (3) the metal hydride The amount of heat generated in the reaction (-ΔHf) has a value around 6 to 8 Kcal/molH2, and because the amount of heat generated is small, the endothermic loss due to hydrogen release is small, making it suitable as an alloy for hydrogen storage. (4) Initial hydrogen For example, it is extremely easy to
先の第1表および第3,4図では、Ti−Mn−M系合
金のMは1種の金属からなる場合についで示した.しか
し、本発明のTi−Mn−M系合金において、Mは1種
だけでなく、2種以上の金属であっても同様な効果を持
つものである。In Table 1 and Figures 3 and 4 above, M in the Ti-Mn-M alloy is shown next when it consists of one type of metal. However, in the Ti-Mn-M alloy of the present invention, the same effect can be obtained even when M is not only one type of metal but two or more types of metals.
すなわちMがV、Cr,Fe,Co,Ni、Cu、Mo
の7元素から選定された2種以上の金属の場合でもTi
−Mn−M系合金として、合金相が単一なMgZn2型
ラーバス相を形成し、かつその結晶格子定数が前述の最
適値に入るように調整されれば前述の第1表第3図、第
4図に示した特性とほぼ同等な特性が得られることを確
認した。That is, M is V, Cr, Fe, Co, Ni, Cu, Mo
Even in the case of two or more metals selected from the seven elements, Ti
As a -Mn-M alloy, if the alloy phase forms a single MgZn2-type larvae phase and its crystal lattice constant is adjusted to fall within the above-mentioned optimum value, the above-mentioned Table 1, Figure 3, It was confirmed that characteristics almost equivalent to those shown in Figure 4 could be obtained.
これらの具体例として、第2表に、試料記号K,L,M
の3試料を代表としてその特性を示す。As specific examples of these, Table 2 shows sample symbols K, L, M.
The characteristics are shown using three representative samples.
このように本発明の合金系は、特性面で十分実用的なも
のである。As described above, the alloy system of the present invention is sufficiently practical in terms of properties.
またこのTi−Mn−M系合金は、先に本発明者等が提
案したTi−Mn 2元系合金に比較して、特性面のみ
でなく、合金製造条件を簡易にしたものである.すなわ
ち、Ti−Mn2元系とTi−Mn−M系合金との水素
貯蔵料としての有効合金相はいずれもMgZn2型ラー
バス相であるが、本発明のように、Ti−Mn2元系に
Mとして新たに、V,Cr,Fe,Co,Ni,Cu,
Moの少なくとも1種の金属を加えた多元系合金にする
ことによって合金の結晶性および均質性を向上させるこ
とができた。In addition, this Ti-Mn-M alloy has simplified alloy manufacturing conditions as well as properties compared to the Ti-Mn binary alloy previously proposed by the present inventors. That is, the effective alloy phase as a hydrogen storage material in the Ti-Mn binary system and the Ti-Mn-M system alloy is both the MgZn2 type larvous phase, but as in the present invention, M as M in the Ti-Mn binary system is used. Newly added V, Cr, Fe, Co, Ni, Cu,
The crystallinity and homogeneity of the alloy could be improved by creating a multi-component alloy containing at least one metal such as Mo.
これは、アーク溶解等によって得られた合金の、Ti−
Mn2元系合金と、Ti−Mn−M系合金との結晶性お
よび均質性をX線回折等によって調べた結果、明らかに
Ti−Mn−M系合金にすることによってMgZn2型
ラーバス相合金の結晶性および均質性が向上しているこ
とが認められた。This is because the alloy obtained by arc melting etc.
As a result of examining the crystallinity and homogeneity of the Mn binary alloy and the Ti-Mn-M alloy by X-ray diffraction, it was clear that the crystallinity of the MgZn 2-type larvous phase alloy was improved by using the Ti-Mn-M alloy. It was observed that the quality and homogeneity were improved.
そのため、アーク溶解で得られた合金を熱処理等によっ
て均質化を図る過程で、Ti−Mn−M系合金はもとも
と合金の結晶性および均質性が優れているため均質化熱
処理の条件を著しく緩和することが可能となり製造工程
が容易になるものである。Therefore, in the process of homogenizing the alloy obtained by arc melting through heat treatment, etc., the conditions for homogenization heat treatment are significantly relaxed because Ti-Mn-M alloys originally have excellent alloy crystallinity and homogeneity. This makes the manufacturing process easier.
本発明の水素貯蔵用金属材料の製造例を示すと純度99
%程度のTi,Mn,Mを銅製るつぼに入れ、アルゴン
アーク炉で直接溶解する.表裏面数回の溶解でかなり均
質なボタン状Ti−Mn−M系合金を得ることができる
。An example of manufacturing the metal material for hydrogen storage of the present invention has a purity of 99%.
% of Ti, Mn, and M are placed in a copper crucible and directly melted in an argon arc furnace. A fairly homogeneous button-shaped Ti--Mn--M alloy can be obtained by melting the front and back surfaces several times.
これを例えばアルゴン雰囲気中で1100℃、10時間
程度均質化熱処理を行なうことによって均質な合金を得
ることができる。A homogeneous alloy can be obtained by subjecting this to homogenization heat treatment at 1100° C. for about 10 hours in an argon atmosphere, for example.
この合金塊は比較的もろく、機械的にも容易に粉砕され
る。This alloy lump is relatively brittle and easily crushed mechanically.
この合金の水素化について示すと、得られた合金を数個
に粉砕して、例えばステンレス鋼製反応容器に入れ、容
器内を油回転ポンプ等で数分間排気する.その後純度9
9.9%の水素ガスを前記反応容器に約20気圧程度も
加えれば、直ちに水素を吸収しはじめ、例えば合金重量
約100gでは室温でも数分以内に水素の吸収が完了し
、粒径数ミクロンのTi−Mn−M系合金の水素化物が
生成される。Regarding the hydrogenation of this alloy, the obtained alloy is crushed into several pieces, placed in a reaction vessel made of stainless steel, for example, and the inside of the vessel is evacuated for several minutes using an oil rotary pump or the like. Then purity 9
If 9.9% hydrogen gas is added to the reaction vessel at a pressure of about 20 atm, hydrogen will begin to be absorbed immediately. For example, with an alloy weighing about 100 g, hydrogen absorption will be completed within a few minutes even at room temperature, and the particle size will be several microns. A hydride of a Ti-Mn-M alloy is produced.
なお、本発明のTi−Mn−M系合金のうち、M=Co
とした場合のTi−Mn−Co系合金については、先に
本発明者らが提案した合金と関連があるが、本発明のT
i−Mn−Co系合金は、第1表の比較で明らかなよう
に合金相および結晶格子定数を調整することにより室温
での放出水素量を大幅に改善したものである。Note that among the Ti-Mn-M alloys of the present invention, M=Co
The Ti-Mn-Co alloy in this case is related to the alloy previously proposed by the present inventors, but the Ti-Mn-Co alloy of the present invention
As is clear from the comparison in Table 1, the i-Mn-Co alloy has a greatly improved amount of released hydrogen at room temperature by adjusting the alloy phase and crystal lattice constant.
以上のことから、Ti−Mn−Mで示される合金(ただ
しMは、V,Cr,Fe,Co,Ni,Cu,Moから
選定された少なくとも1種の金属)で、その合金がMg
Zn2型ラーバス相よりなりその結晶格子定数のaおよ
びcが各々、a=4.86 〜4.90Å,c=7.9
5〜8.02Åである水素貯蔵用金属材料は、吸収水素
量、放出水素量が共に大きく、またプラトー圧力も適当
であるなどの特徴を持ち、さらに合金コストが安い、反
応スピードが速い、反応生成熱が少さい、初期水素化が
容易であるなど、多くの利点を持つものである。From the above, it is clear that the alloy represented by Ti-Mn-M (where M is at least one metal selected from V, Cr, Fe, Co, Ni, Cu, and Mo), and that the alloy is Mg
It consists of a Zn2 type larvae phase, and its crystal lattice constants a and c are a=4.86 to 4.90 Å, c=7.9, respectively.
The metal material for hydrogen storage, which has a thickness of 5 to 8.02 Å, has the characteristics of a large amount of absorbed hydrogen and a large amount of hydrogen released, as well as an appropriate plateau pressure, as well as low alloy cost, high reaction speed, and high reaction speed. It has many advantages such as low heat of formation and easy initial hydrogenation.
このTi−Mn−M系合金は、Ti−Mn2元系合金よ
り結晶性および均質性が向上するため製造工程が簡易化
するという利点を持っている。This Ti-Mn-M alloy has improved crystallinity and homogeneity than the Ti-Mn binary alloy, so it has the advantage of simplifying the manufacturing process.
さらに実用的立場から、このTi−Mn−M系合金は、
プラトー圧力を組成変化(Mとしての元素を変えること
と、格子定数を変えること)によって、室温で、ほぼ1
atmより20atmまで連続的に調整できるという特
徴を持っている。Furthermore, from a practical standpoint, this Ti-Mn-M alloy is
By changing the composition (changing the element as M and changing the lattice constant), the plateau pressure can be reduced to approximately 1 at room temperature.
It has the feature that it can be adjusted continuously up to 20 ATM.
以上のように、本発明のTi−Mn−M系合金は、水素
貯蔵用金属材料として極めて有用な材料である。As described above, the Ti-Mn-M alloy of the present invention is an extremely useful material as a metal material for hydrogen storage.
第1図はTi−Mn−M系合金のMgZn2型結晶格子
定数aと、25℃での吸収及び放出水素量との関係を示
す図、第2図は同じく結晶格子定数cと25℃での吸収
及び放出水素量との関係を示す図、第3図及び第4図は
25℃における水素解離平衡圧力と水素吸収量との関係
を示す。Figure 1 shows the relationship between the MgZn2 type crystal lattice constant a of a Ti-Mn-M alloy and the amount of hydrogen absorbed and released at 25°C, and Figure 2 shows the relationship between the crystal lattice constant c and the amount of hydrogen absorbed and released at 25°C. Figures 3 and 4, which show the relationship between the amount of absorbed and released hydrogen, show the relationship between the hydrogen dissociation equilibrium pressure and the amount of hydrogen absorbed at 25°C.
Claims (1)
e,Co,Ni,Cu及びMoよりなる群から選んだ少
なくとも1種の金属)で示される合金で、その合金相が
MgZn2型ラーバス相よりなり、その結晶格子定数a
及びcが各々a=4.86〜4.90Å,c=7.95
〜8.02Åである水素貯蔵用金属材料。1 General formula Ti-Mn-M (where M is V, Cr, F
At least one metal selected from the group consisting of Co, Co, Ni, Cu, and Mo), whose alloy phase consists of a MgZn2-type larvae phase, and whose crystal lattice constant a
and c are respectively a=4.86 to 4.90 Å, c=7.95
A metal material for hydrogen storage with a thickness of ~8.02 Å.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52130049A JPS583025B2 (en) | 1977-10-28 | 1977-10-28 | Metal materials for hydrogen storage |
US05/954,619 US4195989A (en) | 1977-10-28 | 1978-10-25 | Hydrogen storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52130049A JPS583025B2 (en) | 1977-10-28 | 1977-10-28 | Metal materials for hydrogen storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5462914A JPS5462914A (en) | 1979-05-21 |
JPS583025B2 true JPS583025B2 (en) | 1983-01-19 |
Family
ID=15024840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52130049A Expired JPS583025B2 (en) | 1977-10-28 | 1977-10-28 | Metal materials for hydrogen storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS583025B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS597774B2 (en) * | 1982-01-29 | 1984-02-21 | 工業技術院長 | Titanium-chromium-manganese hydrogen storage alloy |
DE3210381C1 (en) * | 1982-03-20 | 1983-05-19 | Daimler-Benz Ag, 7000 Stuttgart | Alloy for storing hydrogen |
US9272259B2 (en) * | 2012-04-19 | 2016-03-01 | Ovonic Battery Company, Inc. | Metal hydride alloys having improved activation and high rate performance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220314A (en) * | 1975-08-07 | 1977-02-16 | Matsushita Electric Ind Co Ltd | Reservoir for storing hydrogen |
JPS5261107A (en) * | 1975-11-11 | 1977-05-20 | Philips Nv | Hydrogen storage material and production of it* and method and apparatus for hydrgen storaging using this material |
-
1977
- 1977-10-28 JP JP52130049A patent/JPS583025B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220314A (en) * | 1975-08-07 | 1977-02-16 | Matsushita Electric Ind Co Ltd | Reservoir for storing hydrogen |
JPS5261107A (en) * | 1975-11-11 | 1977-05-20 | Philips Nv | Hydrogen storage material and production of it* and method and apparatus for hydrgen storaging using this material |
Also Published As
Publication number | Publication date |
---|---|
JPS5462914A (en) | 1979-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4370163A (en) | Hydrogen storage alloy and process for making same | |
US4153484A (en) | Hydrogen storage material | |
US4195989A (en) | Hydrogen storage material | |
Mizuno et al. | Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties | |
Pang et al. | Achieving the dehydriding reversibility and elevating the equilibrium pressure of YFe2 alloy by partial Y substitution with Zr | |
Yin et al. | Improvement of hydrogen storage properties of Mg-Ni alloys by rare-earth addition | |
US4661415A (en) | Hydrogen absorbing zirconium alloy | |
US4783329A (en) | Hydriding solid solution alloys having a body centered cubic structure stabilized by quenching near euctectoid compositions | |
Tsushio et al. | Hydrogen desorption properties of the quaternary alloy system Mg2− XM1XNi1− YM2Y | |
JPS583025B2 (en) | Metal materials for hydrogen storage | |
US4576640A (en) | Hydrogen storage material | |
JPH05247568A (en) | Hydrogen storage alloy electrode and battery using them | |
JPS626739B2 (en) | ||
US5100615A (en) | Alloys of Ti-Cr-Cu for occluding hydrogen | |
US4512965A (en) | Hydrogen storage materials of hyperstoichiometric alloys | |
Isogai et al. | Increase in thermal stability of Mg62Ni33Ca5 amorphous alloy by absorption of hydrogen | |
JPS6310215B2 (en) | ||
Aoki et al. | Hydrogen absorption and desorption properties of amorphous Ti Ni and Hf Ni alloys | |
US4576639A (en) | Hydrogen storage metal material | |
JPS5848481B2 (en) | Hydrogen storage materials | |
US4349527A (en) | Iron-titanium-niobium alloy | |
JPH0242893B2 (en) | ||
JPS5841334B2 (en) | Quaternary hydrogen storage alloy | |
JPS619544A (en) | Titanium alloy for occluding hydrogen | |
JP4768111B2 (en) | Hydrogen storage alloy |