JPS626739B2 - - Google Patents

Info

Publication number
JPS626739B2
JPS626739B2 JP58016665A JP1666583A JPS626739B2 JP S626739 B2 JPS626739 B2 JP S626739B2 JP 58016665 A JP58016665 A JP 58016665A JP 1666583 A JP1666583 A JP 1666583A JP S626739 B2 JPS626739 B2 JP S626739B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
pressure
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58016665A
Other languages
Japanese (ja)
Other versions
JPS59143036A (en
Inventor
Yasuaki Oosumi
Hiroshi Suzuki
Akihiko Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1666583A priority Critical patent/JPS59143036A/en
Publication of JPS59143036A publication Critical patent/JPS59143036A/en
Publication of JPS626739B2 publication Critical patent/JPS626739B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類金属を含む三元系水素吸蔵用合
金に関し、より詳細には、金属水素化物の形態で
多量の水素を吸蔵でき、しかもわずかの加熱で容
易に、かつ速やかに水素を放出でき、その水素の
吸蔵圧と放出圧の差、即ちステリシスの極めて小
さい新規にして実用上極めて有用なる希土類金属
三元系水素吸蔵用合金に関するものである。 水素は資源的な制限がなくクリーンであるこ
と、輸送、貯蔵が容易なこと等から化石燃料に代
る新しいエネルギー源として注目されている。 しかし、水素は常温で気体であり、しかも液化
温度が極めて低温であるために、その貯蔵技術の
開発が重要となる。この貯蔵方法として近年注目
されているのが、金属に水素を吸蔵させ金属水素
化物として貯蔵する方法である。 又、金属と水素の吸蔵放出反応は可逆的であ
り、反応に伴つて相当量の反応熱が発生吸収さ
れ、水素の吸蔵放出圧力は温度に依存することを
利用して冷暖房装置あるいは熱エネルギー←→圧力
(機械)エネルギー変換装置などに応用する研究
が行なわれている。 かかる水素吸蔵材料として要求される性質とし
ては、安価かつ資源的に豊富であること、活性化
が容易で水素吸蔵量が大きいこと、室温付近で適
当な水素吸蔵放出平衡圧を有し、吸蔵放出のヒス
テリシスが小さいこと、水素吸蔵放出反応が可逆
的であり、その速度が大きいことなどがあげられ
る。 ところで代表的な公知の水素吸蔵材料として
は、例えばLaNi5、FeTiが知られている。 しかしながらこれらの合金は、水素の吸蔵放出
反応が可逆的であり、水素吸蔵量も大きいもの
の、水素吸蔵、放出反応の速度が遅く、活性化が
容易とは云えず、しかもヒステリシスが大きい等
の欠点があり、実用上大きな問題があつた。 本発明者らは上記の様な状況に鑑み、前記のよ
うな諸特性を備えた水素吸蔵用合金を開発すべく
種々研究を進めてきた。その結果、希土類金属、
ニツケル及び後述の諸金属Mtより構成される特
定の三元系合金は上記諸性質をすべて具備してお
り、水素吸蔵用合金として新規にして極めて有用
なものであることを見出し、ここに本発明を完成
するに至つた。 即ち本発明は、一般式RxNiyMtzで表わされる
希土類金属三元系の水素吸蔵量合金に関するもの
である。ここで、式中Rは希土類金属原子を表わ
し、Mtはニオブ、スズおよびモリブデンからな
る群から選ばれた金属原子であり、xは1.0〜2.0
の正数、yは3.0〜9.0の正数、zは0.01〜1.0の正
数であり、y+z/x>5またはy+z/x<5である
。 ここで希土類金属原子Rは単一金属の場合のみ
ならず、混合金属ミツシユメタル(Mm)をも含
む。 ところで、LaNi5やMmNi5等を代表とする希土
類金属系合金は水素貯蔵・輸送用、排熱回収用ヒ
ートポンプとしても利用されているが、この種の
用途においては多岐に亘る温度に応じて水素化物
の解離圧を調製する必要があつた。その為LaNi5
やMmNi5系合金におけるNi又はLaあるいはMmの
一部をAl、Mn、Cr、Si、Co等の第3元素で置換
することによつて解離圧を調製する技術が開発さ
れている。 例えば、Alは、置換量をわずかに変化させる
だけでも解離圧を大きく変えることができる。し
かし、第3元素としてAlを含む合金(LaNi5
xALx、La1-xNi5Alx、MmNi5-xALx、
Mn1-xNi5Alx)では、Al量によつて解離圧、水素
吸蔵量とヒステリシスが一元的に決つてくる為、
実用化するときの自由度が小さい。殊にヒートポ
ンプ用として用いる場合、水素吸蔵、放出曲線に
おける圧力差、すなわちヒステリシスは極めて重
要であり、これが大きいと、水素の吸蔵又は放出
操作時に吸蔵用合金又は水素化物をより大きな温
度差で加熱又は冷却するか、あるいはより大きな
圧力差で水素の加圧又は減圧を行なわなければな
らず、装置の効率が悪化する。その為、水素吸蔵
能力及び水素化反応熱を実用規模で有効に活用す
る為には、ヒステリシスを小さくする必要があ
る。しかも、Alの置換量が比較的大きい組成の
合金の場合、水素吸蔵量は減少することが確認さ
れている。 本発明はこうした状況のもとで希土類金属−ニ
ツケル系合金、例えばRNi5(Rは希土類金属原
子を示す)系合金の有する水素吸蔵用として適し
た特性(特に解離圧が低いことと水素吸蔵量が大
きい特性)を保持しつつ、そのヒステリシスを小
さくして実用性を高めようとするものであつて、
基本的には上記の希土類金属とニツケルに第3元
素としてニオブ、スズおよびモリブデンからなる
群から選ばれた金属(Mt)を特定量配合し、前
記一般式RxNiyMtzの要件を満たすように合金成
分比率を調整することによつて目的を達成するこ
とができる。尚、本発明の水素吸蔵用合金の一般
式RxNiyMtzにおいてx、yおよびzをそれぞれ
前述の様に定めた理由は次の通りである。 x:1.0〜2.0 xが1.0未満では水素吸蔵量を低下させ、且つ
ヒステリシスを小さくするという効果が現われな
い。一方、xが2.0を越えると吸蔵水素の放出が
困難になり、高温又はこれに減圧を組合せなけれ
ば吸蔵水素を放出することができなくなる。 y:3.0〜9.0 yが3.0未満では解離圧および水素吸蔵量を極
端に低下させ、一方yが9.0を越えると解離圧が
増大する傾向を示し、水素吸蔵用ならびに排熱回
収用として適した特性を示さなくなる。 z:0.01〜1.0 zが0.01未満では添加金属Mtの絶対量が不足
する為解離圧を十分低下させることができず、し
かもヒステリシスを小さくするという効果が現わ
れない。一方、1.0を越えると吸蔵水素量が減少
したり、吸蔵水素の放出が困難になつたりあるい
は水素吸蔵・放出曲線のプラトー域が2段状にな
る傾向が現われ、しかもヒステリシスを小さくす
ることができない。Mtは水素吸蔵用として適し
た解離圧を維持しつつヒステリシスを小さくする
為に不可欠の成分である。 y+z/x>5またはy+z/x<5:y+z/x=
5では、水 素吸蔵量が減少し、かつヒステリシスが大きくな
る。また活性化もいくらか困難となる。 合金の組成が上述の範囲では、合金の水素吸蔵
圧、放出圧が水素吸蔵用として適した広い範囲に
わたつて変化させる利点があり、しかもヒステリ
シスも小さくなるというすぐれた特性を有してい
る。 本発明に係る希土類金属三元系水素吸蔵用合金
の基本的な構造は明確でないが、例えば、
RxNi5Mtz系合金ではLaNi5、MmNi5等と同様の
六方晶系の金属間化合物であると考えられるが、
何れにしてもLaNi5、MmNi5、LaNi5-xMtx系合金
に比べて、水素貯蔵用としての特性を保持し、水
素吸蔵、放出時のヒステリシスが小さいので、水
素吸蔵用合金としての水素吸蔵能力及び水素吸
蔵、放出に伴う発熱及び吸熱を有効に活用するこ
とができる。しかもこの合金は活性化が極めて容
易であり、大量の水素を高密度で吸蔵し得ると共
に水素の吸蔵、放出反応が完全に可逆的に行なわ
れ、且つ吸蔵、放出を何回くり返しても合金自体
の劣化は実質的に認められず、長期使用に耐え、
更には酸素、窒素、アルゴン、炭酸ガス、一酸化
炭素等の吸蔵ガス中に含まれる不純物の影響を殆
んど受けない等、数多くの特長を有している。 ちなみに本発明合金の最大の特徴であるヒステ
リシスについて従来の三元系合金と比較すると、
例えば従来のLaNi4.4Al0.6合金の120℃におけるヒ
ステリシスは約1.0気圧であるのに対して、同温
度における本発明合金のそれはLaNi5Sn0.6で約
0.3気圧を示し、従来合金に比べて約半分以下に
減少した。このような傾向は他の金属Mtである
Nb、SnおよびMoを用いた場合でも同様であつ
た。 本発明の希土類金属三元系水素吸蔵用合金を製
造するに当つては、公知の各種方法を採用できる
が、弧光溶融法の採用が好ましい。即ち、希土類
金属、ニツケルおよび金属Mtの各成分を分取し
て混合した後、任意の形状にプレス成形し、次い
でこの成形物を弧光溶融炉に装入し、不活性雰囲
気下で加熱溶融し放冷することにより容易に製造
できる。得られた水素吸蔵用合金は、800〜1100
℃で8〜25時間焼なましを行ない、得られた合金
は、その表面積を増水するため通常通り粉末の形
態で使用する。 本発明の希土類金属三元系水素吸蔵用合金は、
極めて容易に活性化でき、活性化後は大量の水素
を容易に、且つ急速に吸蔵及び放出できる。活性
化は合金をロータリーポンプで減圧下、たとえば
80℃に加熱して脱ガスを行ない、次いで水素を吸
蔵及び放出する操作を唯一回行なうことにより実
施される。 活性化後の水素の吸蔵放出操作、金属水素化物
の形成は、合金粉末を適当な容器に充填、脱ガス
操作のあと、室温で水素を封入し、20Kg/cm2以下
の水素圧を印加することにより行なわれる。 このように、本発明の希土類金属三元系水素吸
蔵用合金は水素印加が20Kg/cm2以下という低圧
で、しかも室温で数分以内の極めて短時間に行な
い得る。 これに対し汎用のTi−Fe系合金の場合、室温
下50Kg/cm2程度の水素圧の印加では水素の吸蔵は
殆んど起こらず、従つてこの程度の条件では活性
化も不可能である。その為吸蔵操作には約400〜
500℃程度の高温処理が必要になると共に、活性
化に当つてはこの様なきびしい吸蔵操作を数回く
り返す必要があり、この様な問題はTi−Ni系合
金やMg−Ni系合金の場合も実質的に同じであ
る。 この金属水素化物からの水素の放出は、室温で
上記容器を開放するだけで行ない得る。しかしな
がら、金属水素化物を室温以上に加熱するか、減
圧することにより、更に短時間に且つ効率よく水
素を放出することができる。 即ち、本発明の水素吸蔵用合金は従来の合金に
比べて極めて容易に活性化でき、活性化後水素吸
蔵放出は高速で行なえる。 このように本発明の希土類金属三元系水素吸蔵
用合金は、始めて開発された新規な合金にして、
水素吸蔵材料として要求される諸性質を全て具備
するものであり、特に水素吸蔵放出圧のヒステリ
シスは従来の水素吸蔵用合金に比べて大巾に改善
され、水素吸蔵用合金としての水素貯蔵能力、水
素吸蔵放出反応に伴う反応熱を有効に利用するこ
とができるのである。 しかも、本発明の希土類金属三元系水素吸蔵用
合金は水素吸蔵放出反応の活性化が極めて容易で
あり、大量の水素を密度高く吸蔵し得ると共に、
室温付近の温度で水素の吸蔵放出を行なうことが
でき、水素吸蔵放出を何度繰返しても水素吸蔵用
合金の性能劣化は実質的に認められず、従つて長
期に亘る使用が可能であり、また酸素、窒素、ア
ルゴン、炭酸ガス等吸蔵ガス中の不純物による影
響は殆んど認められない、実用上極めて有用な水
素吸蔵材料と言うことができる。従つて、本来の
水素貯蔵材料としての用途はもとより、水素吸蔵
放出反応に伴う反応熱を利用する他の用途に対し
ても卓越した効果を発揮する。 以下、本発明を実施例にもとづき具体的に説明
する。 実施例 1 市販のランタン、ニツケル及びMt(Nb、Sn、
Mo、の一種)を、原子比がLa:Nh:Mt=1.0:
5.0:0.6、1:4:0.5、1:5.5:0.5、1:1.5:
0.5および1:8.5:0.5となる様に採取し、高真空
アーク熔融炉内の銅製るつぼに装入する。炉内を
高純度アルゴン雰囲気とした後、約2000℃に加熱
して熔解し、次いで放冷してLaNi5Nb0.6
LaNi5Sn0.6、LaNi5Mo0.6、LaNi4Nb0.5
LaNi4Sn0.5、LaNi4Mo0.5、LaNi5.5Nb0.5
LaNi5.5Sn0.5、LaNi5.5Mo0.5、LaNi1.5Nb0.5
LaNi1.5Sn0.5、LaNi1.5Mo0.5、LaNi8.5Nb0.5
LaNi8.5Sn0.5およびLaNi8.5Mo0.5なる組成の3元
系合金を得た。 これら合金を夫々1100℃で8時間焼なましを行
なつた。 得られた合金を120メツシユに粉砕し、その5.0
gをステンレス製水素吸蔵、放出反応器に採取
し、反応器を排気装置に接続して、減圧下80℃の
温度に加熱して脱ガスを行つた。次いで純度
99.99%の水素を導入し、器内の水素圧を20Kg/
cm2以下に保持すると直ちに水素の吸蔵が認めら
れ、水素の吸蔵が完了した後、再び排気を行つて
水素の放出を完了させた。これらの合金はこの操
作で活性化が完了した。 活性化された合金に反応器中で20Kg/cm2以下の
水素圧、室温以上で純度99.99%の水遷を導入
し、水素を吸蔵させた。 一方、水素の放出は室温でも行なうことができ
るが、反応器の加熱、または減圧下、あるいはこ
れらの両方を行なうことによつてより効率的に行
なわれる。 上記の方法で夫々の希土類金属三元系水素吸蔵
用合金の水素吸蔵、放出における圧力−組成等温
線の関係を求めた。その1例としてLaNi5Sn0.6
H系について120℃での圧力−組成等温線を表わ
したのが図(実線)である。 図において曲線Aは水素吸蔵線、曲線Bは水素
放出線である。また、図の鎖線は比較合金
LaNi4.4Al0.6の120℃での水素吸蔵・解離圧−組成
等温線図で、曲線Cは水素吸蔵線、曲線Dは水素
放出線である。この図からも明らかなように、本
発明の合金は、比較例に示した従来の水素吸蔵用
合金に比べてヒステリシスが改善されている。 また下記表は、上記各合金の水素吸蔵量、25
℃、40℃および120℃における水素化物の吸蔵圧
と解離圧及び25℃、40℃および120℃における水
素吸蔵圧力(Pa)と水素放出圧力(Pd)の比、
すなわちヒステリシス指数(Pa/Pd)を一括し
て示したものであり、本発明の合金(No.1〜9お
よびNo.15〜20)は比較合金(No.10〜14)に比較し
てヒステリシスが小さく、水素吸蔵量も大きい。
The present invention relates to a ternary hydrogen storage alloy containing a rare earth metal, and more specifically, it can store a large amount of hydrogen in the form of a metal hydride, and can easily and quickly release hydrogen with a small amount of heating. The present invention relates to a new rare earth metal ternary hydrogen storage alloy which is extremely useful in practice and has an extremely small difference between hydrogen storage pressure and hydrogen release pressure, that is, steresis. Hydrogen is attracting attention as a new energy source to replace fossil fuels because it is clean, has no resource limitations, and is easy to transport and store. However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, it is important to develop storage technology for hydrogen. A storage method that has attracted attention in recent years is a method in which hydrogen is absorbed into a metal and stored as a metal hydride. In addition, the absorption and release reaction between metals and hydrogen is reversible, and a considerable amount of reaction heat is generated and absorbed during the reaction, and the hydrogen absorption and release pressure depends on temperature. →Research is being conducted to apply it to pressure (mechanical) energy conversion devices. The properties required for such a hydrogen storage material are that it is inexpensive and abundant in terms of resources, that it is easy to activate and has a large hydrogen storage capacity, that it has an appropriate hydrogen storage and desorption equilibrium pressure near room temperature, and that it has an appropriate hydrogen storage and desorption equilibrium pressure. The hysteresis of hydrogen is small, the hydrogen absorption and release reaction is reversible, and its speed is high. By the way, typical known hydrogen storage materials include, for example, LaNi 5 and FeTi. However, although these alloys have reversible hydrogen storage and release reactions and can store a large amount of hydrogen, they have drawbacks such as slow hydrogen storage and release reactions, difficulty in activation, and large hysteresis. There was a big practical problem. In view of the above-mentioned situation, the present inventors have carried out various studies in order to develop a hydrogen storage alloy having the above-mentioned properties. As a result, rare earth metals,
We have discovered that a specific ternary alloy composed of nickel and Mt, which will be described later, has all of the above properties and is novel and extremely useful as a hydrogen storage alloy, and hereby the present invention has been made. I was able to complete it. That is, the present invention relates to a rare earth metal ternary hydrogen storage alloy represented by the general formula RxNiyMtz. Here, in the formula, R represents a rare earth metal atom, Mt is a metal atom selected from the group consisting of niobium, tin, and molybdenum, and x is 1.0 to 2.0.
, y is a positive number from 3.0 to 9.0, z is a positive number from 0.01 to 1.0, and y+z/x>5 or y+z/x<5. Here, the rare earth metal atom R includes not only a single metal but also a mixed metal (Mm). By the way, rare earth metal alloys such as LaNi 5 and MmNi 5 are also used for hydrogen storage and transportation, and as heat pumps for waste heat recovery. It was necessary to adjust the dissociation pressure of the compound. Therefore LaNi 5
Techniques have been developed to adjust the dissociation pressure by substituting a part of Ni, La, or Mm in MmNi and MmNi 5 -based alloys with a third element such as Al, Mn, Cr, Si, or Co. For example, with Al, the dissociation pressure can be greatly changed even by slightly changing the amount of substitution. However, alloys containing Al as the third element (LaNi 5
xALx, La 1-x Ni 5 Alx, MmNi 5-x ALx,
For Mn 1-x Ni 5 Alx), the dissociation pressure, hydrogen storage capacity, and hysteresis are all determined by the amount of Al, so
The degree of freedom when putting it into practical use is small. Particularly when used for heat pumps, the pressure difference in the hydrogen storage and release curves, that is, hysteresis, is extremely important.If this is large, the storage alloy or hydride will have to be heated or heated with a larger temperature difference during hydrogen storage or release operations. The hydrogen must be cooled or pressurized or depressurized with a larger pressure difference, reducing the efficiency of the device. Therefore, in order to effectively utilize the hydrogen storage capacity and hydrogenation reaction heat on a practical scale, it is necessary to reduce the hysteresis. Furthermore, it has been confirmed that in the case of an alloy with a composition in which the amount of Al substitution is relatively large, the amount of hydrogen storage decreases. Under these circumstances, the present invention aims to develop rare earth metal-nickel alloys, such as RNi 5 (R represents a rare earth metal atom), which have properties suitable for hydrogen storage (especially low dissociation pressure and hydrogen storage capacity). The aim is to improve practicality by reducing the hysteresis while maintaining the characteristic of large
Basically, a specific amount of a metal (Mt) selected from the group consisting of niobium, tin, and molybdenum is blended as a third element with the above rare earth metals and nickel, and the alloy component ratio is adjusted to meet the requirements of the general formula RxNiyMtz. The purpose can be achieved by adjusting. The reason why x, y, and z are determined as described above in the general formula RxNiyMtz of the hydrogen storage alloy of the present invention is as follows. x: 1.0 to 2.0 If x is less than 1.0, the effect of reducing the amount of hydrogen storage and reducing hysteresis will not appear. On the other hand, when x exceeds 2.0, it becomes difficult to release the stored hydrogen, and it becomes impossible to release the stored hydrogen unless high temperature or a combination of low pressure is used. y: 3.0 to 9.0 If y is less than 3.0, the dissociation pressure and hydrogen storage capacity will be extremely reduced, while if y exceeds 9.0, the dissociation pressure will tend to increase, making it suitable for hydrogen storage and waste heat recovery. will no longer be shown. z: 0.01 to 1.0 If z is less than 0.01, the absolute amount of the added metal Mt is insufficient, so the dissociation pressure cannot be lowered sufficiently, and furthermore, the effect of reducing hysteresis is not achieved. On the other hand, if it exceeds 1.0, the amount of stored hydrogen decreases, it becomes difficult to release the stored hydrogen, or the plateau region of the hydrogen storage/release curve tends to become two-stage, and it is not possible to reduce the hysteresis. . Mt is an essential component for maintaining dissociation pressure suitable for hydrogen storage and reducing hysteresis. y+z/x>5 or y+z/x<5: y+z/x=
5, the amount of hydrogen storage decreases and the hysteresis increases. Activation is also somewhat difficult. When the composition of the alloy is in the above range, it has the advantage that the hydrogen storage pressure and release pressure of the alloy can be varied over a wide range suitable for hydrogen storage, and has excellent characteristics such as small hysteresis. Although the basic structure of the rare earth metal ternary hydrogen storage alloy according to the present invention is not clear, for example,
RxNi 5 Mtz alloy is considered to be a hexagonal intermetallic compound similar to LaNi 5 , MmNi 5 , etc.
In any case, compared to LaNi 5 , MmNi 5 , and LaNi 5-x Mtx alloys, they retain properties for hydrogen storage and have smaller hysteresis during hydrogen storage and release, so they are suitable for hydrogen storage as hydrogen storage alloys. It is possible to effectively utilize the capacity and the heat generation and endotherm associated with hydrogen storage and release. Moreover, this alloy is extremely easy to activate, can store large amounts of hydrogen at high density, and the hydrogen storage and desorption reactions are completely reversible. There is virtually no deterioration, and it can withstand long-term use.
Furthermore, it has many features such as being almost unaffected by impurities contained in storage gases such as oxygen, nitrogen, argon, carbon dioxide, and carbon monoxide. By the way, when compared with conventional ternary alloys regarding hysteresis, which is the greatest feature of the alloy of the present invention,
For example, the hysteresis of the conventional LaNi 4.4 Al 0.6 alloy at 120°C is about 1.0 atm, while that of the present alloy at the same temperature is about 1.0 atm for LaNi 5 Sn 0.6 .
It showed 0.3 atm, which is less than half that of conventional alloys. Similar trends are observed in other metals, Mt.
The same was true when Nb, Sn and Mo were used. In producing the rare earth metal ternary hydrogen storage alloy of the present invention, various known methods can be employed, but it is preferable to employ the arc light melting method. That is, after separating and mixing the components of rare earth metals, nickel, and metal Mt, they are press-molded into an arbitrary shape, and then this molded product is charged into an arc light melting furnace and heated and melted in an inert atmosphere. It can be easily manufactured by allowing it to cool. The obtained hydrogen storage alloy is 800 to 1100
C. for 8 to 25 hours, and the resulting alloy is conventionally used in powder form to increase its surface area. The rare earth metal ternary hydrogen storage alloy of the present invention is
It can be activated extremely easily, and after activation, it can easily and rapidly absorb and release a large amount of hydrogen. Activation is carried out by pumping the alloy under reduced pressure with a rotary pump, e.g.
It is carried out by heating to 80° C. to degas, then occluding and desorbing hydrogen in a single operation. To absorb and release hydrogen after activation and to form metal hydrides, fill the alloy powder into a suitable container, degas it, fill it with hydrogen at room temperature, and apply a hydrogen pressure of 20 kg/cm 2 or less. This is done by As described above, with the rare earth metal ternary hydrogen storage alloy of the present invention, hydrogen can be applied at a low pressure of 20 kg/cm 2 or less and in an extremely short time, within several minutes, at room temperature. On the other hand, in the case of general-purpose Ti-Fe alloys, hydrogen absorption hardly occurs when a hydrogen pressure of about 50 kg/cm 2 is applied at room temperature, and therefore activation is impossible under these conditions. . Therefore, approximately 400~
High-temperature treatment of around 500°C is required, and such severe occlusion operations must be repeated several times for activation.Such problems are common with Ti-Ni alloys and Mg-Ni alloys. The case is also substantially the same. The release of hydrogen from the metal hydride can be accomplished simply by opening the container at room temperature. However, by heating the metal hydride above room temperature or reducing the pressure, hydrogen can be released more efficiently and in a shorter time. That is, the hydrogen storage alloy of the present invention can be activated much more easily than conventional alloys, and can absorb and release hydrogen at high speed after activation. As described above, the rare earth metal ternary hydrogen storage alloy of the present invention is a novel alloy developed for the first time.
It has all the properties required as a hydrogen storage material, and in particular, the hysteresis of hydrogen storage and release pressure has been greatly improved compared to conventional hydrogen storage alloys, and the hydrogen storage ability as a hydrogen storage alloy has been improved. This makes it possible to effectively utilize the reaction heat accompanying the hydrogen storage and release reaction. Moreover, the rare earth metal ternary hydrogen storage alloy of the present invention is extremely easy to activate the hydrogen storage and release reaction, and can store a large amount of hydrogen with high density.
It is possible to absorb and release hydrogen at a temperature near room temperature, and no matter how many times hydrogen storage and desorption is repeated, there is virtually no deterioration in the performance of the hydrogen storage alloy, so it can be used for a long period of time. Further, it can be said to be a practically extremely useful hydrogen storage material, with almost no influence from impurities in storage gases such as oxygen, nitrogen, argon, and carbon dioxide gas. Therefore, it exhibits outstanding effects not only in its original use as a hydrogen storage material but also in other uses that utilize the reaction heat accompanying the hydrogen absorption and release reaction. Hereinafter, the present invention will be specifically explained based on Examples. Example 1 Commercially available lanthanum, nickel and Mt (Nb, Sn,
A type of Mo) with an atomic ratio of La:Nh:Mt=1.0:
5.0:0.6, 1:4:0.5, 1:5.5:0.5, 1:1.5:
0.5 and 1:8.5:0.5 and charged into a copper crucible in a high vacuum arc melting furnace. After creating a high-purity argon atmosphere in the furnace, it was heated to about 2000°C to melt it, and then allowed to cool to produce LaNi 5 Nb 0.6 ,
LaNi5Sn0.6 , LaNi5Mo0.6 , LaNi4Nb0.5 , _ _ _
LaNi4Sn0.5 , LaNi4Mo0.5 , LaNi5.5Nb0.5 , _ _ _ _
LaNi 5.5 Sn 0.5 , LaNi 5.5 Mo 0.5 , LaNi 1.5 Nb 0.5 ,
LaNi 1.5 Sn 0.5 , LaNi 1.5 Mo 0.5 , LaNi 8.5 Nb 0.5 ,
A ternary alloy having the compositions LaNi 8.5 Sn 0.5 and LaNi 8.5 Mo 0.5 was obtained. Each of these alloys was annealed at 1100°C for 8 hours. The resulting alloy was ground to 120 mesh, and its 5.0
g was collected in a stainless steel hydrogen storage/release reactor, the reactor was connected to an exhaust system, and degassed by heating to a temperature of 80° C. under reduced pressure. Then purity
Introducing 99.99% hydrogen and increasing the hydrogen pressure inside the vessel to 20Kg/
When the temperature was maintained below cm 2 , hydrogen storage was immediately observed, and after hydrogen storage was completed, exhaust was performed again to complete hydrogen release. Activation of these alloys was completed by this operation. Hydrogen with a purity of 99.99% was introduced into the activated alloy in a reactor at a hydrogen pressure of 20 Kg/cm 2 or less and at a temperature above room temperature to absorb hydrogen. On the other hand, hydrogen release can be carried out at room temperature, but is more efficiently carried out by heating the reactor and/or under reduced pressure. Using the method described above, the relationship between pressure and composition isotherms in hydrogen storage and desorption of each rare earth metal ternary hydrogen storage alloy was determined. One example is LaNi 5 Sn 0.6
The figure (solid line) shows the pressure-composition isotherm at 120°C for the H system. In the figure, curve A is a hydrogen absorption line, and curve B is a hydrogen release line. In addition, the chain line in the figure is the comparative alloy.
This is a hydrogen absorption/dissociation pressure-composition isotherm diagram of LaNi 4.4 Al 0.6 at 120°C, where curve C is the hydrogen absorption line and curve D is the hydrogen desorption line. As is clear from this figure, the alloy of the present invention has improved hysteresis compared to the conventional hydrogen storage alloy shown in the comparative example. In addition, the table below shows the hydrogen storage capacity of each of the above alloys, 25
℃, 40℃ and 120℃ hydride storage pressure and dissociation pressure and the ratio of hydrogen storage pressure (Pa) to hydrogen release pressure (Pd) at 25℃, 40℃ and 120℃,
In other words, it shows the hysteresis index (Pa/Pd) all at once, and the alloys of the present invention (Nos. 1 to 9 and Nos. 15 to 20) have lower hysteresis than the comparative alloys (Nos. 10 to 14). is small and has a large hydrogen storage capacity.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明合金の水素吸蔵・解離圧−組成等
温曲線を従来の合金のそれと対比して示す図であ
る。
The figure shows a hydrogen storage/dissociation pressure-composition isotherm curve of the alloy of the present invention in comparison with that of a conventional alloy.

Claims (1)

【特許請求の範囲】 1 下記一般式()で示されることを特徴とす
る希土類金属三元系水素吸蔵用合金。 RxNiyMtz ……() 式中、Rは希土類金属原子を表わし、Mtはニ
オブ、スズおよびモリブデンからなる群から選ば
れた金属原子であり、xは1.0〜2.0の正数、yは
3.0〜9.0の正数、zは0.01〜1.0の正数であり、
y+z/x>5またはy+z/x<5である。
[Scope of Claims] 1. A rare earth metal ternary hydrogen storage alloy characterized by being represented by the following general formula (). RxNiyMtz...() In the formula, R represents a rare earth metal atom, Mt is a metal atom selected from the group consisting of niobium, tin, and molybdenum, x is a positive number from 1.0 to 2.0, and y is
A positive number between 3.0 and 9.0, z is a positive number between 0.01 and 1.0,
y+z/x>5 or y+z/x<5.
JP1666583A 1983-02-02 1983-02-02 Ternary alloy of rare earth element for occluding hydrogen Granted JPS59143036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1666583A JPS59143036A (en) 1983-02-02 1983-02-02 Ternary alloy of rare earth element for occluding hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1666583A JPS59143036A (en) 1983-02-02 1983-02-02 Ternary alloy of rare earth element for occluding hydrogen

Publications (2)

Publication Number Publication Date
JPS59143036A JPS59143036A (en) 1984-08-16
JPS626739B2 true JPS626739B2 (en) 1987-02-13

Family

ID=11922617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1666583A Granted JPS59143036A (en) 1983-02-02 1983-02-02 Ternary alloy of rare earth element for occluding hydrogen

Country Status (1)

Country Link
JP (1) JPS59143036A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230950A (en) * 1984-05-01 1985-11-16 Japan Metals & Chem Co Ltd Hydrogen storing material
JPS6187840A (en) * 1984-10-05 1986-05-06 Japan Steel Works Ltd:The Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy
JPS6347345A (en) * 1986-08-14 1988-02-29 Japan Metals & Chem Co Ltd Hydrogen storage material
JPH02111837A (en) * 1988-10-18 1990-04-24 Agency Of Ind Science & Technol Hydrogen storage electrode
JPH0382734A (en) * 1989-08-25 1991-04-08 Nippon Yakin Kogyo Co Ltd Rare earth metal-series hydrogen storage alloy
JPH03247735A (en) * 1990-02-23 1991-11-05 Nippon Yakin Kogyo Co Ltd Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen
JP5869262B2 (en) * 2011-08-29 2016-02-24 ダイハツ工業株式会社 Fuel cell
CN109659108B (en) * 2018-12-19 2020-05-29 北矿科技股份有限公司 NdFeB material prepared by HDDR and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286921A (en) * 1976-01-14 1977-07-20 Shin Etsu Chem Co Ltd Alloy for adsorption of low temperature hydrogen gas and its activatio n
JPS5361516A (en) * 1976-11-16 1978-06-02 Agency Of Ind Science & Technol Hydrogen storing material
JPS54130434A (en) * 1978-03-31 1979-10-09 Agency Of Ind Science & Technol Hydrogen storing alloy
US4242315A (en) * 1969-01-24 1980-12-30 U.S. Philips Corporation Hydrides of the formula ABn Hm
US4249940A (en) * 1979-01-08 1981-02-10 The International Nickel Co., Inc. Mischmetal-nickel-iron hydrogen storage compound
JPS56169746A (en) * 1980-06-03 1981-12-26 Agency Of Ind Science & Technol Mischmetal-calcium base alloy for hydorogen occllision
JPS5763669A (en) * 1980-10-02 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel ternary alloy for occluding hydrogen and its manufacture
JPS581040A (en) * 1981-06-23 1983-01-06 Agency Of Ind Science & Technol Quaternary alloy of rare earth metals for occlusion of hydrogen
JPS5877544A (en) * 1981-10-29 1983-05-10 Sekisui Chem Co Ltd Hydrogen occluding alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242315A (en) * 1969-01-24 1980-12-30 U.S. Philips Corporation Hydrides of the formula ABn Hm
JPS5286921A (en) * 1976-01-14 1977-07-20 Shin Etsu Chem Co Ltd Alloy for adsorption of low temperature hydrogen gas and its activatio n
JPS5361516A (en) * 1976-11-16 1978-06-02 Agency Of Ind Science & Technol Hydrogen storing material
JPS54130434A (en) * 1978-03-31 1979-10-09 Agency Of Ind Science & Technol Hydrogen storing alloy
US4249940A (en) * 1979-01-08 1981-02-10 The International Nickel Co., Inc. Mischmetal-nickel-iron hydrogen storage compound
JPS56169746A (en) * 1980-06-03 1981-12-26 Agency Of Ind Science & Technol Mischmetal-calcium base alloy for hydorogen occllision
JPS5763669A (en) * 1980-10-02 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel ternary alloy for occluding hydrogen and its manufacture
JPS581040A (en) * 1981-06-23 1983-01-06 Agency Of Ind Science & Technol Quaternary alloy of rare earth metals for occlusion of hydrogen
JPS5877544A (en) * 1981-10-29 1983-05-10 Sekisui Chem Co Ltd Hydrogen occluding alloy

Also Published As

Publication number Publication date
JPS59143036A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US4161402A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
US5085944A (en) Rare earth metal-series alloys for storage of hydrogen
US4142300A (en) Lanthanum nickel aluminum alloy
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
Pourarian et al. Hydrogen storage in CeNi5− xCux
JPS626739B2 (en)
US20050112018A1 (en) Ca-Mg-Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
WO2003072838A1 (en) Ca, Mg AND Ni CONTAINING ALLOYS, METHOD FOR PREPARING THE SAME AND USE THEREOF FOR GAS PHASE HYDROGEN STORAGE
US4358432A (en) Material for hydrogen absorption and desorption
Pal Synthesis, characterization and dehydriding behavior of the intermetallic compound LaMg12
EP1511099A1 (en) Ca, Mg and Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JPH0210210B2 (en)
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
CA1098887A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JP2002309331A (en) Hydrogen occlusing/discharging material and its manufacturing method
JPS5947022B2 (en) Alloy for hydrogen storage
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPH10121180A (en) Hydrogen storage alloy and its production
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS604256B2 (en) Alloy for hydrogen storage
US4350673A (en) Method of storing hydrogen
US20040247481A1 (en) Ca-Mm-Ni based hydrogen storage alloys