JPH10121180A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH10121180A
JPH10121180A JP27343896A JP27343896A JPH10121180A JP H10121180 A JPH10121180 A JP H10121180A JP 27343896 A JP27343896 A JP 27343896A JP 27343896 A JP27343896 A JP 27343896A JP H10121180 A JPH10121180 A JP H10121180A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
hydrogen
bcc
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27343896A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
賢治 中村
Hidenori Iba
英紀 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27343896A priority Critical patent/JPH10121180A/en
Publication of JPH10121180A publication Critical patent/JPH10121180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy requiring no particular use of expensive alloying elements such as V, having a hydrogen absorbing and releasing capacity equal to that of the conventional BCC type hydrogen storage alloy, and advantageous in respect of manufacturing costs, and its production. SOLUTION: The hydrogen storage alloy has a composition represented by formula Ti100-a-b Cra Xb [where X is at least either of Mo and W and the symbols (a) and (b) satisfy, by atomic %, 40<=a<=70 and 0<b<=20, respectively]and also has a crystalline cubic structure composed of body-centered structure (BCC type). As the method of manufacture of this hydrogen storage alloy, the aforesaid alloy is melted and cast, and the resultant ingot is held at 1200-1400 deg.C (excluding TiCr single phase region) for 1-5hr and then subjected to rapid cooling treatment, by which the crystalline structure is provided with body-centered cubic structure (BCC type) at ordinary temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金に関
し、特に高価なV等の合金元素を使用することなく、か
つ従来のBCC型水素吸蔵合金と同レベルの水素吸放出
能を有し、製造コスト的に有利な水素吸蔵合金およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, and in particular, has the same level of hydrogen storage / release capability as conventional BCC type hydrogen storage alloys without using expensive alloying elements such as V. The present invention relates to a hydrogen storage alloy which is advantageous in terms of production cost and a production method thereof.

【0002】[0002]

【従来の技術】水素の貯蔵・輸送手段として、水素吸蔵
合金は、合金自身の体積の約1000倍以上の水素ガス
を吸蔵し貯蔵することが可能であり、その体積密度は、
液体あるいは固体水素とほぼ同等かあるいはそれ以上で
ある。この水素吸蔵材料として、V,Nb,TaやTi
VMn系、TiVCr系合金などの体心立方構造(以下
BCCと呼称する)の金属は、すでに実用化されている
LaNi5 などのAB5型合金やTiMn2 などのAB
2 型合金に比べ、大量の水素を吸蔵することが古くから
知られていた。これは、BCC構造では、その結晶格子
中の水素吸蔵サイトが多く、計算による水素吸蔵量がH
/M=2.0(原子量50程度のTiやVなど合金では
約4.0wt%)と極めて大きいためである。
2. Description of the Related Art As a means for storing and transporting hydrogen, a hydrogen storage alloy can store and store hydrogen gas of about 1000 times or more the volume of the alloy itself.
It is almost equal to or higher than liquid or solid hydrogen. As this hydrogen storage material, V, Nb, Ta or Ti
VMn based metal having a body-centered cubic structure, such as TiVCr alloy (hereinafter referred to as BCC) is already AB such AB 5 type alloys and TiMn 2, such as LaNi 5 has been put to practical use
It has been known for a long time that it absorbs a larger amount of hydrogen than type 2 alloys. This is because in the BCC structure, there are many hydrogen storage sites in the crystal lattice, and the calculated hydrogen storage amount is H
/M=2.0 (about 4.0 wt% for alloys such as Ti and V having an atomic weight of about 50), which is extremely large.

【0003】また、純バナジウム合金においては、結晶
構造から計算された値とほぼ同じ約4.0wt%を吸蔵
し、その約半分を常温常圧下で放出する。同じ周期表の
5A族の元素のNbやTaにおいても同様に大きな水素
吸蔵量と良好な水素放出特性を示すことが知られてい
る。しかし、V,Nb,Taなどの純金属では、コスト
が非常に高いため、水素タンクやNi−MH電池などあ
る程度の合金量を必要とする工業的な応用では、Ti−
VなどのBCC構造を有する成分範囲の合金において、
その特性が検討されてきた。一方、このようなTiを含
むBCC型水素吸蔵合金は、高容量であるがいずれも高
価なVを含むので、これに対してVを含むことなくかつ
同等レベルの容量を有する水素吸蔵合金は、電気自動車
(EV)用水素タンクなどの高容量な水素吸蔵合金を必
要とするアプリケーションにおいて、画期的なコストメ
リットが期待できる。
[0003] A pure vanadium alloy absorbs about 4.0 wt%, which is almost the same as the value calculated from the crystal structure, and releases about half of it under normal temperature and normal pressure. It is known that Nb and Ta of group 5A elements of the same periodic table also show a large amount of hydrogen storage and good hydrogen release characteristics. However, pure metals such as V, Nb, and Ta have very high costs. Therefore, in an industrial application requiring a certain amount of alloy such as a hydrogen tank or a Ni-MH battery, Ti-
In an alloy in a component range having a BCC structure such as V,
Its properties have been studied. On the other hand, such a BCC type hydrogen storage alloy containing Ti has a high capacity but contains expensive V. Therefore, a hydrogen storage alloy having no V and having the same level of capacity, In applications requiring a high-capacity hydrogen storage alloy, such as a hydrogen tank for an electric vehicle (EV), a breakthrough cost advantage can be expected.

【0004】また、VはNi−MH電池中の電解液に溶
出するが、これを含まない合金では、Ni−MH電池の
負極材への適用も期待できる。この分野の公知技術とし
て、特開平4−210446号公報には、比較的安い材
料費で水素吸蔵量を増大し、さらに反応速度を大きくす
ることを目的に、TiCrMo系およびTiCrMoF
e系において、高純度Arガス雰囲気下でアーク溶解
し、−40℃での水素吸放出量、さらに吸蔵・放出の効
率、および反応速度を改善できることが開示されてい
る。また、特開昭61−176067号公報には、Ti
−Cr合金にアルカリ土類金属等から選ばれる一種の元
素を添加して、充放電によるサイクル寿命の長い水素吸
蔵電極を提供するための水素吸蔵合金が開示されてい
る。
[0004] In addition, V is eluted in the electrolytic solution in the Ni-MH battery, but an alloy containing no V can be expected to be applied to the negative electrode material of the Ni-MH battery. As a known technique in this field, Japanese Patent Application Laid-Open No. Hei 4-210446 discloses a TiCrMo-based and TiCrMoF with the aim of increasing the hydrogen storage amount at a relatively low material cost and further increasing the reaction rate.
It is disclosed that in the e system, arc melting can be performed in a high-purity Ar gas atmosphere to improve the amount of hydrogen storage / release at -40 ° C, the efficiency of storage / release, and the reaction rate. JP-A-61-176067 discloses that Ti
Disclosed is a hydrogen storage alloy for providing a hydrogen storage electrode having a long cycle life by charge and discharge by adding a kind of element selected from alkaline earth metals and the like to a -Cr alloy.

【0005】しかし、これらのBCC合金では、V系に
おいて問題とされている反応速度が遅い、活性化が困難
という点に加えて、実用的な温度・圧力では吸蔵するの
みで放出量は少ない等の新しい問題点も生じている。こ
の結果、BCC相を主たる構成相とする合金は、いまだ
実用には至っていない。さらに、V等の高価な合金元素
を含有せず、かつ水素吸放出特性が優れた合金の開発が
望まれている。
However, in these BCC alloys, in addition to the fact that the reaction rate, which is a problem in the V system, is slow and the activation is difficult, in addition, at a practical temperature and pressure, only the occlusion and the release amount are small. A new problem has arisen. As a result, an alloy having a BCC phase as a main constituent phase has not yet been put to practical use. Further, development of an alloy which does not contain an expensive alloy element such as V and has excellent hydrogen absorption / desorption characteristics is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
のBCC型水素吸蔵合金のTi−V−Mn系、Ti−V
−Cr系合金におけるVをMoおよび/またはWで置換
することを検討し、高容量で安価な水素吸蔵合金を提供
する。また、本発明の他の目的は、前記製造コスト的に
有利で水素吸放出特性が優れた合金により、水素タンク
やNi−MH電池用として工業的規模に適用可能とする
水素吸放出特性を有する水素吸蔵合金を提供する。ま
た、本発明の別の目的は、上記の新規BCC合金によっ
て、低コストで工業的規模における製造を可能とするた
めの最適な製造工程を熱処理方法で達成する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a conventional BCC type hydrogen storage alloy of Ti-V-Mn type, Ti-V
-Consider replacement of V in a Cr-based alloy with Mo and / or W to provide a high-capacity and inexpensive hydrogen storage alloy. Another object of the present invention is to provide a hydrogen storage / release characteristic that is applicable to a hydrogen tank or a Ni-MH battery on an industrial scale by using the alloy that is advantageous in terms of manufacturing cost and has excellent hydrogen storage / release properties. Provide a hydrogen storage alloy. Another object of the present invention is to achieve, by the above-mentioned novel BCC alloy, a heat treatment method, which is an optimum production process for enabling production on an industrial scale at low cost.

【0007】[0007]

【課題を解決するための手段】上記の目的は、組成が、
一般式Ti100-a-b Cra b 、但し、XはMo,Wの
少なくとも1種で、式中a,bは原子%表示で、40≦
a≦70,0<b≦20で表され、かつ結晶構造が体心
立方構造(BCC型)であることを特徴とする水素吸蔵
合金によって達成される。また、上記の目的は、前記合
金を、溶解・鋳造後、前記インゴットを1200〜14
00℃(ただし、TiCr2 単相領域を除く)の温度で
1〜5時間保持し、その後急冷処理をすることによっ
て、結晶構造が常温で体心立方構造(BCC型)を有す
るようになすことを特徴とする水素吸蔵合金の製造方法
によっても達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a composition comprising:
General formula Ti 100-ab C a X b , wherein X is at least one of Mo and W, wherein a and b are represented by atomic% and 40 ≦
This is achieved by a hydrogen storage alloy represented by a ≦ 70, 0 <b ≦ 20, and characterized in that the crystal structure is a body-centered cubic structure (BCC type). In addition, the above-mentioned object is to melt and cast the alloy, and then put the ingot in the range of 1200 to 14
The crystal structure has a body-centered cubic structure (BCC type) at room temperature by holding at a temperature of 00 ° C. (excluding the TiCr 2 single phase region) for 1 to 5 hours and then performing a quenching treatment. This is also achieved by a method for producing a hydrogen storage alloy characterized by the following.

【0008】[0008]

【発明の実施の形態】本発明の合金の例として、Ti−
Cr−Mo系合金での範囲を、図1に示す。この三元状
態図では、Ti−Cr系のTiCr2 であるラーベス相
の単相領域が存在し、本発明はこの範囲を回避し結晶構
造がBCCからなる範囲とするものである。すなわち、
図1の点A(Ti30Cr70)、B(Ti10Cr70X20) 、C(Ti40Cr
40X20)、およびD(Ti60Cr40)からなる線分で囲まれた範
囲内で、ただし、AD以外の線分上を含む組成とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION As an example of the alloy of the present invention, Ti-
FIG. 1 shows the range of the Cr-Mo alloy. In the ternary phase diagram, there is a single phase region of the Laves phase, which is Ti—Cr-based TiCr 2 , and the present invention avoids this range and sets the crystal structure to a range consisting of BCC. That is,
Points A (Ti 30 Cr 70 ), B (Ti 10 Cr 70 X 20 ), C (Ti 40 Cr
40 X 20 ) and D (Ti 60 Cr 40 ) within a range surrounded by a line segment, provided that the composition includes a line segment other than AD.

【0009】一方、これまでの本発明者等の知見では、
BCC合金のなかでも、その内部でスピノーダル分解に
より、ナノオーダの微細な二相に規則的に分解した合金
では、水素放出特性が著しく改善される。本三元系合金
の基本となる二元系状態図で、特にTi−Cr系,Cr
−Mo系およびCr−W系では、二相分離の領域が存在
することがわかる。一例として図6に、Ti−Cr系の
二元の状態図を示す。この図では、TiCr2 の1370℃
と共析点を結ぶ二相分離の固相線があり、これ以上の温
度では、均一BCC相である。このような状態図におい
ては、スピノーダル分解により形成され特定の結晶方位
に成長した格子定数の異なる二相が、1.0nmから10
0nmの間隔で周期的構造を有することになる。
On the other hand, according to the findings of the present inventors,
Among the BCC alloys, those that regularly decompose into two fine phases on the order of nanometers due to spinodal decomposition therein have significantly improved hydrogen release characteristics. This is a binary phase diagram that is the basis of the ternary alloy.
It can be seen that the -Mo system and the Cr-W system have a region of two-phase separation. As an example, FIG. 6 shows a binary phase diagram of a Ti—Cr system. In this figure, 1370 ° C. of TiCr 2
And a solid phase line of two-phase separation connecting the eutectoid point to the solid phase. In such a phase diagram, two phases having different lattice constants formed by spinodal decomposition and grown in a specific crystal orientation are from 1.0 nm to 10 nm.
It will have a periodic structure at 0 nm intervals.

【0010】この規則的なナノオーダ周期構造により、
BCC合金が構造的に持つ大きな水素吸蔵量を、実用的
な温度と圧力域で放出させ、かつ活性化条件を緩和し、
反応速度を改善することができる。一方、本発明の合金
系におけるBCC均一相の存在領域をより具体的に示し
たのが、図5のTiCr2 と第三元素としてのMoおよ
び/またはWをXとした擬二元系状態図である。この図
で本発明の熱処理温度は斜線で表示される部分、すなわ
ち、前記TiCr2 単相領域を除外して、BCCを均一
に室温まで持ち来ることが可能なる範囲とするものであ
る。
With this regular nano-order periodic structure,
BCC alloy releases a large amount of hydrogen stored structurally in a practical temperature and pressure range, relaxes the activation conditions,
The reaction rate can be improved. On the other hand, the existence region of the BCC homogeneous phase in the alloy system of the present invention is more specifically shown in the pseudo-binary phase diagram in FIG. 5 where X is TiCr 2 and Mo and / or W as the third element. It is. In this figure, the heat treatment temperature of the present invention is set to a range in which the BCC can be uniformly brought to room temperature, excluding the portion indicated by oblique lines, that is, the TiCr 2 single phase region.

【0011】以上のように、本発明は、高価なVを用い
ることなく、従来のBCC型水素吸蔵合金と同レベルの
水素吸放出能を有する合金を提供可能とする。さらに、
製造工程の最適化による低コスト化も可能とする。次
に、本発明の合金組成および熱処理条件について説明す
る。本発明の合金組成は、Ti,Crと、Moおよび/
またはWを成分とするので、従来のV等を使用した水素
吸蔵合金に比較して、コストを低減しかつV等をMoお
よび/またはWで置換した成分であり、状態図における
溶体化処理範囲を拡大し、そのため相分離が十分に起こ
り、二相状態で水素吸放出特性に優れた合金が得られ
る。以下、本発明の成分限定理由について説明する。一
般式Ti100-a-b Cra b 、但し、XはMoおよび/
またはW、式中a,bは原子%表示で、40≦a≦7
0,0<b≦20で表される。前記組成範囲はBCC相
の均一化と、熱処理による合金中の二相分離状態での結
晶構造の歪みを最適化し、水素吸蔵合金としての水素の
移動度を促進可能とする微細組織にできる最適なる組成
といえる。
As described above, the present invention uses an expensive V
Of the same level as conventional BCC type hydrogen storage alloy
It is possible to provide an alloy having an ability to absorb and release hydrogen. further,
Cost reduction by optimizing the manufacturing process is also possible. Next
Now, the alloy composition and heat treatment conditions of the present invention will be described.
You. The alloy composition of the present invention comprises Ti, Cr, Mo and / or
Or W as a component, so hydrogen using conventional V etc.
Compared to occlusion alloys, it reduces costs and reduces V
And / or W-substituted components in the phase diagram
The range of solution treatment is expanded, so that sufficient phase separation occurs.
Alloy with excellent hydrogen absorption / desorption characteristics in the two-phase state.
You. Hereinafter, the reasons for limiting the components of the present invention will be described. one
General formula Ti100-abCraX bWhere X is Mo and / or
Or W, wherein a and b are represented by atomic%, and 40 ≦ a ≦ 7
0,0 <b ≦ 20. The composition range is BCC phase
Uniformity in the alloy and the formation of two-phase separated
Optimizes the crystal structure distortion and makes hydrogen as a hydrogen storage alloy
Optimum composition for microstructure enabling mobility enhancement
It can be said that.

【0012】すなわち、Crが40at%未満では、水
素吸蔵合金の水素吸放出特性(圧力組成等温線:PCT
線図)における平衡圧力が低く、吸蔵した水素を再び常
温で取り出すことが困難となる。また、Crが70at
%超では、前記平衡圧力が高11常温での水素吸蔵量が
少ない。さらに、Moおよび/またはWが、0at%で
は熱処理を施しても合金がBCC化されない。また、2
0at%超では水素吸蔵量が低下するため実用的でなく
なる。このため上記の組成範囲に限定した。Moおよび
/またはWの好ましい範囲は5%以上20%以下であ
る。また、Crの好ましい範囲は50%以上70%以下
である。
That is, when the Cr content is less than 40 at%, the hydrogen storage / release characteristics of the hydrogen storage alloy (pressure composition isotherm: PCT
(Diagram), the equilibrium pressure is low, and it becomes difficult to remove the stored hydrogen at room temperature again. In addition, Cr is 70 at
When the equilibrium pressure is higher than 11%, the hydrogen storage amount at normal temperature is small. Further, when Mo and / or W is 0 at%, the alloy is not converted to BCC even if heat treatment is performed. Also, 2
If it exceeds 0 at%, the amount of hydrogen storage decreases, which is not practical. For this reason, it was limited to the above composition range. The preferred range of Mo and / or W is 5% or more and 20% or less. The preferable range of Cr is 50% or more and 70% or less.

【0013】本発明では、前記合金をBCC相が均一に
出現し、水素吸放出量を最大とするように、製造方法と
しての熱処理条件を規定した。すなわち、母合金を溶解
・鋳造後、前記インゴットを、1200〜1400℃
(ただし、TiCr2 単相領域を除く)の温度で1〜5
時間保持し、その後油中または氷水中にて急冷処理する
ことによって、合金をBCC化することを特徴とする。
すなわち、本発明の熱処理条件としては、上記の組成範
囲の合金においては、水素吸蔵量の高容量なBCC相が
1200℃以上においてのみ安定に存在することにな
る。一方、誘導加熱法、アーク溶解法などにより溶融さ
れた合金は、通常冷却時に1200℃以下でより安定な
C14ラーベス相へと変態する。このため、上記組成に
てBCC相を形成するためには、高温安定なBCC相を
常温まで凍結する必要がある。
[0013] In the present invention, the heat treatment conditions as a manufacturing method are specified so that the BCC phase appears uniformly in the alloy and the amount of hydrogen absorbed and released is maximized. That is, after melting and casting the master alloy, the ingot is heated to 1200 to 1400 ° C.
(Excluding the TiCr 2 single phase region) at a temperature of 1 to 5
It is characterized in that the alloy is converted to BCC by holding for a time and then quenching in oil or ice water.
That is, as the heat treatment conditions of the present invention, in the alloy having the above composition range, a high-capacity hydrogen-absorbing BCC phase is stably present only at 1200 ° C. or higher. On the other hand, an alloy melted by an induction heating method, an arc melting method, or the like transforms to a more stable C14 Laves phase at 1200 ° C. or less during normal cooling. For this reason, in order to form a BCC phase with the above composition, it is necessary to freeze a high-temperature stable BCC phase to room temperature.

【0014】[0014]

【実施例】本発明の実施例として水素吸蔵合金の試料を
次のように作成した。組成は本発明の範囲、すなわち図
1(a)のABCD内の組成範囲として、図1(b)に
示すTi27Cr66Mo7 、Ti30Cr63Mo7 、Ti33Cr60M
o7 、Ti36Cr57Mo7 、Ti39Cr54Mo7 に成分調整し
た。試料は、全て水冷銅ハースを用いたアルゴン中アー
ク溶解で約20gのインゴットで行った。本実施例のデ
ータはすべて鋳造後1400℃で2時間加熱した後水冷
する熱処理を行って組織をBCCとし、このインゴット
を空気中で粉砕し、活性化処理として、60℃、10-4
torr真空引き+50atm 水素加圧を4サイクル繰返し行
った後、合金の水素吸蔵量と水素吸放出特性は、容積法
による圧力組成等温線測定法(JIS H7201)に
規定されている真空原点法で行ったものである。
EXAMPLES As an example of the present invention, a sample of a hydrogen storage alloy was prepared as follows. The composition is within the scope of the present invention, that is, the composition range in the ABCD of FIG. 1A, which is Ti 27 Cr 66 Mo 7 , Ti 30 Cr 63 Mo 7 , and Ti 33 Cr 60 M shown in FIG.
The components were adjusted to o 7 , Ti 36 Cr 57 Mo 7 , and Ti 39 Cr 54 Mo 7 . All samples were arc-melted in argon using a water-cooled copper hearth in about 20 g ingots. All the data of the present embodiment are obtained by performing a heat treatment of heating at 1400 ° C. for 2 hours after casting, followed by water cooling to make the structure BCC, pulverizing the ingot in air, and activating the ingot at 60 ° C. and 10 −4.
torr evacuation + 50atm After repeating hydrogen pressurization for 4 cycles, the hydrogen storage capacity and hydrogen absorption / desorption characteristics of the alloy were determined by the vacuum origin method specified in the pressure composition isotherm measurement method (JIS H7201) by the volumetric method. It is a thing.

【0015】また、合金の構造解析は、透過電子顕微鏡
と付属のEDX(エネルギー分散型X線回折)を用いて
行った。さらに透過電子顕微鏡で得られた情報をもとに
結晶構造モデルを作成し、粉末X線回折データのリート
ベルト解析を行った。リートベルト解析は通常のX線回
折法とは異なり、回折強度を用いて結晶構造パラメータ
を精密化できるとともに、各相の重量分率を計算により
求めることが可能である。リートベルト解析には、無機
材質研究所泉博士の開発した解析ソフトRIETAN9
4を用いた。
The structural analysis of the alloy was performed using a transmission electron microscope and an attached EDX (energy dispersive X-ray diffraction). Further, a crystal structure model was created based on information obtained by a transmission electron microscope, and Rietveld analysis of powder X-ray diffraction data was performed. In the Rietveld analysis, unlike the ordinary X-ray diffraction method, the crystal structure parameters can be refined by using the diffraction intensity, and the weight fraction of each phase can be obtained by calculation. For the Rietveld analysis, the analysis software RIETA N9 developed by Dr. Izumi, Inorganic Materials Research Laboratory
4 was used.

【0016】図2は本実施例の前記〜の試料につい
ての0℃での水素吸蔵および放出過程を示す図である。
この図で、Ti27Cr66Mo7 およびTi30Cr63Mo7 は水素
吸蔵量が小さく殆ど放出しない。Ti33Cr60Mo7 および
Ti36Cr57Mo7 では、水素吸蔵量が改善され、Ti33Cr
60Mo7 のプラト平衡圧はほぼ1MPa に近く、Ti36Cr 57
Mo7 では1MPa 以下で、吸蔵・放出とも最大の値を示
し、プラト平坦性においても良好な値を示している。ま
た、Ti39Cr54Mo7 については、水素吸蔵量は小さく、
殆ど放出しない傾向を示している。図3に前記Ti39Cr
54Mo7 について、0℃および40℃での水素吸蔵特性を
示す。本成分においては40℃において、水素吸蔵量お
よび放出量ともに改善され、かつプラト圧における平坦
性もかなり良好な結果であって、本成分系は実用上有望
であることが分かった。
FIG. 2 shows the above-mentioned samples of this embodiment.
FIG. 5 is a diagram showing the hydrogen storage and release processes at 0 ° C. in FIG.
In this figure, Ti27Cr66Mo7And Ti30Cr63Mo7Is hydrogen
The storage amount is small and it hardly releases. Ti33Cr60Mo7and
Ti36Cr57Mo7In, the hydrogen storage capacity is improved and Ti33Cr
60Mo7Plateau equilibrium pressure is almost 1MPa and Ti36Cr 57
Mo7Shows the maximum value of both occlusion and release below 1MPa
However, it also shows a good value in the plateau flatness. Ma
Ta39Cr54Mo7About, the hydrogen storage capacity is small,
It shows a tendency to hardly release. FIG.39Cr
54Mo7About the hydrogen storage properties at 0 ° C and 40 ° C
Show. At 40 ° C, this component has a hydrogen storage capacity and
Improved release and release and flat at plateau pressure
The properties are quite good, and this component system is promising for practical use.
It turned out to be.

【0017】圧力組成等温線の平坦な領域の圧力(プラ
ト平衡圧)は、図8(a)および(b)のようにTi/Cr
の組成比により変化する。この図はTi−Cr−Mo系のMoを
7at%に固定して、TiとCrの量を変化させたものであ
る。本発明では、水素タンクやヒートポンプなどのアプ
リケーションの使用環境として考えられる−40℃で1
0MPa以下の吸蔵圧を示す合金組成、および100℃
で0.01MPa 以上の放出圧を示す合金組成を請求範囲
とした。
The pressure in the flat region of the pressure composition isotherm (plato equilibrium pressure) is Ti / Cr as shown in FIGS.
Varies depending on the composition ratio. In this figure, the amount of Ti and Cr is changed while fixing Ti-Cr-Mo-based Mo at 7 at%. In the present invention, a temperature of -40 ° C. is considered as a use environment for applications such as a hydrogen tank and a heat pump.
Alloy composition showing an occlusion pressure of 0 MPa or less, and 100 ° C.
An alloy composition exhibiting a discharge pressure of 0.01 MPa or more in the present invention was defined as a claim.

【0018】また、図4に、Ti41Cr56W3について、前記
と同様にアーク溶解後、1400℃で2時間保持後、水
焼入れの熱処理を施したサンプルの水素吸蔵および放出
過程(PCT特性)を示す。この図で、40℃での最大
水素吸蔵量は約2.3Wt%、0℃で約2.4Wt%の良好
な値を示し、放出特性においても40℃では、プラト圧
における平坦性もかなり良好な結果を示している。図3
および図4は略同一の水素吸蔵特性であって、このこと
から、WではMoに比較して原子量が約2倍であること
から、添加量が少なくてもBCC化効果が十分に得られ
ることによるものと考えられる。表1に本発明材と比較
材の水素吸放出能の比較を示す。
FIG. 4 shows the hydrogen absorption and release processes (PCT characteristics) of Ti 41 Cr 56 W 3 in the same manner as described above, after arc melting, holding at 1400 ° C. for 2 hours, and performing heat treatment of water quenching. ). In this figure, the maximum hydrogen storage amount at 40 ° C. shows a good value of about 2.3 Wt%, and that at 0 ° C. shows a good value of about 2.4 Wt%. Results are shown. FIG.
4 and FIG. 4 show substantially the same hydrogen storage characteristics. From this, it is found that the atomic weight of W is about twice as large as that of Mo, so that a sufficient BCC conversion effect can be obtained even with a small amount of addition. It is thought to be due to. Table 1 shows a comparison of the hydrogen absorbing and releasing ability between the material of the present invention and the comparative material.

【0019】[0019]

【表1】 [Table 1]

【0020】この表より、本発明のTi33Cr60Mo7 では、
水素吸蔵量が598cc/gで、放出量は598cc/
gで、Ti36Cr57Mo7 では、水素吸蔵量が674cc/g
で、放出量は502cc/gと良好な値を示している。
一方、比較材のTi20Cr73Mo7では、水素吸蔵量が146
cc/gで、放出量は40cc/gと前記本発明材に比
較してかなり小さな値を示している。本発明材は明らか
にラーベス合金より有効水素移動量が多く、水素吸放出
特性に優れ、その特性値は従来のVを含むBCC合金と
同レベルである。また、表2に組成Ti36Cr57Mo7 につ
いて、母合金と熱処理後のXRDによるBCCとラーベ
ス相との相分率を比較で示す。
From this table, it can be seen that Ti 33 Cr 60 Mo 7 of the present invention
Hydrogen storage amount is 598cc / g and release amount is 598cc / g
g, Ti 36 Cr 57 Mo 7 has a hydrogen storage capacity of 674 cc / g
And the release amount is as good as 502 cc / g.
On the other hand, in the comparative material Ti 20 Cr 73 Mo 7 , the hydrogen storage amount was 146.
In terms of cc / g, the release amount was 40 cc / g, which is considerably smaller than that of the material of the present invention. The material of the present invention clearly has a higher effective hydrogen transfer amount than the Laves alloy, and is excellent in hydrogen absorption / desorption characteristics, and the characteristic values are at the same level as the conventional BCC alloy containing V. Table 2 shows a comparison between the mother alloy and the phase fraction of BCC and Laves phase by XRD after heat treatment for the composition Ti 36 Cr 57 Mo 7 .

【0021】図7(a)および(b)に、Ti41Cr56W3
ついてのXRD(Cu電極、出力48kv)のX線相対
強度と回折角度のチャートを示す。(a)図は、アーク
溶解直後のサンプルで、(b)図は、熱処理材(140
0℃→水冷)についての結果である。アーク溶解直後で
はラーベス相とその他相が存在していたが、熱処理によ
りBCC均一単相になっていることが分かる。
FIGS. 7A and 7B are charts of XRD (Cu electrode, output 48 kv) of X-ray relative intensity and diffraction angle of Ti 41 Cr 56 W 3 . (A) is a sample immediately after arc melting, and (b) is a heat-treated material (140).
0 ° C. → water cooling). Immediately after the arc melting, the Laves phase and other phases were present, but it can be seen that the BCC became a uniform single phase by the heat treatment.

【0022】[0022]

【表2】 [Table 2]

【0023】これより、母合金がラーベス単相であるの
に対し、熱処理された合金は顕著にBCC化しているの
が分かる。
From this, it can be seen that while the master alloy is a Laves single phase, the heat-treated alloy is significantly converted to BCC.

【0024】[0024]

【発明の効果】本発明によって、高価なV等を含むこと
なく、かつ水素吸放出特性が従来のV等を含む合金並で
あるBCC型水素吸蔵合金が製造可能となる。また、合
金原料費の大幅な削減が図れる。従って、本発明によっ
て、高容量なBCC型水素吸蔵合金を極めて低コストで
製造することができ、各種用途への実用化が可能にな
る。
According to the present invention, it is possible to manufacture a BCC type hydrogen storage alloy which does not contain expensive V or the like and has a hydrogen absorption / desorption characteristic comparable to that of a conventional alloy containing V or the like. Also, the cost of alloy raw materials can be significantly reduced. Therefore, according to the present invention, a high-capacity BCC type hydrogen storage alloy can be manufactured at extremely low cost, and practical application to various uses becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のTiCrX(Moおよび/またはW)
系の三元状態図上に示した図による組成を示し、(a)
組成範囲、(b)TiCrMo系の実施例組成を示す図
である。
FIG. 1 TiCrX (Mo and / or W) of the present invention
Figure 3 shows the composition according to the diagram shown on the ternary phase diagram of the system,
It is a figure which shows a composition range and (b) Example composition of a TiCrMo type | system | group.

【図2】本発明の実施例に係るTiCrMo系の組成に
よる水素吸放出特性を示すPCT図である。
FIG. 2 is a PCT diagram showing hydrogen absorption / desorption characteristics according to a TiCrMo-based composition according to an example of the present invention.

【図3】本発明の実施例に係るTiCrMo系の0℃と
40℃における水素吸放出特性を示すPCT図である。
FIG. 3 is a PCT diagram showing hydrogen absorption / desorption characteristics at 0 ° C. and 40 ° C. of a TiCrMo-based material according to an example of the present invention.

【図4】本発明の実施例に係るTiCrW系の0℃と4
0℃における水素吸放出特性を示すPCT図である。
FIG. 4 shows 0 ° C. and 4 ° C. of TiCrW-based material according to the embodiment of the present invention.
FIG. 4 is a PCT diagram showing hydrogen absorption / desorption characteristics at 0 ° C.

【図5】本発明の熱処理範囲をTiCr2 −X擬二元系
状態図である。
FIG. 5 is a TiCr 2 -X pseudo-binary phase diagram showing the heat treatment range of the present invention.

【図6】本発明に関連するTi−Cr系二元状態図であ
る。
FIG. 6 is a Ti-Cr-based binary phase diagram related to the present invention.

【図7】本発明の実施例に係るTiCrW系のXRDの
チャートで、(a)アーク溶解直後、(b)熱処理後の
ものである。
FIG. 7 is a TiCrW-based XRD chart according to an example of the present invention, in which (a) immediately after arc melting and (b) after heat treatment.

【図8】本発明の実施例に係るプラト平衡圧とCr量と
の関係を示し、(a)−40℃の吸蔵圧、(b)100
℃の放出圧を示す図である。
FIG. 8 shows the relationship between the plateau equilibrium pressure and the amount of Cr according to the example of the present invention.
It is a figure which shows the discharge pressure of ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691B 691C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 691 C22F 1/00 691B 691C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成が、一般式Ti100-a-b Cr
a b 、但し、XはMo,Wの少なくとも1種で、式中
a,bは原子%表示で、40≦a≦70,0<b≦20
で表され、かつ結晶構造が体心立方構造(BCC型)で
あることを特徴とする水素吸蔵合金。
1. The composition according to claim 1, wherein said composition is of the general formula Ti 100-ab Cr
a Xb , wherein X is at least one of Mo and W, wherein a and b are represented by atomic%, and 40 ≦ a ≦ 70, 0 <b ≦ 20.
And a crystal structure having a body-centered cubic structure (BCC type).
【請求項2】 請求項1の合金を、溶解・鋳造後、該イ
ンゴットを1200〜1400℃(ただし、TiCr2
単相領域を除く)の温度で1〜5時間保持し、その後急
冷処理を施すことによって、結晶構造が常温で体心立方
構造(BCC型)を有するようになすことを特徴とする
水素吸蔵合金の製造方法。
2. After melting and casting the alloy of claim 1, the ingot is heated to 1200 to 1400 ° C. (however, TiCr 2
(Excluding the single-phase region) for 1 to 5 hours, and then subjected to a quenching treatment so that the crystal structure has a body-centered cubic structure (BCC type) at room temperature. Manufacturing method.
JP27343896A 1996-10-16 1996-10-16 Hydrogen storage alloy and its production Pending JPH10121180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27343896A JPH10121180A (en) 1996-10-16 1996-10-16 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27343896A JPH10121180A (en) 1996-10-16 1996-10-16 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH10121180A true JPH10121180A (en) 1998-05-12

Family

ID=17527920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27343896A Pending JPH10121180A (en) 1996-10-16 1996-10-16 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH10121180A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044527A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Method for preparing hydrogen storage alloy
JP2002212663A (en) * 2001-01-17 2002-07-31 Japan Steel Works Ltd:The High capacity hydrogen occlusion alloy and production method therefor
CN107338385A (en) * 2017-06-27 2017-11-10 北京科技大学 A kind of hydrogen storage high-entropy alloy based on body-centered cubic structure and preparation method thereof
CN114447288A (en) * 2020-10-30 2022-05-06 丰田自动车株式会社 Method for producing composite alloy and method for producing electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249508A4 (en) * 1999-12-17 2003-01-29 Tohoku Techno Arch Co Ltd Hydrogen storage alloy
WO2001044528A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy
WO2001044525A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy and method for preparing the same
WO2001044526A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy
EP1249508A1 (en) * 1999-12-17 2002-10-16 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy
WO2001044527A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Method for preparing hydrogen storage alloy
KR100486161B1 (en) * 1999-12-17 2005-04-29 도와 고교 가부시키가이샤 Hydrogen Storage Alloy And Method For Preparing The Same
JP4838963B2 (en) * 1999-12-17 2011-12-14 株式会社 東北テクノアーチ Method for producing hydrogen storage alloy
JP2002212663A (en) * 2001-01-17 2002-07-31 Japan Steel Works Ltd:The High capacity hydrogen occlusion alloy and production method therefor
CN107338385A (en) * 2017-06-27 2017-11-10 北京科技大学 A kind of hydrogen storage high-entropy alloy based on body-centered cubic structure and preparation method thereof
CN107338385B (en) * 2017-06-27 2019-09-13 北京科技大学 A kind of hydrogen storage high-entropy alloy and preparation method thereof based on body-centered cubic structure
CN114447288A (en) * 2020-10-30 2022-05-06 丰田自动车株式会社 Method for producing composite alloy and method for producing electrode
CN114447288B (en) * 2020-10-30 2024-01-30 丰田自动车株式会社 Method for manufacturing composite alloy and method for manufacturing electrode

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
Seo et al. Hydrogen storage properties of vanadium-based bcc solid solution metal hydrides
JP4828986B2 (en) Hydrogen storage alloy, hydrogen storage membrane and hydrogen storage tank
JP4838963B2 (en) Method for producing hydrogen storage alloy
CN111101041A (en) Magnesium-yttrium-zinc hydrogen storage magnesium alloy and preparation method thereof
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
CA2268534C (en) Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
JPH10121180A (en) Hydrogen storage alloy and its production
JPS626739B2 (en)
JP3953138B2 (en) Hydrogen storage alloy
WO2002042507A1 (en) Hydrogen-occluding alloy and method for production thereof
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JPH0471985B2 (en)
JPS5947022B2 (en) Alloy for hydrogen storage
JPH09184040A (en) Yttrium-magnesium hydrogen storage alloy
JPH0242893B2 (en)
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JP2001247927A (en) Vanadium base solid solution type hydrogen storage alloy
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JP2002146446A (en) Method for recovering hydrogen storage alloy, and hydrogen fuel tank
JP2024150766A (en) Hydrogen absorption and release method
JPS58217655A (en) Hydrogen occluding multi-component alloy
JP3984802B2 (en) Hydrogen storage alloy
JPH0474845A (en) Hydrogen storage alloy