JP3953138B2 - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy Download PDF

Info

Publication number
JP3953138B2
JP3953138B2 JP10753597A JP10753597A JP3953138B2 JP 3953138 B2 JP3953138 B2 JP 3953138B2 JP 10753597 A JP10753597 A JP 10753597A JP 10753597 A JP10753597 A JP 10753597A JP 3953138 B2 JP3953138 B2 JP 3953138B2
Authority
JP
Japan
Prior art keywords
phase
alloy
bcc
hydrogen storage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10753597A
Other languages
Japanese (ja)
Other versions
JPH10298681A (en
Inventor
英紀 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10753597A priority Critical patent/JP3953138B2/en
Publication of JPH10298681A publication Critical patent/JPH10298681A/en
Application granted granted Critical
Publication of JP3953138B2 publication Critical patent/JP3953138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金に関し、特に高価なV等の合金元素を使用することなく、かつ従来のBCC型水素吸蔵合金と同レベルの水素吸放出能を有し、製造コスト的に有利な水素吸蔵合金に関する。
【0002】
【従来の技術】
水素の貯蔵・輸送手段として、水素吸蔵合金は、合金自身の体積の約1000倍以上の水素ガスを吸蔵し貯蔵することが可能であり、その体積密度は、液体あるいは固体水素とほぼ同等かあるいはそれ以上である。この水素吸蔵材料として、V,Nb,TaやTiVMn系、TiVCr系合金などの体心立方構造(以下BCCと呼称する)の金属は、すでに実用化されているLaNi5 などのAB5 型合金やTiMn2 などのAB2 型合金に比べ、大量の水素を吸蔵することが古くから知られていた。これは、BCC構造では、その結晶格子中の水素吸蔵サイトが多く、計算による水素吸蔵量がH/M=2.0(原子量50程度のTiやVなど合金では約4.0wt%)と極めて大きいためである。
【0003】
また、純バナジウム合金においては、結晶構造から計算された値とほぼ同じ約4.0wt%を吸蔵し、その約半分を常温常圧下で放出する。同じ周期表の5A族の元素のNbやTaにおいても同様に大きな水素吸蔵量と良好な水素放出特性を示すことが知られている。しかし、V,Nb,Taなどの純金属では、コストが非常に高いため、水素タンクやNi−MH電池などある程度の合金量を必要とする工業的な応用では、Ti−VなどのBCC構造を有する成分範囲の合金において、その特性が検討されてきた。一方、このようなTiを含むBCC型水素吸蔵合金は、高容量であるがいずれも高価なVを含むので、これに対してVを含むことなくかつ同等レベルの容量を有する水素吸蔵合金は、EV用水素タンクなどの高容量な水素吸蔵合金を必要とするアプリケーションにおいて、画期的なコストメリットが期待できる。
【0004】
また、VはNi−MH電池中の電解液に溶出するが、これを含まない合金では、Ni−MH電池の負極材への適用も期待できる。この分野の公知技術として、特開昭59−78908号公報では、Tiを基礎とし、Mo、V、Nbを添加したBCC型水素吸蔵合金を開示し、この合金ではさらに、Cr、Mn等を添加するものである。特開昭54−62914号および特開昭52−73342号公報には、Ti−Mn系を基本組成として、第3元素として、V、Cr、Fe、Co、Ni、Cu、Moから選ばれる1種を含有し、C14型ラーベス相を基本構造とする水素吸蔵合金が開示されている。
【0005】
以上のように、一般的に使われるのはTi−V系であるが、Vは高価であり、Vを含まないで、同等以上の水素吸放出特性を持つ合金が必要である。これらのBCC合金では、V系において問題とされている反応速度が遅い、活性化が困難という点に加えて、実用的な温度・圧力では吸蔵するのみで放出量は少ない等の新しい問題点も生じている。この結果、BCC相を主たる構成相とする合金は、いまだ実用には至っていない。さらに、V等の高価な合金元素を含有せず、かつ水素吸放出特性が優れた合金の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来のBCC型水素吸蔵合金のTi−V−Mn系、Ti−V−Cr系合金等と同等の水素吸放出特性を有する合金の検討から、Vを使用しないでTi−Cr−Mn系を基本とした高容量で安価な水素吸蔵合金を提供することにある。
また、本発明の他の目的は、前記製造コスト的に有利で水素吸放出特性が優れた合金の検討から、最適な格子定数とすることによって、工業的規模に適用可能とする水素吸放出特性を有する水素吸蔵合金を提供することにある。
また、本発明の別の目的は、上記の新規合金によって、低コストで工業的規模における製造を可能とするための最適な製造工程を熱処理方法で達成することにある。
【0007】
【課題を解決するための手段】
上記の目的は、合金組成が、Ti−Cr−Mn3元合金において、図1の点A、B、C、Dで囲まれた領域または、点E、F、G、H、I、Jで囲まれた領域にあって、ただし線分AB、BC、CD、EF、FGを除外し、かつ溶湯から鋳造したままの組織がBCC+C14ラーベス相(MgZn 型結晶構造)混相からなり、該BCC相が、重量比で50%以上であることを特徴とする水素吸蔵合金によって達成される。
【0008】
また、参考例として、溶湯から鋳造したままでは組織がC14ラーベス相単相から成るTi−Cr−Mn3元合金に、さらに追加合金成分としてMo、Wの少なくとも1種を含有させ、格子定数が0.2950〜0.3100nmであるBCC相を生成させたことを特徴とする水素吸蔵合金も開示する
【0009】
さらに、もう一つの参考例として、前記追加合金成分としてMo、Wの少なくとも1種を含有させ、さらに鋳造後に1200℃〜1400℃の温度に1〜5時間保持し、その後急冷する加熱処理を施され、格子定数が0.2950〜0.3100nmであるBCC相を生成させたことを特徴とする水素吸蔵合金も開示する
【0010】
【発明の実施の形態】
本発明の合金組成は、Ti−Cr−Mn系三元合金の状態図の図1の斜線の範囲とするものである。ただし、線分のAB、BC、CD、EF、FGを除外する。この三元状態図では、Ti−Cr系のTiCr、およびTi−Mn系のTiMn1.5がC14ラーベス相でこれらの単相領域が存在する。本発明はこの範囲を回避し結晶構造がBCCが50%以上からなる範囲とするものである。すなわち、図1の点A、B、C、Dで囲まれた領域または、点E、F、G、H、I、Jで囲まれた領域とする。
【0011】
この範囲を成分値として表現すると、Ti−富化(rich)領域においては、50<Ti(at%)≦90、好ましくは60≦Ti(at%)≦90、残部(Cr+Mn)からなる範囲であり、Ti−欠乏(poor)領域では、0≦Ti(at%)≦20、かつ40≦Cr(at%)≦100、残部Mn、および20≦Ti(at%)≦30、かつ60≦Cr(at%)≦80、残部Mnからなる範囲である。
この範囲では、BCC化による水素吸蔵量の増大が実現できる。すなわち、BCC構造の合金では、水素吸蔵量はH/M=2.0(=4.0wt%)であり、C14相構造の合金では、H/M=1.3(=2.4wt%)であるため、これら2相混合の合金の吸蔵量(wt%)=4.0×(BCC相の分率)+2.4×(C14相の分率)となり、BCC相の分率が、増えるほど吸蔵量が増大することになる。
【0012】
次に、BCC相の分率の低い組成の合金については、熱処理でのBCC量の増大を図ることを検討した。本合金系においては、組成によっては、熱処理(1400℃×2H)のみでは、BCC相の増大は見られるものの、その増加率はかなり小さい場合がある(3%程度)。これをさらに改善するためには、熱処理温度を上げることにより、増大が期待はできるが、工業的にはこれ以上の温度は現実的でなく、また液相が出る可能性もある。すなわち、熱処理により、高温相のBCC相の分率を増やすことも考えられるが、今回の成分系では1400℃程度の高温でもその増加率は小さい。参考例は、これに対して第4元素としてMoおよび/またはWを添加し、BCC相の増大割合を向上したものであり、もう一つの参考例は熱処理によって、BCC相の増大割合を改善したものである。
【0013】
さらに上記参考例の組み合わせとして、第4元素の添加と熱処理の相乗効果によるBCC化を図ったものである。
一方、格子定数については、水素吸蔵合金としての水素吸放出特性を得るためには、適当な格子定数が存在する。Ti−Cr−Mn系の場合、鋳造したままで出現するBCC相の格子定数は、Ti−rich領域では、0.3100nmより大きく、Ti−poor領域では、0.2950nmより小さい。このため、水素タンクへの適用を考えた場合、常温領域での放出特性が得られなかった。これに対して、第4元素としてMo、Wを添加した場合、0.2950〜0.3100nmの範囲の格子定数をもつBCC相を含む合金が得られ、これらは常温域でも良好な放出特性が得られた。
【0014】
以上のように、本発明は、高価なVを用いることなく、従来のBCC型水素吸蔵合金と同レベルの水素吸放出能を有する合金を提供可能とする。さらに、製造工程の最適化による低コスト化も可能とする。
本発明の合金組成は、Ti,Cr、Mnを基本成分とし、必要によってMoおよび/またはWを添加するので、従来のV等を使用した水素吸蔵合金に比較して、コストを低減しかつV等をMnと、Moおよび/またはWで置換した成分であり、状態図における溶体化処理範囲を拡大し、そのため相分離が十分に起こり、二相状態で水素吸放出特性に優れた合金が得られる。
【0015】
本発明の成分は、前記のとおり、Ti−rich領域においては、50<Ti(at%)≦90、残部(Cr+Mn)からなる範囲であり、Ti−poor領域では、0≦Ti(at%)≦20、かつ40≦Cr(at%)≦100、残部Mn、および20≦Ti(at%)≦30、かつ60≦Cr(at%)≦80、残部Mnからなる範囲である。前記組成範囲は50%以上のBCC相が得られ、この組成範囲外では、50%以下のBCC相であり、これに対しては、Moおよび/またはWを添加によるか、さもなくば熱処理によるBCC化をなし、さらに合金中の二相分離状態での結晶構造の歪みを最適化し、水素吸蔵合金としての水素の移動度を促進可能とする微細組織にできる最適なる組成である。
【0016】
その熱処理条件としては、母合金を溶解・鋳造後、前記インゴットを、1200〜1400℃の温度で1〜5時間保持し、その後油中または氷水中にて急冷処理することによって、合金をBCC化する。すなわち、本発明の熱処理条件としては、上記の組成範囲の合金においては、水素吸蔵量の高容量なBCC相が1200℃以上においてのみ安定に存在することになる。一方、誘導加熱法、アーク溶解法などにより溶融された合金は、通常冷却時に1200℃以下でより安定なC14ラーベス相へと変態する。このため、上記組成にてBCC相を形成するためには、高温安定なBCC相を常温まで凍結する必要がある。
以下に、本発明について実施例の添付図を参照してさらに詳述する。
【0017】
【実施例】
試料は、全て水冷銅ハースを用いたアルゴン中アーク溶解で約20gのインゴットで行った。本実施例のデータはすべて鋳造したままのインゴットを空気中で粉砕し、活性化処理として、500℃、10〜4torr真空引き+50atm 水素加圧を4サイクル繰返し行った後、合金の水素吸蔵量と水素吸放出特性は、容積法による圧力組成等温線測定法(JIS H7201)に規定されている真空原点法で行ったものである。
【0018】
また、合金の構造解析は、透過電子顕微鏡と付属のEDX(エネルギー分散型X線回折)を用いて行った。さらに透過電子顕微鏡で得られた情報をもとに結晶構造モデルを作成し、粉末X線回折データのリートベルト解析を行った。リートベルト解析は通常のX線回折法とは異なり、回折強度を用いて結晶構造パラメータを精密化できるとともに、各相の重量分率を計算により求めることが可能である。リートベルト解析には、無機材質研究所泉博士の開発した解析ソフトRIETAN94を用いた。
【0019】
本実施例では、Ti−Cr−Mn系において、BCC相の出現する領域を決定するために17種類の合金を作製した。これを前記リートベルト解析することにより、相分率を調べ、BCC相の出現領域を以下の通り決定した。本発明第1発明の範囲、すなわち図1の点ABCDまたは点EFGHIJ内では、BCC単相領域およびBCC相を含む領域であり、No. 、7、9、25が該当し、これらは表1に示すように大きな吸蔵量を示す。
【0020】
【表1】

Figure 0003953138
【0021】
一方、参考例では、Ti−Cr−Mn3元系でC14リッチまたはC14単相であっても、(1)熱処理や(2)Mo、Wの添加で、BCC単相またはBCC相リッチとなる合金組成である。本参考例の結果を表2および表3にまとめて示す。
【0022】
【表2】
Figure 0003953138
【0023】
【表3】
Figure 0003953138
【0024】
また、図2および図3に、No. 8サンプルについて、MoおよびWの添加による各処理とBCC分率の増加の推移を示す。この場合には、熱処理によっては殆どBCC分率は増加せず、MoおよびWの添加およびその後の熱処理でBCC相が増大している。一方、図4および図5に示すように、No. 28サンプルについては、熱処理のみでかなりのBCC相の増大が認められ、その後のMoの添加および熱処理によってさらに増加することがわかる。
また、前記表2および表3および図2〜図5に示されるように、C14単相またはC14+BCC混相でC14相が50%以上のものでは、MoまたはWを添加したもの、または熱処理のみで、さらにはこれらを組み合わせると、その処理後にBCC相の増加が認められ、かつ吸蔵量の増加並びに常温域での良好な放出特性が得られることがわかった。
【0025】
【発明の効果】
本発明によって、高価なV等を含むことなく、かつ水素吸放出特性が従来のV等を含む合金並であるBCC型水素吸蔵合金が製造可能となる。また、合金原料費の大幅な削減が図れる。従って、本発明によって、高容量なBCC型水素吸蔵合金を極めて低コストで製造することができ、各種用途への実用化が可能になる。
【図面の簡単な説明】
【図1】本発明に係るTi−Cr−Mn系合金の三元状態図によって組成範囲を示す図である。
【図2】本発明の実施例に係るNo. 8+Moの相分率と各処理の関係を示す図である。
【図3】本発明の実施例に係るNo. 8+Wの相分率と各処理の関係を示す図である。
【図4】本発明の実施例に係るNo. 28+Moの相分率と各処理の関係を示す図である。
【図5】本発明の実施例に係るNo. 28+Wの相分率と各処理の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy, and particularly has an advantage in terms of production cost without using an expensive alloy element such as V, and having the same level of hydrogen storage / release capability as a conventional BCC type hydrogen storage alloy. It relates to a storage alloy.
[0002]
[Prior art]
As a means for storing and transporting hydrogen, a hydrogen storage alloy can store and store hydrogen gas that is about 1000 times or more the volume of the alloy itself, and its volume density is approximately equal to that of liquid or solid hydrogen, or More than that. As this hydrogen storage material, metals having a body-centered cubic structure (hereinafter referred to as BCC) such as V, Nb, Ta, TiVMn-based, TiVCr-based alloys, and the like have already been put to practical use as AB 5 type alloys such as LaNi 5 Compared to AB 2 type alloys such as TiMn 2, it has long been known to store a large amount of hydrogen. This is because the BCC structure has many hydrogen storage sites in the crystal lattice, and the calculated hydrogen storage amount is H / M = 2.0 (about 4.0 wt% for alloys such as Ti and V having an atomic weight of about 50). Because it is big.
[0003]
Further, pure vanadium alloy occludes about 4.0 wt%, which is almost the same as the value calculated from the crystal structure, and about half of it is released under normal temperature and normal pressure. It is known that Nb and Ta, which are elements of Group 5A in the same periodic table, similarly show a large hydrogen storage capacity and good hydrogen release characteristics. However, since pure metals such as V, Nb, and Ta are very expensive, BCC structures such as Ti-V are used in industrial applications that require a certain amount of alloy such as hydrogen tanks and Ni-MH batteries. Its properties have been studied for alloys with a range of components. On the other hand, since the BCC type hydrogen storage alloy containing Ti has a high capacity but both contain expensive V, a hydrogen storage alloy that does not contain V and has an equivalent level capacity is In applications that require high-capacity hydrogen storage alloys such as hydrogen tanks for EVs, epoch-making cost merit can be expected.
[0004]
Further, V elutes in the electrolyte solution in the Ni-MH battery, but an alloy not containing V can be expected to be applied to the negative electrode material of the Ni-MH battery. As a known technique in this field, JP-A-59-78908 discloses a BCC-type hydrogen storage alloy based on Ti and added with Mo, V, and Nb. In this alloy, Cr, Mn, and the like are further added. To do. In JP-A-54-62914 and JP-A-52-73342, a Ti—Mn system is used as a basic composition, and the third element is selected from V, Cr, Fe, Co, Ni, Cu, and Mo. A hydrogen storage alloy containing a seed and having a C14 Laves phase as a basic structure is disclosed.
[0005]
As described above, the Ti-V system is generally used, but V is expensive, and an alloy that does not contain V and has equivalent or higher hydrogen absorption / desorption characteristics is required. In these BCC alloys, in addition to the slow reaction rate, which is a problem in the V system, and the difficulty of activation, there are also new problems such as a small amount released only by storage at a practical temperature and pressure. Has occurred. As a result, an alloy having a BCC phase as a main constituent phase has not yet been put into practical use. Furthermore, it is desired to develop an alloy that does not contain an expensive alloy element such as V and has excellent hydrogen absorption / release characteristics.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to study an alloy having the same hydrogen absorption / desorption characteristics as those of conventional BCC type hydrogen storage alloys such as Ti—V—Mn and Ti—V—Cr alloys. The object is to provide a high-capacity and inexpensive hydrogen storage alloy based on a Cr-Mn system.
In addition, another object of the present invention is to provide a hydrogen absorption / desorption characteristic that can be applied to an industrial scale by setting an optimum lattice constant based on the study of the alloy that is advantageous in manufacturing cost and excellent in hydrogen absorption / desorption characteristic. It is providing the hydrogen storage alloy which has this.
Another object of the present invention is to achieve an optimum manufacturing process for enabling manufacturing on an industrial scale at a low cost by the above-described novel alloy by a heat treatment method.
[0007]
[Means for Solving the Problems]
The above object is that the alloy composition is a region surrounded by points A, B, C, and D in FIG. 1 or surrounded by points E, F, G, H, I, and J in a Ti—Cr—Mn ternary alloy . However, the line segments AB, BC, CD, EF, and FG are excluded, and the structure as cast from the molten metal is a BCC + C14 Laves phase (MgZn 2 type crystal structure) mixed phase, and the BCC phase Is achieved by a hydrogen storage alloy characterized by a weight ratio of 50% or more.
[0008]
Further, as a reference example, when cast from a molten metal, a Ti—Cr—Mn ternary alloy whose structure is a C14 Laves phase single phase is further added with at least one of Mo and W as additional alloy components, and the lattice constant is 0. Also disclosed is a hydrogen storage alloy characterized by producing a BCC phase of 2950-0.3100 nm.
[0009]
Furthermore, as another reference example , at least one kind of Mo and W is contained as the additional alloy component, and after casting, it is maintained at a temperature of 1200 ° C. to 1400 ° C. for 1 to 5 hours, and then subjected to a heat treatment for rapid cooling. Also disclosed is a hydrogen storage alloy characterized by producing a BCC phase having a lattice constant of 0.2950 to 0.3100 nm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The alloy composition of the present invention is within the hatched area in FIG. 1 of the phase diagram of the Ti—Cr—Mn ternary alloy. However, line segments AB, BC, CD, EF, and FG are excluded. In this ternary phase diagram, Ti—Cr-based TiCr 2 and Ti—Mn-based TiMn 1.5 are C14 Laves phases and these single-phase regions exist. In the present invention , this range is avoided, and the crystal structure has a BCC of 50% or more. That is, a region surrounded by points A, B, C, and D in FIG. 1 or a region surrounded by points E, F, G, H, I, and J is used.
[0011]
When this range is expressed as a component value, in the Ti-rich region, 50 <Ti (at%) ≦ 90, preferably 60 ≦ Ti (at%) ≦ 90, and the balance (Cr + Mn). Yes, in the Ti-poor region, 0 ≦ Ti (at%) ≦ 20 and 40 ≦ Cr (at%) ≦ 100, balance Mn, and 20 ≦ Ti (at%) ≦ 30, and 60 ≦ Cr (At%) ≦ 80, the range consisting of the balance Mn.
Within this range, an increase in the amount of hydrogen occlusion due to BCC can be realized. That is, in the BCC structure alloy, the hydrogen storage amount is H / M = 2.0 (= 4.0 wt%), and in the C14 phase structure alloy, H / M = 1.3 (= 2.4 wt%). Therefore, the occlusion amount (wt%) of these two-phase mixed alloys = 4.0 × (fraction of the BCC phase) + 2.4 × (fraction of the C14 phase), and the fraction of the BCC phase increases. As the amount of occlusion increases.
[0012]
Next, for an alloy having a composition with a low fraction of the BCC phase, it was studied to increase the amount of BCC by heat treatment. In this alloy system, depending on the composition, an increase in the BCC phase is observed only by heat treatment (1400 ° C. × 2H), but the increase rate may be quite small (about 3%). In order to further improve this, an increase can be expected by raising the heat treatment temperature, but industrially higher temperatures are not practical and a liquid phase may be produced. That is, it is conceivable to increase the fraction of the BCC phase of the high temperature phase by heat treatment, but in this component system, the increase rate is small even at a high temperature of about 1400 ° C. In the reference example , Mo and / or W were added as the fourth element to improve the increase rate of the BCC phase. Another reference example improved the increase rate of the BCC phase by heat treatment. Is.
[0013]
Further, as a combination of the above reference examples, BCC is achieved by the synergistic effect of the addition of the fourth element and the heat treatment.
On the other hand, with respect to the lattice constant, there is an appropriate lattice constant in order to obtain hydrogen absorption / desorption characteristics as a hydrogen storage alloy. In the case of the Ti—Cr—Mn system, the lattice constant of the BCC phase that appears as cast is larger than 0.3100 nm in the Ti-rich region and smaller than 0.2950 nm in the Ti-poor region. For this reason, when considering application to a hydrogen tank, release characteristics in the normal temperature region could not be obtained. On the other hand, when Mo and W are added as the fourth element, an alloy containing a BCC phase having a lattice constant in the range of 0.2950 to 0.3100 nm is obtained, and these have good release characteristics even in a normal temperature range. Obtained.
[0014]
As described above, the present invention can provide an alloy having the same level of hydrogen absorption / desorption ability as that of a conventional BCC-type hydrogen storage alloy without using expensive V. In addition, the cost can be reduced by optimizing the manufacturing process.
In the alloy composition of the present invention, since Ti, Cr, and Mn are basic components and Mo and / or W are added as necessary, the cost is reduced and the V is reduced compared with a conventional hydrogen storage alloy using V or the like. Is a component substituted with Mn and Mo and / or W, etc., expanding the solution treatment range in the phase diagram, so that phase separation occurs sufficiently, and an alloy having excellent hydrogen absorption / desorption characteristics in a two-phase state is obtained. It is done.
[0015]
As described above, the component of the present invention is a range of 50 <Ti (at%) ≦ 90 and the balance (Cr + Mn) in the Ti-rich region, and 0 ≦ Ti (at%) in the Ti-poor region. ≦ 20 and 40 ≦ Cr (at%) ≦ 100, the balance Mn, and 20 ≦ Ti (at%) ≦ 30, and 60 ≦ Cr (at%) ≦ 80, and the balance Mn. The composition range provides a BCC phase of 50% or more, and outside this composition range is a BCC phase of 50% or less. For this, by adding Mo and / or W, or by heat treatment It is an optimal composition that can be made into a BCC, and further optimizes the distortion of the crystal structure in a two-phase separation state in the alloy, thereby making the microstructure capable of promoting the mobility of hydrogen as a hydrogen storage alloy.
[0016]
As the heat treatment conditions, after melting and casting the mother alloy, the ingot is held at a temperature of 1200 to 1400 ° C. for 1 to 5 hours, and then rapidly cooled in oil or ice water to make the alloy BCC. To do. That is, as the heat treatment condition of the present invention, in the alloy having the above composition range, a high-capacity BCC phase with a hydrogen storage amount is stably present only at 1200 ° C. or higher. On the other hand, an alloy melted by an induction heating method, an arc melting method, or the like is transformed into a more stable C14 Laves phase at 1200 ° C. or lower during normal cooling. For this reason, in order to form a BCC phase with the said composition, it is necessary to freeze a high temperature stable BCC phase to normal temperature.
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings of embodiments.
[0017]
【Example】
All samples were ingots of about 20 g by arc melting in argon using water-cooled copper hearth. In the data of this example, all as-cast ingots were pulverized in the air, and after the activation process, 500 ° C., 10 to 4 torr vacuuming +50 atm hydrogen pressurization was repeated for 4 cycles, The hydrogen absorption / release characteristics are those obtained by the vacuum origin method defined in the pressure composition isotherm measurement method (JIS H7201) by the volume method.
[0018]
The structural analysis of the alloy was performed using a transmission electron microscope and an attached EDX (energy dispersive X-ray diffraction). Furthermore, a crystal structure model was created based on information obtained with a transmission electron microscope, and Rietveld analysis of powder X-ray diffraction data was performed. Unlike ordinary X-ray diffraction methods, Rietveld analysis can refine crystal structure parameters using diffraction intensity, and can determine the weight fraction of each phase by calculation. For the Rietveld analysis, analysis software RIETRAN 94 developed by Dr. Izumi, Inorganic Materials Laboratory was used.
[0019]
In this example, in order to determine the region where the BCC phase appears in the Ti—Cr—Mn system, 17 types of alloys were produced. By conducting this Rietveld analysis, the phase fraction was examined, and the appearance region of the BCC phase was determined as follows. Within the scope of the first invention of the present invention, that is, within the point ABCD or the point EFGHIJ in FIG. 1, the region includes the BCC single phase region and the BCC phase, and Nos. 6 , 7, 9, and 25 correspond to these. The large occlusion amount is shown as follows.
[0020]
[Table 1]
Figure 0003953138
[0021]
On the other hand, in the reference example, even if the Ti-Cr-Mn ternary system is C14 rich or C14 single phase, (1) heat treatment and (2) addition of Mo and W can make the BCC single phase or BCC phase rich. Composition. The results of this reference example are summarized in Table 2 and Table 3.
[0022]
[Table 2]
Figure 0003953138
[0023]
[Table 3]
Figure 0003953138
[0024]
2 and 3 show the transition of each treatment and the increase in the BCC fraction due to the addition of Mo and W for the No. 8 sample. In this case, the BCC fraction hardly increases depending on the heat treatment, and the BCC phase increases due to the addition of Mo and W and the subsequent heat treatment. On the other hand, as shown in FIG. 4 and FIG. 5, for the No. 28 sample, it can be seen that a considerable increase in the BCC phase was observed only by heat treatment, and further increased by the subsequent addition of Mo and heat treatment.
In addition, as shown in Tables 2 and 3 and FIGS. 2 to 5, when the C14 single phase or C14 + BCC mixed phase and the C14 phase is 50% or more, Mo or W is added, or only by heat treatment, Furthermore, when these were combined, it turned out that the increase in a BCC phase is recognized after the process, and the increase in occlusion amount and the favorable discharge | release characteristic in normal temperature range are acquired.
[0025]
【The invention's effect】
According to the present invention, it is possible to produce a BCC type hydrogen storage alloy that does not contain expensive V and the like, and has a hydrogen absorption / desorption characteristic comparable to that of a conventional alloy containing V or the like. In addition, the alloy material costs can be significantly reduced. Therefore, according to the present invention, a high-capacity BCC-type hydrogen storage alloy can be produced at an extremely low cost, and can be put to practical use for various applications.
[Brief description of the drawings]
FIG. 1 is a diagram showing a composition range by a ternary phase diagram of a Ti—Cr—Mn alloy according to the present invention.
FIG. 2 is a diagram showing the relationship between the phase fraction of No. 8 + Mo and each treatment according to an example of the present invention.
FIG. 3 is a diagram showing a relationship between a phase fraction of No. 8 + W and each processing according to an example of the present invention.
FIG. 4 is a diagram showing the relationship between the phase fraction of No. 28 + Mo and each treatment according to an example of the present invention.
FIG. 5 is a diagram showing a relationship between a phase fraction of No. 28 + W and each process according to an example of the present invention.

Claims (1)

合金組成が、Ti−Cr−Mn3元合金において、図1の点A、B、C、Dで囲まれた領域または、点E、F、G、H、I、Jで囲まれた領域であって、ただし線分AB、BC、CD、EF、FGを除外し、かつ溶湯から鋳造したままの組織がBCC+C14ラーベス相(MgZn型結晶構造)混相からなり、該BCC相が、重量比で50%以上であることを特徴とする水素吸蔵合金。In the Ti—Cr—Mn ternary alloy, the alloy composition is a region surrounded by points A, B, C, and D in FIG. 1 or a region surrounded by points E, F, G, H, I, and J. However, the lines AB, BC, CD, EF, and FG are excluded, and the structure as cast from the molten metal is composed of a BCC + C14 Laves phase (MgZn 2 type crystal structure) mixed phase, and the BCC phase has a weight ratio of 50. % Hydrogen storage alloy characterized by being at least%.
JP10753597A 1997-04-24 1997-04-24 Hydrogen storage alloy Expired - Fee Related JP3953138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10753597A JP3953138B2 (en) 1997-04-24 1997-04-24 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10753597A JP3953138B2 (en) 1997-04-24 1997-04-24 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH10298681A JPH10298681A (en) 1998-11-10
JP3953138B2 true JP3953138B2 (en) 2007-08-08

Family

ID=14461660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10753597A Expired - Fee Related JP3953138B2 (en) 1997-04-24 1997-04-24 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3953138B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493516B2 (en) * 1998-12-15 2004-02-03 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
JP4601754B2 (en) * 1999-02-17 2010-12-22 パナソニック株式会社 Hydrogen storage alloy electrode and manufacturing method thereof
US6309779B1 (en) * 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
JP3486681B2 (en) * 1999-12-17 2004-01-13 株式会社東北テクノアーチ Hydrogen storage alloy and method for producing the same

Also Published As

Publication number Publication date
JPH10298681A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP3528599B2 (en) Hydrogen storage alloy
Seo et al. Hydrogen storage properties of vanadium-based bcc solid solution metal hydrides
JP4838963B2 (en) Method for producing hydrogen storage alloy
JP3626298B2 (en) Hydrogen storage alloy and manufacturing method
JP3415333B2 (en) Hydrogen storage alloy
US8512630B2 (en) Pulverulent intermetallic materials for the reversible storage of hydrogen
JP3953138B2 (en) Hydrogen storage alloy
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
CA2268534C (en) Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JPH10121180A (en) Hydrogen storage alloy and its production
JP2896433B2 (en) Magnesium hydrogen storage alloy
JPH0471985B2 (en)
JPH0242893B2 (en)
JP3984802B2 (en) Hydrogen storage alloy
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JP4768173B2 (en) Hydrogen storage alloy
CN118291869A (en) Nb-containing non-equal atomic ratio AlCrFeNi high-entropy alloy and preparation method thereof
KR20150078210A (en) Hydrogen stroge alloy based on titanium-zirconium and production methods thereof
JPH11106847A (en) Production of hydrogen storage alloy, alloy thereof and electrode using the alloy
JPH0224764B2 (en)
JPH05331578A (en) Hydrogen storage alloy
JP2001271130A (en) Hydrogen storage alloy
JP2002167634A (en) Method for producing hydrogen storage material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees