JPH05331578A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JPH05331578A
JPH05331578A JP4165386A JP16538692A JPH05331578A JP H05331578 A JPH05331578 A JP H05331578A JP 4165386 A JP4165386 A JP 4165386A JP 16538692 A JP16538692 A JP 16538692A JP H05331578 A JPH05331578 A JP H05331578A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
storage alloy
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4165386A
Other languages
Japanese (ja)
Inventor
Noboru Sato
登 佐藤
Kazuhiko Yagi
一彦 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4165386A priority Critical patent/JPH05331578A/en
Publication of JPH05331578A publication Critical patent/JPH05331578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain, relatively inexpensively, a hydrogen storage alloy having superior hydrogen occluding property and occluding large amounts of hydrogen at relatively low hydrogen equilibrium pressure by specifying a composition consisting of Ti, Zr, Pd, and Ni. CONSTITUTION:This alloy is a hydrogen storage alloy represented by formula TxZy (Pd1-2Nia)a (where x+y=1, 0.05<=z<=0.95, and 1.5<=a<=2.5). This alloy can be obtained by mixing respective elements in prescribed proportions and heating and melting the resulting mixture in a nonoxidizin atmosphere or in vacuum. This hydrogen storage alloy is constituted by substituting a part of Ti by Zr and specifying the ratio between them to a value in a specific range, and this alloy shows clear hydrogen occlusion characteristics in certain temp. and hydrogen pressure regions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素と反応して金属水素
化物を生成する合金に関し、特に、ニッケル−水素電池
の負極材として使用することができる合金に関する。
FIELD OF THE INVENTION The present invention relates to an alloy that reacts with hydrogen to form a metal hydride, and more particularly to an alloy that can be used as a negative electrode material for nickel-hydrogen batteries.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水素と
反応して金属水素化物を形成する合金は、いわゆる水素
吸蔵合金として注目されており、水素ガス貯蔵容器やヒ
ートポンプへの応用が試みられている。また、このよう
な金属水素化物を生成する合金は、電池の電極材として
も有望視されている。たとえば、現在、二次電池の主流
であるニッカド電池(Ni−Cd電池)の代替品として開発
されているニッケル−水素電池の負極材として用いるこ
とが検討されている。このニッケル−水素電池において
は、ニッケル(又は水酸化ニッケル)を正極とし、金属
水素化物を負極とする。
2. Description of the Related Art Alloys that react with hydrogen to form metal hydrides are drawing attention as so-called hydrogen storage alloys, and their application to hydrogen gas storage containers and heat pumps has been attempted. There is. In addition, such an alloy that produces a metal hydride is also expected as a battery electrode material. For example, use as a negative electrode material for a nickel-hydrogen battery, which is currently being developed as a substitute for a nickel-cadmium battery (Ni-Cd battery), which is the mainstream of secondary batteries, is under study. In this nickel-hydrogen battery, nickel (or nickel hydroxide) is used as a positive electrode and metal hydride is used as a negative electrode.

【0003】このようなニッケル−水素電池の負極材と
して、希土類系の合金やTi系の合金が開発されている。
希土類系の合金の代表的なものとしてLaNi5 が挙げられ
る(たとえば特公昭61−5264号等)が、希土類元素は一
般に高価であり、電極材も高価なものとなってしまう。
As a negative electrode material for such nickel-hydrogen batteries, rare earth alloys and Ti alloys have been developed.
LaNi 5 is a typical rare earth alloy (for example, Japanese Examined Patent Publication No. 61-5264), but rare earth elements are generally expensive and the electrode material is also expensive.

【0004】また、Ti系のものとしては、Fe−Ti系合金
やTi−Mn系合金等が挙げられるが、Fe−Ti系合金では、
合金の活性化(水素原子を合金結晶内に取り込むこと)
に長時間要し、実用的ではない。また、Ti−Mn系合金等
の他の合金も、活性化が容易でなかったり、また、合金
中の水素濃度と水素平衡圧との関係をグラフにした場
合、その等温線にみられるプラトー域(平坦な領域)が
狭いか、プラトー域での水素平衡圧が高かったりして、
電池の負極材としては実用的ではない。なお、プラトー
域とは、図2に示すように、等温、静定条件下での合金
中の水素濃度を横軸に、そのときの水素平衡圧の値を対
数目盛りで縦軸にとったときのグラフにおいて、等温線
Lの平坦な部分(P)を呼ぶ。このプラトー域の幅が大
きいほど、わずかな水素ガス圧変化で多量の水素を合金
中に取り込むことができる。合金中に多量の水素を吸蔵
することができれば、放電容量の大きな負極とすること
ができる。
Examples of Ti-based alloys include Fe-Ti-based alloys and Ti-Mn-based alloys.
Activation of alloy (incorporating hydrogen atoms into alloy crystal)
It takes a long time and is not practical. In addition, other alloys such as Ti-Mn alloys are not easily activated, and when the relationship between the hydrogen concentration in the alloy and the hydrogen equilibrium pressure is graphed, the plateau region seen in that isotherm is shown. The (flat region) is narrow, or the hydrogen equilibrium pressure in the plateau region is high,
It is not practical as a battery negative electrode material. As shown in FIG. 2, the plateau region is the hydrogen concentration in the alloy under isothermal and static conditions on the horizontal axis, and the hydrogen equilibrium pressure value on the vertical axis on the logarithmic scale. In the graph, the flat part (P) of the isotherm L is called. The larger the width of this plateau region, the more hydrogen can be taken into the alloy with a slight change in hydrogen gas pressure. If a large amount of hydrogen can be stored in the alloy, a negative electrode with a large discharge capacity can be obtained.

【0005】従って本発明の目的は、水素と反応して金
属水素化物を形成する合金(水素吸蔵合金)であって、
比較的安価に製造でき、ニッケル−水素電池の負極材と
して好適に使用できるものを提供することである。
Therefore, an object of the present invention is an alloy (hydrogen storage alloy) which reacts with hydrogen to form a metal hydride,
It is an object of the present invention to provide a material which can be manufactured at a relatively low cost and can be suitably used as a negative electrode material for nickel-hydrogen batteries.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべくTi
系の合金について鋭意研究の結果、本発明者らは、TiNi
2 合金において、Tiの一部をZrで置換するとともに、Ni
の一部をPdで置換し、かつTiとZrの合計量と、NiとPdの
合計量との原子比率を特定の範囲に規定したものは、あ
る温度、水素圧力領域において明瞭な水素吸蔵特性を示
し、もって、ニッケル−水素電池用の負極材として好適
に使用できることを発見し、本発明を完成した。
[Means for Solving the Problems] In order to achieve the above purpose, Ti
As a result of earnest research on alloys of the system, the present inventors have found that TiNi
In the 2 alloy, part of Ti was replaced by Zr and
Is a part of which is replaced with Pd, and the atomic ratio of the total amount of Ti and Zr and the total amount of Ni and Pd is regulated within a specific range has a clear hydrogen storage property in a certain temperature and hydrogen pressure region. Therefore, the present invention was completed by discovering that it can be suitably used as a negative electrode material for nickel-hydrogen batteries.

【0007】すなわち、水素と反応して金属水素化物を
生成する本発明の水素吸蔵合金は、下記式: Tix Zry (Pd1-Z Niz a (ただし、x+y=1、0.05≦z≦0.95、及び1.5 ≦a
≦2.5 である。)で表されることを特徴とする。
That is, the hydrogen storage alloy of the present invention which reacts with hydrogen to produce a metal hydride has the following formula: Ti x Zr y (Pd 1 -Z Ni z ) a (where x + y = 1, 0.05 ≦ z ≤0.95, and 1.5 ≤a
≦ 2.5. ) Is represented by.

【0008】以下、本発明を詳細に説明する。本発明の
水素吸蔵合金(金属水素化物合金)は、Tix Zry (Pd
1-Z Niz a (ただし、x+y=1、0.05≦z≦0.95、
及び1.5 ≦a≦2.5 である。)で表される。
The present invention will be described in detail below. The hydrogen storage alloy (metal hydride alloy) of the present invention is Ti x Zr y (Pd
1-Z Ni z ) a (where x + y = 1, 0.05 ≦ z ≦ 0.95,
And 1.5 ≦ a ≦ 2.5. ).

【0009】この合金におけるTiとZrの合計量と、Pdと
Niの合計量の原子比率は1:aである。Ti+Zrと、Pd+
Niとの化学量論比は2であるが、本発明の水素吸蔵合金
では、aの値はそれに限られず、1.5 〜2.5 の範囲が可
能である。aが1.5 未満では水素吸蔵性が低下し、電極
(負極)容量が小さくなる。一方2.5 を超すと別相が析
出することになる。
In this alloy, the total amount of Ti and Zr, Pd and
The atomic ratio of the total amount of Ni is 1: a. Ti + Zr and Pd +
The stoichiometric ratio with Ni is 2, but in the hydrogen storage alloy of the present invention, the value of a is not limited thereto, and the range of 1.5 to 2.5 is possible. When a is less than 1.5, the hydrogen storage property is lowered and the electrode (negative electrode) capacity is reduced. On the other hand, if it exceeds 2.5, another phase will precipitate.

【0010】また、TiとZrの比率は、原子比でTi:Zrが
0.1 :0.9 〜0.9 :0.1 とするのが好ましい。Ti:Zrが
0.1 :0.9 未満(Tiの量が少ない)であると、表面酸化
物が形成されやすい。一方、Ti:Zrが0.9 :0.1 を超す
(Tiの量が多い)と、脆化する。より好ましくは、Ti:
Zrを0.45:0.55〜0.55:0.45とする。
The ratio of Ti to Zr is Ti: Zr in terms of atomic ratio.
The ratio is preferably 0.1: 0.9 to 0.9: 0.1. Ti: Zr
When it is less than 0.1: 0.9 (the amount of Ti is small), surface oxides are easily formed. On the other hand, if Ti: Zr exceeds 0.9: 0.1 (the amount of Ti is large), embrittlement occurs. More preferably, Ti:
Zr is 0.45: 0.55 to 0.55: 0.45.

【0011】一方、PdとNiの比率は、原子比でPd:Niが
0.05:0.95〜0.95:0.05とする。この範囲内にPdとNiの
比率を規定しておくと、良好な水素吸蔵特性を示すよう
になり、容量の大きな電極(負極)とすることができ
る。好ましくは、Pd:Niを0.45:0.55〜0.55:0.45とす
る。
On the other hand, the ratio of Pd and Ni is Pd: Ni in terms of atomic ratio.
0.05: 0.95 to 0.95: 0.05. If the ratio of Pd and Ni is specified within this range, good hydrogen storage characteristics will be exhibited, and an electrode (negative electrode) having a large capacity can be obtained. Preferably, Pd: Ni is 0.45: 0.55 to 0.55: 0.45.

【0012】上述した組成の合金は0〜40℃で良好な
水素吸蔵能を有し、比較的小さな水素平衡圧、具体的に
は、0.5 MPa程度又はそれ以下でも大きな水素吸蔵量
(合金原子数の1.5 〜2.0 倍程度の水素吸蔵量)を与え
る。この理由は必ずしも明らかではないが、Pd自身が比
較的良好な水素吸蔵性を有するとともに、ベースとなっ
ているTiNi2 自身にも水素吸蔵性があるからと考えられ
る。
The alloy having the above-mentioned composition has a good hydrogen storage capacity at 0 to 40 ° C., and a relatively small hydrogen equilibrium pressure, specifically, a large hydrogen storage capacity (number of alloy atoms of about 0.5 MPa or less). The hydrogen storage capacity is about 1.5 to 2.0 times that of. The reason for this is not clear, but it is considered that Pd itself has a relatively good hydrogen storage property, and TiNi 2 itself, which is the base, also has a hydrogen storage property.

【0013】本発明の合金は、各元素(金属)を上述し
た組成範囲内に入るように所定量混合し、これを非酸化
性雰囲気中、又は真空中で加熱溶融することにより製造
することができる。
The alloy of the present invention can be produced by mixing each element (metal) in a predetermined amount so as to fall within the composition range described above, and heating and melting this in a non-oxidizing atmosphere or in a vacuum. it can.

【0014】[0014]

【実施例】本発明を以下の実施例により更に詳細に説明
する。
The present invention will be described in more detail by the following examples.

【0015】実施例1 99.9%以上の純度を有する各元素(金属)を用い、Ti
0.5 Zr0.5 (Pd0.5 Ni0. 5 2 の組成となるように各金
属を混合し、不活性ガス雰囲気下でアーク溶解により溶
製した。
Example 1 Using each element (metal) having a purity of 99.9% or more, Ti
0.5 Zr 0.5 (Pd 0.5 Ni 0. 5) mixing each metal such that the second composition was melted by arc melting under inert gas atmosphere.

【0016】得られた合金について、30℃におけるP
CT曲線(水素圧力−水素濃度等温曲線)を求めた。結
果を図1に示す。なお、図1に示すグラフにおいて、横
軸は合金中の水素濃度(取り込まれた水素の重量と合金
の重量との比)を示し、また、縦軸は、水素ガス平衡圧
を対数目盛りで示している。
Regarding the obtained alloy, P at 30 ° C.
A CT curve (hydrogen pressure-hydrogen concentration isotherm curve) was obtained. The results are shown in Figure 1. In the graph shown in FIG. 1, the horizontal axis represents the hydrogen concentration in the alloy (the ratio between the weight of hydrogen taken in and the weight of the alloy), and the vertical axis represents the hydrogen gas equilibrium pressure on a logarithmic scale. ing.

【0017】比較例1〜3 実施例1と同様の方法で、以下の3種の合金を作製し
た。 比較例1:Ti0.5 Zr0.5 (Y0.5 Ni0.5 2 比較例2:Ti0.5 Zr0.5 (Fe0.5 Ni0.5 2 比較例3:Ti0.5 Zr0.5 (V0.5 Ni0.5 2
Comparative Examples 1 to 3 In the same manner as in Example 1, the following three alloys were prepared. Comparative Example 1: Ti 0.5 Zr 0.5 (Y 0.5 Ni 0.5 ) 2 Comparative Example 2: Ti 0.5 Zr 0.5 (Fe 0.5 Ni 0.5 ) 2 Comparative Example 3: Ti 0.5 Zr 0.5 (V 0.5 Ni 0.5 ) 2

【0018】上記の各合金について、実施例1と同様に
してPCT曲線を求めた。結果を図1に示す。
A PCT curve was obtained for each of the above alloys in the same manner as in Example 1. The results are shown in Figure 1.

【0019】図1から、実施例1の合金は、0.5 MPaの
水素ガス圧で、ほぼ合金の重量と同等の重量の水素を吸
蔵することがわかる。
From FIG. 1, it can be seen that the alloy of Example 1 occludes hydrogen at a hydrogen gas pressure of 0.5 MPa, which is approximately equivalent to the weight of the alloy.

【0020】また、実施例1の合金では、水素ガス圧が
0.01〜0.5 MPaの範囲で取り込まれる水素の量が大きく
変化している(グラフの曲線が横方向の幅広い領域で滑
らかになっている)。なお、図1の横軸には、合金中の
水素量から換算して得た負極(放電)容量のスケールも
合わせて示されているが、実施例1の合金では水素ガス
圧を0.01〜0.5 MPaとした場合、負極容量は240 Ah/
kg程度となる。このことは、本発明による金属水素化物
合金が、良好な電極材となることを示している。
Further, in the alloy of Example 1, the hydrogen gas pressure is
The amount of hydrogen taken in is significantly changed in the range of 0.01 to 0.5 MPa (the curve of the graph is smooth in a wide lateral area). The horizontal axis of FIG. 1 also shows the scale of the negative electrode (discharge) capacity obtained by converting from the amount of hydrogen in the alloy, but in the alloy of Example 1, the hydrogen gas pressure was 0.01 to 0.5. Negative electrode capacity is 240 Ah /
It will be about kg. This indicates that the metal hydride alloy according to the present invention is a good electrode material.

【0021】一方、各比較例の合金では、水素ガス圧が
5MPa程度に大きくなっても、わずかの量の水素を系内
(合金内)に取り込むだけであり、電極材としては不適
であることを示している。
On the other hand, in the alloys of the respective comparative examples, even if the hydrogen gas pressure is increased to about 5 MPa, only a small amount of hydrogen is taken into the system (in the alloy) and it is unsuitable as an electrode material. Is shown.

【0022】[0022]

【発明の効果】上記の通り、本発明の合金は良好な水素
吸蔵能を有し、比較的低い水素平衡圧で多量の水素を吸
蔵する(水素量の多い組成の金属水素化物を生成す
る)。
As described above, the alloy of the present invention has a good hydrogen storage capacity and stores a large amount of hydrogen at a relatively low hydrogen equilibrium pressure (produces a metal hydride having a composition with a large amount of hydrogen). ..

【0023】上述した実施例の結果からわかるように、
本発明による合金は0.01〜0.5 MPaの水素圧力範囲で、
230 〜240 Ah/kg程度の負極容量を有する。
As can be seen from the results of the above embodiment,
The alloy according to the invention has a hydrogen pressure range of 0.01 to 0.5 MPa,
It has a negative electrode capacity of about 230 to 240 Ah / kg.

【0024】本発明による水素吸蔵合金は、ニッケル−
水素電池の負極材として好適である。
The hydrogen storage alloy according to the present invention is made of nickel-
It is suitable as a negative electrode material for hydrogen batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1〜3における合金のPC
T曲線(水素圧力−水素濃度等温曲線)を示すグラフで
ある。
FIG. 1 PC of alloys in Example 1 and Comparative Examples 1-3
It is a graph which shows a T curve (hydrogen pressure-hydrogen concentration isotherm curve).

【図2】水素吸蔵性を示す合金において、合金中の水素
濃度と、そのときの水素平衡圧との関係を表す等温曲線
(PCT曲線)を模式的に示すグラフであり、縦軸の水
素平衡圧は対数目盛りでとってある。
FIG. 2 is a graph schematically showing an isothermal curve (PCT curve) showing the relationship between the hydrogen concentration in the alloy and the hydrogen equilibrium pressure at that time in an alloy exhibiting hydrogen storage properties, and the hydrogen equilibrium on the vertical axis. The pressure is on a logarithmic scale.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記式: Tix Zry (Pd1-Z Niz a (ただし、x+y=1、0.05≦z≦0.95、及び1.5 ≦a
≦2.5 である。)で表されることを特徴とする水素吸蔵
合金。
1. The following formula: Ti x Zr y (Pd 1 -Z Ni z ) a (where x + y = 1, 0.05 ≦ z ≦ 0.95, and 1.5 ≦ a
≦ 2.5. ) A hydrogen storage alloy characterized by being represented by.
JP4165386A 1992-06-01 1992-06-01 Hydrogen storage alloy Pending JPH05331578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165386A JPH05331578A (en) 1992-06-01 1992-06-01 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165386A JPH05331578A (en) 1992-06-01 1992-06-01 Hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH05331578A true JPH05331578A (en) 1993-12-14

Family

ID=15811408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165386A Pending JPH05331578A (en) 1992-06-01 1992-06-01 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH05331578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141207A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 High temperature shape memory alloy and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141207A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 High temperature shape memory alloy and method for producing the same

Similar Documents

Publication Publication Date Title
US4160014A (en) Hydrogen storage material
JP3528599B2 (en) Hydrogen storage alloy
EP1045464B1 (en) Electrochemical hydrogen storage alloys
JPH059504B2 (en)
JP2000104135A (en) Ternary hydrogen storage alloy and its production
US6338764B1 (en) Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
US5900334A (en) Hydrogen occluding alloy
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
EP0468568A1 (en) Electrochemical cell comprising a hydride-forming intermetallic compound
JPH05331578A (en) Hydrogen storage alloy
US4249940A (en) Mischmetal-nickel-iron hydrogen storage compound
JPH08239730A (en) Hydrogen storage alloy
JP2018511696A (en) Hydrogen storage alloy
JP3953138B2 (en) Hydrogen storage alloy
JPS5848481B2 (en) Hydrogen storage materials
JPH0570693B2 (en)
JPH0471985B2 (en)
JPH05217578A (en) Manufacture of hydrogen storage alloy electrode
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
KR100361908B1 (en) Titanium-zirconium-based Laves phase alloy for hydrogen storage
JPH09316571A (en) Hydrogen storage alloy
JP2896433B2 (en) Magnesium hydrogen storage alloy
EP0908415A1 (en) Hydrogen storage alloy
JP3746808B2 (en) Hydrogen storage material
JPH0734175A (en) Hydrogen storage material