JPS60230950A - Hydrogen storing material - Google Patents

Hydrogen storing material

Info

Publication number
JPS60230950A
JPS60230950A JP59088058A JP8805884A JPS60230950A JP S60230950 A JPS60230950 A JP S60230950A JP 59088058 A JP59088058 A JP 59088058A JP 8805884 A JP8805884 A JP 8805884A JP S60230950 A JPS60230950 A JP S60230950A
Authority
JP
Japan
Prior art keywords
rare earth
hydrogen
hydrogen storage
formula
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088058A
Other languages
Japanese (ja)
Other versions
JPH0321615B2 (en
Inventor
Kouji Sasai
笹井 興士
Noboru Hayamizu
速水 昇
Susumu Uotani
魚谷 進
Koichi Oku
奥 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP59088058A priority Critical patent/JPS60230950A/en
Publication of JPS60230950A publication Critical patent/JPS60230950A/en
Publication of JPH0321615B2 publication Critical patent/JPH0321615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To increase the amount of hydrogen stored at ordinary temp. under low pressure and to improve the efficiency of energy conversion by blending a rare earth metal with Ni, Sn and Al, Mn, Co or the like in a ratio represented by a general formula. CONSTITUTION:This hydrogen storing material contg. Sn is represented by formula I (where R is a rare earth metal or a mixture of rare earth metals, x= 4.8-5.5, and a=0.01-1), formula II (where A is Al, Mn, Co, Fe, Cr, V, Nb, Ti or Cu, x=4.8-5.5, and a, b=0.01-1) or formula III (where A and B are different metals selected among Al, Mn, Co, Fe, Cr, V, Nb, Ti and Cu, x=4.8-5.5, and a, b, c=0.01-1). The material stores a large amount of hydrogen at ordinary temp. under low pressure, and it is utilized for energy conversion in a heat pump or the like and shows superior efficiency of energy conversion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヒートポンプ等のエネルギー変換用又は温度セ
ンサーに利用する変換効率又は感度の優れた水素貯蔵材
料、特にR金属(希土類金属)−N1系の系水素貯蔵材
料に関するものでちる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to hydrogen storage materials with excellent conversion efficiency or sensitivity used for energy conversion such as heat pumps or temperature sensors, particularly R metal (rare earth metal)-N1 type hydrogen storage materials. Regarding hydrogen storage materials.

(発明が解決しようとする問題点) 常温下で比較的低圧力で水素貯蔵量が大きく、しかも吸
蔵水素圧力と解離平衡圧力との差(所謂ヒステリシス)
が小さい水素貯蔵材料を提供することにある。
(Problems to be solved by the invention) The amount of hydrogen stored is large at relatively low pressure at room temperature, and there is a difference between the absorbed hydrogen pressure and the dissociation equilibrium pressure (so-called hysteresis).
The objective is to provide a small hydrogen storage material.

(従来技術) 従来水素貯蔵材料としてTi−F8系合金、LaNi5
又ハMmN15(Mmはミツ7ユメタル)系合金又はM
 系合金等からなる各種の材料が提案されている。
(Prior art) Ti-F8 alloy and LaNi5 are conventional hydrogen storage materials.
Also, MmN15 (Mm is Mitsu7yu metal) alloy or M
Various materials made of alloys and the like have been proposed.

しかし、金属La2Mm(Ce40〜50% 、 La
25〜35%、その他Nd、Pr、Sm等の金属の混合
物)又はLa成分の多いMm(La40〜70%、Ce
O,1〜20チその他Nd、Pr、Sm等の金属の混合
物。以下Lmと略称する)を原料としたLaNi5.M
mNi5゜LmN15からなる材料は、水素吸蔵量が大
きくまだ吸蔵放出速度が比較的速いという利点がある反
面、ヒステリシスが大きいという問題がある。
However, metal La2Mm (Ce40~50%, La
25-35%, mixture of other metals such as Nd, Pr, Sm) or Mm with a large amount of La (40-70% La, Ce
A mixture of O, 1 to 20% and other metals such as Nd, Pr, and Sm. LaNi5. M
Although the material made of mNi5°LmN15 has the advantage of having a large hydrogen storage capacity and a relatively fast absorption/desorption rate, it has the problem of large hysteresis.

丑だ、MmNl、はLaが高価であるため、LaN13
の経済性を改善すべく開発されたものであるが、ヒステ
リシスが大きいことと、吸蔵圧力が高いという欠点があ
シ利用上の困難がある。
Ushida, MmNl, is LaN13 because La is expensive.
Although it was developed to improve the economic efficiency of the system, it has the disadvantages of large hysteresis and high storage pressure, and is difficult to use.

従来、吸蔵圧力の制御やヒステリシス改善のためにLa
N1.又はMmN1系合金からなる材料に、Az等の第
三元素さらに第四元素を添加することも提案されている
が、この場合吸蔵、放出圧力の低下に有効であるが、ヒ
ステリシスの改善は必らずしも充分ではない。
Conventionally, La was used to control storage pressure and improve hysteresis.
N1. Alternatively, it has been proposed to add a third element such as Az or a fourth element to a material made of an MmN1 alloy, but in this case, it is effective in reducing the occlusion and desorption pressure, but it does not necessarily improve the hysteresis. There wasn't enough sushi either.

(問題点を解決するだめの手段) 本発明は水素貯蔵材料として、一般式 %式%( (ただし、Rは希土類金属又は希土類金属の混合物:X
は4.8−5.5、aはo、o 1−1.0 )で表わ
されるSn含有水素貯蔵材料を特定発明とし、また、一
般式 %式%(21 (ただしI RI xは前記特定発明と同様。AはAz
、Mn、Co、Fo、C,、V、Nb、T1又はCu。
(Means for Solving the Problems) The present invention provides a hydrogen storage material using the general formula % (where R is a rare earth metal or a mixture of rare earth metals:
is 4.8-5.5, a is o, o 1-1.0), and the general formula % formula % (21 (However, I RI Same as invention.A is Az
, Mn, Co, Fo, C,, V, Nb, T1 or Cu.

a、bは夫々0.01−1.0 ’) で表わされるS。含有水素貯蔵材料であり、さらにまた
、一般式 %式% (ただし、R,x、Aは前記一般式(2)と同様で、B
はAz、Mn、Co、Fe、Cr、V、Nb、T1.C
uでAと異なる金属、a、b、cは夫々 0.01〜10゜) で表わされるSn含有水素貯蔵材料である。
a and b are respectively 0.01-1.0'). It is a hydrogen storage material containing hydrogen storage material, and also has the general formula % (where R, x, A are the same as the general formula (2) above, and B
are Az, Mn, Co, Fe, Cr, V, Nb, T1. C
It is an Sn-containing hydrogen storage material, where u is a metal different from A, and a, b, and c are each 0.01 to 10°.

(作用効果) 本発明におけるRは前述のM のみならずLmであって
もよく、1だしaであってもよい。しかし、製造コスト
等を考慮すれば、Mm又はLmを使用することが望まし
い。
(Effects) In the present invention, R may be not only the above-mentioned M but also Lm, 1 or a. However, considering manufacturing costs and the like, it is desirable to use Mm or Lm.

本発明の水素貯蔵材料は、前述R1金属N。The hydrogen storage material of the present invention is the above-mentioned R1 metal N.

及び粒状S とを公知の高周波炉又はタングステン電極
アーク溶解炉等によってアルゴン等の不活性雰囲気中で
加熱溶融した後、適宜熱処理し、粉砕することによって
簡単に特定発明の水素貯蔵材料を得ることができ、さら
にこれにAt。
The hydrogen storage material of the specified invention can be easily obtained by heating and melting and granular S in an inert atmosphere such as argon in a known high frequency furnace or tungsten electrode arc melting furnace, followed by appropriate heat treatment and pulverization. I can do it, and also At.

M、、Co、Fe、C,、V、Nb、T1又はCuの1
種又は2種を添加して前記一般式(2)及び(3)の水
素貯蔵材料も簡単に得ることができる。
1 of M, , Co, Fe, C, , V, Nb, T1 or Cu
Hydrogen storage materials of the general formulas (2) and (3) can also be easily obtained by adding one species or two species.

本発明におけるS。の添加量は、0.01以下ではヒス
テリシスを減少させる効果がなく、他方1.0以上では
Snの添加によって水素吸蔵量が減少するため、0.0
1〜1.0 の範囲とする。
S in the present invention. If the amount of addition is less than 0.01, there is no effect of reducing hysteresis, while if it is more than 1.0, the amount of hydrogen storage decreases due to the addition of Sn, so 0.0
The range is 1 to 1.0.

また、特定発明であるRxN1(x−a)SnaKAt
In addition, the specified invention RxN1(x-a)SnaKAt
.

M、、Co、Fe、Cr、V、Nb、T1 又はCuの
第4元素又は第4元素と第5元素等を添加した場合ヒス
テリシスは改善できるが、前記Az、Mnその他の第4
元素及び第5元素が0.01以下では吸蔵圧力の改善が
できず、まだ1.0以上では吸蔵量が減少する。従って
、A元素及びB元素は何れも0.01〜1.0の範囲と
する。
Hysteresis can be improved by adding a fourth element such as M, Co, Fe, Cr, V, Nb, T1 or Cu, or a fourth element and a fifth element.
If the content of the element and the fifth element is less than 0.01, the storage pressure cannot be improved, and if it is still more than 1.0, the amount of storage will decrease. Therefore, both the A element and the B element are in the range of 0.01 to 1.0.

捷だ、前記一般式(+1 、 (21及び(3)におけ
るXが5.5より大きいか或いは4.8より小さい場合
には水素吸蔵量の減少を生ずるほか、水素化物が不安定
となり、水素の吸蔵、放出の繰返しによる材料の劣化が
起り易くなるだめ又は4.8〜55の範囲とすることが
必要である。
However, if X in the above general formula (+1, (21 and (3)) is larger than 5.5 or smaller than 4.8, not only will the hydrogen storage capacity decrease, but the hydride will become unstable and hydrogen It is necessary to keep the value in the range of 4.8 to 55, since the material is likely to deteriorate due to repeated occlusion and release of .

つぎに本発明の製造例について説明し、その効果を併せ
て説明する。
Next, manufacturing examples of the present invention will be explained, and the effects thereof will also be explained.

製造例1゜ RとしてL を用い、これに金属N1及び粒状Smの所
定量をアーク溶解炉中でアルゴン雰囲気下で加熱溶解し
てLmN149Sno、とLmN、48Sno2及びL
 N S を夫々製製し、1050°C,8時m 14
.7 nO,3 間熱処理を行った後、大気中で9〜100メツシユに粉
砕する。尚、比較のためにLmN、5゜Lr1INi 
49 Ato+及びLmN148Ato2を前記と同様
に製造した。
Production Example 1 Using L as R, predetermined amounts of metal N1 and granular Sm were heated and melted in an arc melting furnace under an argon atmosphere to obtain LmN149Sno, LmN, 48Sno2 and L
N S was prepared and heated at 1050°C for 8 hours.
.. After heat treatment for 7 nO, 3 minutes, it is ground into 9 to 100 meshes in the air. For comparison, LmN, 5°Lr1INi
49 Ato+ and LmN148Ato2 were prepared as described above.

製造例2 RとしてLaを用い、これに金属N1及び粒状Snを製
造例1と同様に処理してLaNi4□5no3を製造し
た。また比較のために前記と同様に処理してLaN13
及びLa Ni 4.7At o、aを製造した。
Production Example 2 Using La as R, metal N1 and granular Sn were treated in the same manner as in Production Example 1 to produce LaNi4□5no3. For comparison, LaN13 was treated in the same manner as above.
and La Ni 4.7Ato,a were produced.

製造例3゜ RとしてMmを用い前記製造例1及び2と同様処理して
MmN14゜5no3並びに比較のためにMmNi5及
びMmN14□Ato3を製造した。
Production Example 3 Mm was used as R and treated in the same manner as in Production Examples 1 and 2 to produce MmN14°5no3 and MmNi5 and MmN14□Ato3 for comparison.

製造例4゜ RとしてLm及びMmを用い、これに金属Ni。Production example 4゜ Lm and Mm are used as R, and metal Ni is added thereto.

粒状S 及び一般式(2)のへ元素としてM。l CQ
 l ■+Atの1元素を添加し、前記製造例1ないし
3と同様処理してLmNi 4.4 Sn o、+Mn
 O,51LmNitaSno3Coo3及びMmN1
465Sno3■oo52MmN146Soo2Aム2
を製造した。
Granular S and M as an element in general formula (2). lCQ
LmNi 4.4Sno, +Mn
O, 51LmNitaSno3Coo3 and MmN1
465Sno3■oo52MmN146Soo2Am2
was manufactured.

また、同様に一般式(3)のA元素にM。、B元素にC
としたLmNi<4sSno、+Mno4COo、o5
並びに比較のためにLmN1455Moo4Cooo5
を製造した。
Similarly, M is substituted for element A in general formula (3). , C to B element
LmNi<4sSno, +Mno4COo, o5
and LmN1455Moo4Cooo5 for comparison.
was manufactured.

前記製造例1ないし4に於て製造した粉砕物を反応容器
に封入し、室温で該容器内を水素ガスで置換し、容器内
を30 kV/caの水素圧として活性化する。
The pulverized products produced in Production Examples 1 to 4 are sealed in a reaction vessel, and the interior of the vessel is purged with hydrogen gas at room temperature to activate the vessel with a hydrogen pressure of 30 kV/ca.

つぎに、吸蔵しだH2を排気後、30°CにおけるH2
の吸蔵、放出量及びその平衡圧力を測定し、第1表の如
き結果を得た。
Next, after exhausting the stored H2, the H2 at 30°C is
The absorption and release amounts and their equilibrium pressures were measured, and the results shown in Table 1 were obtained.

第1表から明らかな如く、Snを添加した本発明は、比
較例に比べて何れもヒステリジス因子”n (Pa/P
dρは大巾に改善されており、また吸蔵圧力(Pa)、
放出圧力(Pd)も著るしく改善されていることが認め
られ、しかもH2の最大吸蔵量((H/M)max)も
比較例と遜色のないものであることが認められる。
As is clear from Table 1, the present invention in which Sn is added has a lower hysteresis factor "n (Pa/P
dρ has been greatly improved, and the storage pressure (Pa),
It was recognized that the discharge pressure (Pd) was also significantly improved, and the maximum storage amount of H2 ((H/M)max) was also found to be comparable to that of the comparative example.

以上の如く本発明はR−Ni系合金にSnを添加するこ
とによって従来のMm、Lm又はLaの何れをも用いる
ことができ、また何れの場合にもヒステリシスが減少す
るため、ヒートポンプ等のエネルギー変換用に利用する
場合変換効率が向上し、また温度センサーに利用した場
合、その感度を向上し、性能の優れた水素貯蔵材料を提
供することができる。
As described above, in the present invention, any of the conventional Mm, Lm, or La can be used by adding Sn to the R-Ni alloy, and in any case, the hysteresis is reduced, so the energy consumption of heat pumps, etc. When used for conversion, the conversion efficiency is improved, and when used as a temperature sensor, the sensitivity is improved, making it possible to provide a hydrogen storage material with excellent performance.

特許出願人 日本重化学工業株式会社 代理人市川理吉 手続補正書(自発) 昭和59年6月11日 特許庁長官 若 杉 和 夫 殿寮 (特許庁審査官 殿) 1、事件の表示 昭和59年 特 許 願第88058 号2、発明の名
称 水素貯蔵材料 明細書ヰ頁9行目「又はCuoJを「又はCuの1種。
Patent Applicant Japan Heavy Chemical Industry Co., Ltd. Agent Rikichi Ichikawa Procedural Amendment (Spontaneous) June 11, 1980 Commissioner of the Patent Office Kazuo Wakasugi Toronyo (Patent Office Examiner) 1. Indication of the case 1988 Patent Application No. 88058 2, title of the invention, hydrogen storage material specification, page 1, line 9: ``Or CuoJ'' or one type of Cu.

」と訂正する。” he corrected.

以 上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)一般式RN1(x−a)Soa (ただし、Rは希土類金属又は希土類金属の混合物;x
は4.8〜5.5.aは0.01〜1.0゜)で表わさ
れるSn含有水素貯蔵材料。
(1) General formula RN1(x-a) Soa (where R is a rare earth metal or a mixture of rare earth metals; x
is 4.8 to 5.5. Sn-containing hydrogen storage material, where a is 0.01 to 1.0°).
(2)一般式RNi (x−a−b) 5naAb(た
だし、Rは希土類金属又は希土類金属の混合物;AはA
z、Mn、Co、Fe、C,、V。 Nb、T1又はCuの1種;Xは4.8−5.5. a
 。 bは夫々0.01〜1.0) で表わされるS。含有水素貯蔵材料。
(2) General formula RNi (x-a-b) 5naAb (where, R is a rare earth metal or a mixture of rare earth metals; A is A
z, Mn, Co, Fe, C,,V. One of Nb, T1 or Cu; X is 4.8-5.5. a
. b is 0.01 to 1.0). Containing hydrogen storage material.
(3) 一般式RNi(x−a−b−c)SnaAbB
c(ただし、Rは希土類金属又は希土類金属の混合物;
A、Bは夫々At2Mn、co、Fe。 CI + V + N l) + Ti + Cuで、
かつ、AとBとが異なる金属;Xは4.8−5.5 、
a 、 b 、 cは夫々0.01〜1.0) で表わされる8n含有水素貯蔵料。
(3) General formula RNi(x-a-b-c)SnaAbB
c (where R is a rare earth metal or a mixture of rare earth metals;
A and B are At2Mn, co, and Fe, respectively. CI + V + Nl) + Ti + Cu,
and A and B are different metals; X is 4.8-5.5,
8n-containing hydrogen storage material, where a, b, and c are each 0.01 to 1.0.
JP59088058A 1984-05-01 1984-05-01 Hydrogen storing material Granted JPS60230950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088058A JPS60230950A (en) 1984-05-01 1984-05-01 Hydrogen storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088058A JPS60230950A (en) 1984-05-01 1984-05-01 Hydrogen storing material

Publications (2)

Publication Number Publication Date
JPS60230950A true JPS60230950A (en) 1985-11-16
JPH0321615B2 JPH0321615B2 (en) 1991-03-25

Family

ID=13932239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088058A Granted JPS60230950A (en) 1984-05-01 1984-05-01 Hydrogen storing material

Country Status (1)

Country Link
JP (1) JPS60230950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287031A (en) * 1986-06-06 1987-12-12 Sumitomo Heavy Ind Ltd Tritium storage and supply material
JPS62294145A (en) * 1986-06-13 1987-12-21 Santoku Kinzoku Kogyo Kk Metallic alloy for hydrogen storage containing rare earth element and nickel
JPS6347345A (en) * 1986-08-14 1988-02-29 Japan Metals & Chem Co Ltd Hydrogen storage material
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
CN113881872A (en) * 2021-10-27 2022-01-04 厦门钨业股份有限公司 Low-cobalt high-rate AB5 type hydrogen storage alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287031A (en) * 1986-06-06 1987-12-12 Sumitomo Heavy Ind Ltd Tritium storage and supply material
JPS62294145A (en) * 1986-06-13 1987-12-21 Santoku Kinzoku Kogyo Kk Metallic alloy for hydrogen storage containing rare earth element and nickel
JPS6347345A (en) * 1986-08-14 1988-02-29 Japan Metals & Chem Co Ltd Hydrogen storage material
JPH0570693B2 (en) * 1986-08-14 1993-10-05 Japan Metals & Chem Co Ltd
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
US9225016B2 (en) 2010-08-19 2015-12-29 Santoku Corporation Hydrogen absorbing alloy, negative pole, and nickel—hydrogen secondary battery
JP5851991B2 (en) * 2010-08-19 2016-02-03 株式会社三徳 Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
CN113881872A (en) * 2021-10-27 2022-01-04 厦门钨业股份有限公司 Low-cobalt high-rate AB5 type hydrogen storage alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0321615B2 (en) 1991-03-25

Similar Documents

Publication Publication Date Title
JP2022543828A (en) METHOD FOR PRODUCING HYDROGEN STORAGE ALLOY
JPS60230950A (en) Hydrogen storing material
US4412982A (en) Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry
JPS6043451A (en) Material for storing hydrogen
US4359396A (en) Hydride of beryllium-based intermetallic compound
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
US4913879A (en) Hydrogen absorbing modified ZrMn2 -type alloys
JPH0570693B2 (en)
JPH02179836A (en) Manufacture of hydrogen storage alloy and electrode
JPH0452242A (en) Hydrogen storage alloy
JP2743123B2 (en) Materials for hydrogen storage
US4576639A (en) Hydrogen storage metal material
JPS6256939B2 (en)
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPH0397827A (en) Titanium-chromium-copper series hydrogen storage alloy
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
JPS5947022B2 (en) Alloy for hydrogen storage
JPH0210659A (en) Manufacture of hydrogen storage alloy
JPH02209447A (en) Hydrogen storage alloy
JPH0242893B2 (en)
JPS5970743A (en) Metallic material for occluding hydrogen
JPH0375618B2 (en)
JPH0474845A (en) Hydrogen storage alloy
JPH10298681A (en) Hydrogen storage alloy
JP2002212663A (en) High capacity hydrogen occlusion alloy and production method therefor