JPS6227534A - Zirconium alloy for hydrogen storage - Google Patents

Zirconium alloy for hydrogen storage

Info

Publication number
JPS6227534A
JPS6227534A JP60163946A JP16394685A JPS6227534A JP S6227534 A JPS6227534 A JP S6227534A JP 60163946 A JP60163946 A JP 60163946A JP 16394685 A JP16394685 A JP 16394685A JP S6227534 A JPS6227534 A JP S6227534A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60163946A
Other languages
Japanese (ja)
Inventor
Yasuaki Osumi
大角 泰章
Kazuo Ebato
江波戸 和男
Keiji Tamura
田村 敬二
Hiroshi Yoshida
裕志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP60163946A priority Critical patent/JPS6227534A/en
Publication of JPS6227534A publication Critical patent/JPS6227534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain the titled alloy capable of occluding and releasing a large quantity of hydrogen easily, by melting Zr, Mn, V, Fe at specified ratios and alloying them. CONSTITUTION:Zr, Mn V, Fe are weighed respectively and mixed, press formed to arbitrary shape, then the green compact is melted by arc electric furnace of inert gas atmosphere, to prepare Zr alloy having compsn. shown by the following formula. Compsn. of Zr alloy is shown by Zrx(Mn1-y-zVyFez)2 under quantity relation of 0.5<x<1.5, 0<y<1.0<z<1 further y+z<=1. The alloy is solidified in electric furnace of inert gas atmosphere, cooled as it is to room temp., then taken out therefrom, put into vacuum vessel to heat and hold it at 1,000-1,100 deg.C for >=8hr, then cooled and milled to increase surface area. The titled alloy capable of occluding and releasing a large quantity of hydrogen easily is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ジルコニウム系水素吸蔵用合金に関し、より
詳細には水素化物の形態で多量の水素を吸蔵でき、しか
もわずかの加熱あるいは減圧で容易、かつ速やかに水素
を放出することができ、その水素吸蔵圧と放出圧の差、
即ちヒステリシスの極めて小さい新規にして実用上極め
て有用なるジルコニウム系水素吸蔵用合金に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a zirconium-based hydrogen storage alloy, and more specifically, it can store a large amount of hydrogen in the form of a hydride, and can easily store hydrogen with a slight amount of heating or depressurization. , and can quickly release hydrogen, and the difference between the hydrogen storage pressure and release pressure,
That is, the present invention relates to a new zirconium-based hydrogen storage alloy that has extremely small hysteresis and is extremely useful in practice.

(従来の技術) 水素は、原料が豊富に存在する水であり、資源的な制約
がないこと、その燃焼生成物が水などでクリーンである
こと、貯蔵・輸送が容易なことなどから化石燃料に代る
新しいエネルギー源として注目されている。
(Conventional technology) Hydrogen is an abundant raw material, water, and has no resource constraints; its combustion products are clean, such as water; and it is easy to store and transport. It is attracting attention as a new energy source.

しかし、水素は常温で気体であり、かつ液化温度が極め
て低いので、これを貯蔵する技術の開発が従来から大き
な課題となっている。この課題を解決する方式の一つと
して水素を金属水素化物の形で貯蔵する方式が注目され
る。この方式は、150気圧の市販ボンベの2割以下の
容積、あるいは液体水素の8割以下の容積で同重量の水
素を貯蔵することができる。従って、金属水素化物によ
る水素の貯蔵方式は従来の方式に比べて安全性、取扱い
易さの点で極めて優れている。
However, since hydrogen is a gas at room temperature and has an extremely low liquefaction temperature, the development of technology to store it has long been a major challenge. One way to solve this problem is to store hydrogen in the form of metal hydrides. This system can store the same weight of hydrogen in less than 20% of the volume of a commercially available 150-atmosphere cylinder, or 80% or less of liquid hydrogen. Therefore, hydrogen storage methods using metal hydrides are extremely superior to conventional methods in terms of safety and ease of handling.

さて、金属または合金と水素の吸蔵・放出反応は可逆的
であり、水素の貯蔵に利用されるだけでなく、反応に伴
って相当量の反応熱が発生あるいは吸収され、水素の吸
蔵・放出圧力は温度に依存することを利用して水素貯蔵
装置、水素輸送装置。
Now, the hydrogen absorption/desorption reaction between metals or alloys is reversible, and not only is it used to store hydrogen, but a considerable amount of reaction heat is generated or absorbed during the reaction, and the hydrogen storage/desorption pressure is Hydrogen storage devices and hydrogen transport devices utilize temperature dependence.

水素精製装置1蓄熱装置、ヒートポンプ、熱エネルギー
・機械エネルギー変換装置などの広範な応用システムの
開発が期待されている。
The development of a wide range of applied systems such as hydrogen purification equipment 1 heat storage devices, heat pumps, and thermal energy/mechanical energy conversion devices is expected.

かかる水素吸蔵用材料として要求される性質としては、
安価でかつその資源が豊富であること、活性化が容易で
水素吸蔵量が大きいこと、使用温度において好適な水素
吸蔵・放出平衡圧を有し、吸蔵圧と放出圧との差である
ビステリシスが小さいこと、水素吸蔵・放出反応が可逆
的であり、その速度が大きいことなどがあげられる。
The properties required for such a hydrogen storage material are as follows:
It is inexpensive and has abundant resources, is easy to activate, has a large hydrogen storage capacity, has a suitable hydrogen storage/release equilibrium pressure at the operating temperature, and has bisteresis, which is the difference between the storage pressure and release pressure. These include its small size, reversible hydrogen absorption and desorption reactions, and its high speed.

代表的な公知の水素吸蔵用材料としては、マグネシウム
−ニッケル系合金、希土類−ニッケル系合金、チタン−
鉄系合金、ジルコニウム−マンガン系合金などが知られ
ている。しかし、このうちマグネシウム−ニッケル系合
金2例えば、Mg2Niは単位重量当たシの水素吸蔵量
は太きいが、水素吸蔵・放出温度が高く、この合金を多
成分化しても水素貯蔵用材料として十分な性能を有する
ものはいまだ得られていない。希土類−ニッケル系合金
、例えば、LaNi5は優れた水素吸蔵・放出特性を有
しているが、ランタンが高価なことが最大の欠点である
。チタン−鉄系合金、例えばTiFeは初期の水素化が
困難であり、活性化処理には高温・高圧(450℃、水
素圧50気圧)を必要とし、ヒステリシスも大きく、水
素吸蔵・放出を繰り返しているうちに水素吸蔵量は減少
するという欠点を有している。TiFeにマンガン、ニ
オブ豪酸素。
Typical known hydrogen storage materials include magnesium-nickel alloy, rare earth-nickel alloy, and titanium-nickel alloy.
Iron-based alloys, zirconium-manganese alloys, and the like are known. However, among these alloys, magnesium-nickel alloy 2, for example Mg2Ni, has a large hydrogen storage capacity per unit weight, but has a high hydrogen storage and release temperature, so even if this alloy is multi-component, it is still sufficient as a hydrogen storage material. A product with such performance has not yet been obtained. Rare earth-nickel alloys, such as LaNi5, have excellent hydrogen storage and desorption properties, but their biggest drawback is that lanthanum is expensive. Titanium-iron alloys, such as TiFe, are difficult to hydrogenate in the initial stage, requiring high temperatures and pressures (450°C, hydrogen pressure of 50 atm) for activation treatment, large hysteresis, and repeated hydrogen absorption and release. The disadvantage is that the hydrogen storage capacity decreases over time. TiFe, manganese, niobium and oxygen.

イオウなどを微量添加することによって初期活性を改善
した合金が見出されたが、まだ水素貯蔵用材料としての
十分な性能を有していない。ZrMn2は、初期活性が
高いが、ヒステリシスが大きいという欠点を有している
An alloy with improved initial activity by adding small amounts of sulfur and the like has been discovered, but it still does not have sufficient performance as a hydrogen storage material. ZrMn2 has high initial activity, but has the disadvantage of large hysteresis.

(発明が解決しようとする問題点) 前記の各合金は、それぞれ特徴のある特性を有している
が一般に水素吸蔵量が少ないこと、ヒステリシスが大き
いことなどの問題点があシ、水素吸蔵用材料として要求
される上記の条件をすべて満足する合金はまだ見出され
ていない現状である。
(Problems to be Solved by the Invention) Each of the above-mentioned alloys has unique characteristics, but they generally have problems such as a small amount of hydrogen storage and large hysteresis. At present, an alloy that satisfies all of the above-mentioned conditions required as a material has not yet been found.

(問題点を解決するための手段) 本発明は、従来の水素吸蔵用合金が有する諸欠点ならび
に問題点な除去を解決した合金を提供することを目的と
し、特許請求の範囲記載の合金を提供することによって
前記目的を達成することができる0即ち、本発明の合金
は、一般式Zrx (Mn 1− y−z Vy F 
e z ) 2で示されるジk :Iニウム系水素吸蔵
用合金であって、式中x+yおよび2はそれぞれ0.5
 < 1 < 1.5 y O< 7 < 1 + 0
 (Z <1且つ、y+z≦1である。
(Means for Solving the Problems) The purpose of the present invention is to provide an alloy that solves the various drawbacks and problems of conventional hydrogen storage alloys, and provides the alloy described in the claims. The alloy of the present invention, which can achieve the above object by
A dik:I-based hydrogen storage alloy represented by e z ) 2, where x+y and 2 are each 0.5
< 1 < 1.5 y O < 7 < 1 + 0
(Z<1 and y+z≦1.

本発明者らは、前記の従来の水素g&蔵金合金欠点を解
消すべく研究した結果、Zr l Mn t Vおよび
Feよシ構成される合金が水素吸蔵用材料として要求さ
れる性質をすべて具備しており、水素吸蔵用合金として
新規にして極めて有用なものであることを見出し、ここ
に本発明を完成するに至った。
The present inventors conducted research to eliminate the drawbacks of the conventional hydrogen storage alloy and found that an alloy composed of Zr l Mn t V and Fe possesses all the properties required as a hydrogen storage material. The present inventors have discovered that the alloy is novel and extremely useful as a hydrogen storage alloy, and have now completed the present invention.

本発明のジルコニウム系水素吸蔵用合金の一般式Zrx
 (In 1− y−z Vy Fe z ) 2 に
おいてX1Fおよび2をそれぞれ前記のように定めた理
由は下記の通りである。
General formula Zrx of the zirconium hydrogen storage alloy of the present invention
The reason why X1F and 2 in (In 1-y-z Vy Fez ) 2 are determined as described above is as follows.

Xが1.5よシ大きいと熱力学的に不均化が生起しやす
く、高温にならないと解離しないZrH2が生成するた
め水素吸蔵・放出量が少なくなる。一方Xが0.5より
小さいと初期活性が困難となシ、水素吸蔵量が低下し、
しかも吸蔵された水素の放出が困難となるため、高温に
するか、もしくは減圧あるいは真空下での加熱によらな
ければ円滑な水素の放出が達成できなくなるので0.5
 (X(1,5にする必要がある。yが1以上のときは
、水素放出条件が室温付近で約10−8気圧となシ、水
素吸蔵用材料として取り扱いが困難となり、一方y=O
のときは、一般式がZrX(Mn、−、Fe2)2とな
シ、解離圧は増大する傾向を示し、水素吸蔵用材料とし
て利用可能な圧力となるが、ヒステリシスが大きくなる
ので0 <y< I Kする必要がある。例えば、Zr
Mn2の組成の公知合金では、水素吸蔵圧力が150℃
で約1.4気圧、水素放出圧力が約0.56気圧であシ
、ヒステリシスは約0.8気圧もある。ヒステリシスが
大きいことは、水素の吸蔵・放出の操作をするために、
水素収蔵用合金もしくはその金属水素化物をよシ大きな
温度差で加熱・冷却するか、あるいはよシ大きな圧力差
で水素加圧、減圧しなければならず、水素貯蔵能力、水
素化反応を有効に利用することができない。Z=1のと
きは、水素吸蔵量が低下し、しかも水素放出条件が室温
付近で10−8気圧に近ずくため水素吸蔵用材料として
取り扱いが困難となる。z=0のときは、一般式がZr
 (In 、−yVy ) 2 となり、水素吸蔵用材
料として利用可能な特性を有するものとなる。
When X is larger than 1.5, disproportionation tends to occur thermodynamically, and ZrH2, which does not dissociate unless the temperature is high, is generated, resulting in a decrease in the amount of hydrogen storage and release. On the other hand, if X is smaller than 0.5, initial activation will be difficult and the hydrogen storage capacity will decrease.
Moreover, it becomes difficult to release the occluded hydrogen, and smooth release of hydrogen cannot be achieved unless the temperature is raised or heated under reduced pressure or vacuum.
(X (needs to be 1,5). When y is 1 or more, the hydrogen release condition is around room temperature and about 10-8 atm, making it difficult to handle as a hydrogen storage material; on the other hand, y = O
When the general formula is ZrX(Mn, -, Fe2)2, the dissociation pressure tends to increase and becomes a pressure that can be used as a hydrogen storage material. <I need to do it. For example, Zr
In a known alloy with a composition of Mn2, the hydrogen storage pressure is 150°C.
The hydrogen release pressure is about 0.56 atm, and the hysteresis is about 0.8 atm. The large hysteresis means that hydrogen storage and release operations are required.
The hydrogen storage alloy or its metal hydride must be heated and cooled with a large temperature difference, or the hydrogen must be pressurized or depressurized with a large pressure difference, to effectively improve the hydrogen storage capacity and hydrogenation reaction. Not available. When Z=1, the hydrogen storage capacity decreases and the hydrogen release conditions approach 10 −8 atm near room temperature, making it difficult to handle as a hydrogen storage material. When z=0, the general formula is Zr
(In, -yVy) 2 and has characteristics that can be used as a hydrogen storage material.

X・yおよび2が本発明の特許請求範囲にある合金、例
えばZr(Kn、8V、、Fe、1 ) 2は、水素吸
蔵量が100℃で約0.07気圧・水素放出圧が約0.
05気圧であり、ヒステリシスは極めて小さい。
An alloy in which X, y and 2 are within the scope of the claims of the present invention, such as Zr(Kn, 8V,, Fe, 1) 2, has a hydrogen storage capacity of about 0.07 atm at 100°C and a hydrogen release pressure of about 0. ..
05 atm, and the hysteresis is extremely small.

このように本発明のジルコニウム系水素吸蔵用合金は、
初めて開発された新規な合金にして、水素吸蔵用材料と
して要求される緒特性をすべて具備するものであ抄、特
に水素吸蔵・放出圧のヒステリシスは従来の水素吸蔵用
合金に比べて大幅に改善され、水素吸蔵用合金としての
水素貯蔵能力。
In this way, the zirconium-based hydrogen storage alloy of the present invention is
This is a new alloy developed for the first time, and it has all the properties required as a hydrogen storage material.In particular, the hysteresis of hydrogen storage and release pressure is significantly improved compared to conventional hydrogen storage alloys. and hydrogen storage capacity as a hydrogen storage alloy.

水素吸蔵・放出に伴う反応熱を有効に利用することがで
きるのである。しかも、水素吸蔵・放出反応の活性化が
容易であり、反応速度も極めて速く、大量の水素を密度
高く吸蔵し得るとともに、水素吸蔵・放出を繰シ返して
も合金の性能劣化はない、実用上極めて有用な水素吸蔵
用材料となるのである。
This makes it possible to effectively utilize the reaction heat associated with hydrogen storage and release. Moreover, the activation of the hydrogen storage/release reaction is easy, the reaction rate is extremely fast, and a large amount of hydrogen can be stored with high density, and the performance of the alloy does not deteriorate even after repeated hydrogen storage/release. This makes it an extremely useful hydrogen storage material.

本発明合金を製造するには従来知られている水素吸蔵用
合金の製造方法によることができるが、アーク溶融法に
よることが最も好適である。次にアーク溶融法による本
発明合金の製造方法について述べる。
Although the alloy of the present invention can be produced by conventionally known methods for producing hydrogen storage alloys, it is most preferable to use the arc melting method. Next, a method for manufacturing the alloy of the present invention using an arc melting method will be described.

Zr + Mn r VおよびFeをそれぞれ秤取して
混合した後、任意の形状にプレス成形し、この成形体を
アーク溶融炉に装入して不活性雰囲気下で加熱溶融し、
炉内で凝固させて室温まで冷却した後炉外に取出す。こ
の取出した合金を均質にするため、この合金を真空にす
ることのできる容器内に装入し10  ’l’orr以
下の高真空雰囲気下で1000〜1100℃+8時間以
上炉中に保持した後、真空容器を炉外に取出し放冷する
か、または真空容器を水中に投入して冷却する。その後
、合金の表面積を拡大して水素吸蔵能力を高めるため、
破砕して粒状にする。
After weighing and mixing Zr + Mn r V and Fe, they are press-molded into an arbitrary shape, and this molded body is charged into an arc melting furnace and heated and melted in an inert atmosphere.
After being solidified in the furnace and cooled to room temperature, it is taken out of the furnace. In order to make the extracted alloy homogeneous, it was charged into a container that can be evacuated and kept in a furnace at 1000-1100℃ for more than 8 hours under a high vacuum atmosphere of 10'l'orr or less. , the vacuum container is taken out of the furnace and left to cool, or the vacuum container is placed in water and cooled. After that, in order to increase the surface area of the alloy and increase its hydrogen storage capacity,
Crush into granules.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例1゜ 市販のZr * Mn 、V + Feを適量秤取し、
これを高真空アーク溶融炉の銅製ルツボ内に装入し、炉
内を99.99%アルゴン雰囲気とした後、約2000
℃に加熱溶融して約402の次のような原子数組成のボ
タン状合金塊5種をそれぞれ製造した。即ち、Zr(M
n、8”0.I Feo、、 ) 2  r Zr(M
n。、4vO,i Feo、5 ) 2 。
Example 1 An appropriate amount of commercially available Zr*Mn, V + Fe was weighed,
This was charged into a copper crucible of a high vacuum arc melting furnace, and after creating a 99.99% argon atmosphere in the furnace, approximately 2000
Five types of button-shaped alloy ingots having the following atomic compositions of about 402 were produced by heating and melting at a temperature of about 402°C. That is, Zr(M
n, 8”0.I Feo,, ) 2 r Zr(M
n. ,4vO,i Feo,5) 2.

Zr (Mn O,a Vo、 s Fe 0.5 )
 21 Zr (Mn0.a VO,5Fe O,j 
) 2 。
Zr (MnO,aVo,sFe0.5)
21 Zr (Mn0.a VO,5Fe O,j
) 2.

ZrMn2である。各ボタン状試料をそれぞれ石英管内
に装入し、ロータリーポンプを用いて1O−2TOrr
の真空下で加熱炉内で1100℃、8時間保持した後、
試料を石英管内に入れたまま水中に取出して急冷する均
質熱処理を施した。その後3鰭以下に破砕した。合金の
活性化ならびに水素の吸蔵・放出量の測定方法を第1図
に示す原理図について説明する。
It is ZrMn2. Each button-shaped sample was placed in a quartz tube and heated to 10-2 TOrr using a rotary pump.
After being held at 1100°C for 8 hours in a heating furnace under a vacuum of
A homogeneous heat treatment was performed in which the sample was taken out of the quartz tube and quenched in water. It was then broken into three or fewer fins. The method for measuring the activation of the alloy and the amount of hydrogen absorbed and released will be explained with reference to the principle diagram shown in FIG.

ステンレス製水素吸蔵・放出反応器10には、前記粉砕
した15grの水素吸蔵用合金試料12が収納されてお
り、前記反応器lOはバルブ14を経てリザーバー16
に連結されている。リザーバー16はパルプ18を経て
水素ボンベ20に、まタハルブ22を経てロータリ一式
真空ポンプ24に連結されている。パルプ14とリザー
バー16との間に圧力変換器26.デジタル圧力指示計
28が配設されている。
The pulverized hydrogen storage alloy sample 12 of 15 gr is stored in the stainless steel hydrogen storage/release reactor 10, and the reactor IO is connected to the reservoir 16 through the valve 14.
is connected to. The reservoir 16 is connected to a hydrogen cylinder 20 via a pulp 18 and to a rotary vacuum pump 24 via a fuel valve 22. A pressure transducer 26 between the pulp 14 and the reservoir 16. A digital pressure indicator 28 is provided.

反応器10を真空ポンプ24に接続して1o−2Tor
rの真空下150℃で脱気した。次に反応器10を常温
水で冷却しながら純度99.999%、圧力30気圧の
水素を器内に導入して水素の吸蔵を開始させた。水素の
吸蔵が略完了した後、再び150 ℃で真空脱気した後
常温水で冷却しながら、水素加圧する操作を活性化が完
了するまで繰シ返した。
The reactor 10 is connected to the vacuum pump 24 and the pressure is increased to 10-2 Tor.
Degassed at 150° C. under vacuum of r. Next, while cooling the reactor 10 with water at room temperature, hydrogen with a purity of 99.999% and a pressure of 30 atmospheres was introduced into the reactor to start occlusion of hydrogen. After hydrogen occlusion was almost completed, the operation of vacuum degassing at 150° C. and then pressurizing hydrogen while cooling with room temperature water was repeated until activation was completed.

次に水素吸蔵・放出量を以下の如く測定した。Next, the amount of hydrogen absorption and release was measured as follows.

反応器10を100℃に保持した後真空ポンプ24を運
転し、バルブ14.22を開いてリザーバー16と反応
器10内を真空にした後バルブ14゜22を閉じる。バ
ルブ18を開いてリザーバー16に散気圧の水素を導入
し、パルプ18を閉じ、その圧力PHと雰囲気温度T1
を測定する。次いでバルブ14を開き、リザーバー内の
水素を反応器10へ導入し、試料が水素を吸蔵して平衡
圧になったときの圧力pe1を測定する。バルブ14を
閉じバルブ18を開いてリザーバー16内の水素圧を数
気圧増加させ、バルブ18を閉じその圧力Pt2と雰囲
気温度で2を測定する。バルブ14を開いて反応器lO
に新たな水素を導入し、試料がさらに水素を吸蔵して平
衡圧になったときの圧力P82を測定する。この操作を
Ptn (nは繰υ返し回数)がおよそ40気圧になる
まで繰シ返す。n回目の水素吸蔵量は次の要領で算出さ
れる。
After the reactor 10 is maintained at 100° C., the vacuum pump 24 is operated, the valves 14.22 are opened to evacuate the reservoir 16 and the reactor 10, and the valves 14.22 are closed. The valve 18 is opened to introduce diffused pressure hydrogen into the reservoir 16, the pulp 18 is closed, and the pressure PH and the ambient temperature T1 are
Measure. Next, the valve 14 is opened, hydrogen in the reservoir is introduced into the reactor 10, and the pressure pe1 when the sample absorbs hydrogen and reaches an equilibrium pressure is measured. Close the valve 14 and open the valve 18 to increase the hydrogen pressure in the reservoir 16 by several atmospheres, close the valve 18, and measure the pressure Pt2 and the ambient temperature 2. Open valve 14 to turn reactor lO
new hydrogen is introduced into the sample, and the pressure P82 is measured when the sample absorbs more hydrogen and reaches an equilibrium pressure. This operation is repeated until Ptn (n is the number of repetitions) reaches approximately 40 atm. The n-th hydrogen storage amount is calculated as follows.

圧力P1体積V、水素の絶対温度で、水素ガスのモル数
M、気体定数R2理想気体から実在水素ガスへの補正係
数2(圧力、温度の関数)とすると、 PV = MZPT             (1)
の関係がある。これを利用してn回目のりザーパーの水
素圧Ptn・penと反応器の水素圧P。(n−1)1
penおよびそれぞれの測定時の雰囲気温度TB +T
n+1 +反応器の温度Trからn回目の吸蔵水素量を
求めることができる。
Assuming pressure P1 volume V, absolute temperature of hydrogen, number of moles of hydrogen gas M, gas constant R2 correction coefficient from ideal gas to real hydrogen gas 2 (function of pressure and temperature), PV = MZPT (1)
There is a relationship between Utilizing this, the hydrogen pressure Ptn·pen of the n-th oxidizer and the hydrogen pressure P of the reactor. (n-1)1
Pen and ambient temperature at the time of each measurement TB +T
The amount of hydrogen absorbed for the nth time can be determined from the temperature Tr of the n+1+ reactor.

リザーバー16にPtnの圧力を導入した状態で反応器
10(内部空間容積V+)とりザーバ−16(内容fi
V2)の中にある水素ガスM!1モルは(2)式となる
With the pressure of Ptn introduced into the reservoir 16, the reactor 10 (internal space volume V+) is taken and the reservoir 16 (content fi
Hydrogen gas M in V2)! 1 mole is expressed by formula (2).

次にバルブ14を開き、合金試料12が新たに水素ΔM
nモル(H2分子換算)吸蔵して平衡圧penに達した
とき、上記M。モルの水素量は反応器1゜とリザーバー
16の中で次の通りに存在している。
Next, the valve 14 is opened, and the alloy sample 12 is newly charged with hydrogen ΔM.
When n moles (in terms of H2 molecules) are absorbed and the equilibrium pressure pen is reached, the above M. The molar amounts of hydrogen are present in reactor 1° and reservoir 16 as follows:

+2Mつ (3) 従って、n回目に合金試料12に吸蔵された水素量ΔM
11モルは(2> 、 (3)式を等しいとおいて次の
通り計算される。
+2M (3) Therefore, the amount of hydrogen occluded in alloy sample 12 at the nth time ΔM
11 moles is calculated as follows, assuming that (2> and equation (3) are equal).

式(4)を用いて各回の水素吸蔵量を算出し、水素平衡
圧と合金の水素吸蔵量との関係を得ることができる。水
素放出量の測定はりザーバ−16と反応器10がほぼ4
0気圧の平衡水素圧になった時から開始する。バルブ1
4を閉じ、バルブ22を開き、リザーバー16内の水素
圧を数気圧減圧してバルブ22を閉じる。圧力と雰囲気
温度を測定する。次いでバルブ14を開き反応器10内
の水素をリザーバー16に導入し、合金試料に吸蔵され
た水素を1部放出させ、平衡になった圧力を測定する。
The hydrogen storage amount for each time is calculated using equation (4), and the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the alloy can be obtained. Measuring the amount of hydrogen released The reservoir 16 and reactor 10 are approximately 4
Start when the equilibrium hydrogen pressure reaches 0 atmospheres. Valve 1
4, open the valve 22, reduce the hydrogen pressure in the reservoir 16 by several atmospheres, and close the valve 22. Measure pressure and ambient temperature. Next, the valve 14 is opened to introduce the hydrogen in the reactor 10 into the reservoir 16, allowing a portion of the hydrogen occluded in the alloy sample to be released, and the pressure at equilibrium is measured.

この操作を反応器10が真空になるまで繰り返す。水素
放出量の算出は上記吸蔵の場合の算出方法に準する。水
素放出における水素平衡圧と合金の水素放出量との関係
を得ることができる。
This operation is repeated until the reactor 10 is evacuated. The amount of hydrogen released is calculated in accordance with the calculation method for occlusion described above. The relationship between the hydrogen equilibrium pressure in hydrogen release and the hydrogen release amount of the alloy can be obtained.

このようにして等温における平衡水素圧−組成の関係を
求めて、その結果を第1表に示す。同表中の試料141
,2,3.4は本発明合金であり、試料嵐5は従来合金
である。
In this way, the relationship between equilibrium hydrogen pressure and composition at isothermal conditions was determined, and the results are shown in Table 1. Sample 141 in the same table
, 2, 3.4 are alloys of the present invention, and sample Arashi 5 is a conventional alloy.

第  1  表 また、1例として試料%1の平衡水素圧−組成等混線を
第2図に示す。図中曲線2はzrMn2の組成を有する
従来合金の平衡水素圧−組成等温蕨である。第1表およ
び第2図から明らかなように、本発明合金は、従来の合
金に比べて水素吸蔵量は大きく、シかもヒステリシスは
大幅に改善されてぃ実施例2 市販のZr + Mn + V + Feを適量秤取し
実施例1と同じ方法で次の原子数組成の4種の合金を溶
製した。即ち、zrO,9(”0.8VO,I Fe、
、)2’ zr(MnO,8VojFeo、j”21 
Zr、2(Mn、、8V、、Feo、、)2 + Zr
Mn2である。このようにして得られたボタン状試料を
ロータリーポンプにより10”” Torrの真空下で
1100℃、8時間保持後、常温の水中に投入して急冷
する均質熱処理を施し、次いで3門以下に破砕して活性
化処理を行った。次に実施例1と同じ方法で等温におけ
る平衡水素圧−組成の関係を求めた。
Table 1 Further, as an example, the equilibrium hydrogen pressure-composition crosstalk of sample %1 is shown in FIG. Curve 2 in the figure is the equilibrium hydrogen pressure-composition isotherm of a conventional alloy having a composition of zrMn2. As is clear from Table 1 and FIG. 2, the alloy of the present invention has a larger hydrogen storage capacity than the conventional alloy, and the hysteresis has been significantly improved.Example 2 Commercially available Zr + Mn + V An appropriate amount of +Fe was weighed out, and four types of alloys having the following atomic compositions were melted in the same manner as in Example 1. That is, zrO,9("0.8VO,I Fe,
,)2' zr(MnO,8VojFeo,j”21
Zr,2(Mn,,8V,,Feo,,)2 + Zr
It is Mn2. The button-shaped sample thus obtained was held at 1100°C for 8 hours under a vacuum of 10'' Torr using a rotary pump, and then subjected to homogeneous heat treatment by quenching it in water at room temperature, and then crushed into three or less pieces. Activation treatment was carried out. Next, in the same manner as in Example 1, the relationship between equilibrium hydrogen pressure and composition at isothermal conditions was determined.

これらの結果を第2表に示す。These results are shown in Table 2.

第  2  表 同表中の試料1’に6 、7 、8は本発明合金であり
、試料宛9は従来合金である。第2表から明らかなよう
に、本発明合金は、従来合金と同等もしくはそれ以上の
水素吸蔵量を有していることがわかる。
In Table 2, samples 1', 6, 7, and 8 are alloys of the present invention, and sample 9 is a conventional alloy. As is clear from Table 2, the alloy of the present invention has a hydrogen storage capacity equal to or greater than that of the conventional alloy.

(本発明の効果) 本発明合金は上記の緒特性を有することから、本発明合
金を使用することにより下記の如き効果をあ吐ることが
できる。
(Effects of the present invention) Since the alloy of the present invention has the above-mentioned characteristics, the following effects can be achieved by using the alloy of the present invention.

■ 水素吸蔵量は従来の合金上シ太きい。■Hydrogen storage capacity is greater than that of conventional alloys.

■ 水素の吸蔵圧と放出圧の差、!l]ちヒステリシス
が従来の合金に比べて極めて小さいので、水素吸蔵能力
や反応熱を有効に利用することができる。
■ Difference between hydrogen storage pressure and release pressure! l] Since the hysteresis is extremely small compared to conventional alloys, hydrogen storage capacity and reaction heat can be used effectively.

■ 活性化は容易で、水素吸蔵・放出速度も大きく、従
来の合金と同等である。
■ Activation is easy, hydrogen storage and release rates are high, and are comparable to conventional alloys.

■ 水素の吸蔵・放出を何回繰シ返しても合金自体の劣
化は実質的に認められない。
■ No matter how many times hydrogen is absorbed and released, there is virtually no deterioration of the alloy itself.

■ 酸繋、窒素、アルゴン、炭酸ガスなどの不純物によ
る影響は少ない。
■ There is little influence from impurities such as acid binders, nitrogen, argon, and carbon dioxide gas.

本発明合金は、以上の通り水素吸蔵用材料として要求さ
れろ諸性能をすべて具備しており、特に水素吸蔵量・ヒ
ステリシスは、従来のジルコニウム系合金に比べて大幅
に改善されている。この合金は活性化が容易で犬■の水
素を密度高く吸蔵し得、かつ水素の吸蔵・放出反応が完
全に可逆的に行われるなど、従来合金に比べ数々の特長
を有する。従って、水素吸蔵合金の用途、減圧下におけ
るゲッター材料としての利用、水素吸蔵・放出反応に伴
う反応熱を利用するシステム応用分野への用途などに車
越した効果を発揮する。
As described above, the alloy of the present invention has all the various performances required as a hydrogen storage material, and in particular, the hydrogen storage capacity and hysteresis are significantly improved compared to conventional zirconium alloys. This alloy has many advantages over conventional alloys, such as being easy to activate, storing hydrogen at a high density, and hydrogen storage and desorption reactions being completely reversible. Therefore, it is more effective in applications such as hydrogen storage alloys, getter materials under reduced pressure, and system applications that utilize the reaction heat associated with hydrogen storage and release reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金の活性化並びに水素の吸蔵・放出量
の測定方法の説明図、第2図は本発明合金についての実
施例1の合金と従来合金の平衡水素圧−組成等混線図で
ある。 10・・・反応器、12・・・水素吸蔵用合金試料、1
4・・・バルブ、16・・・リザーバー、18・・・バ
ルブ、20・・・水素ボンベ、22・・・バルブ、24
・・・ロータリ一式真空ポンプ、26・・・圧力変換器
、28・・・デジタル圧力指示計。 特許出願人 日本冶金工業株式会社 代 理 人 弁理士  村  1) 政  油量   
弁理士  秦  野  拓  也第2図
Figure 1 is an explanatory diagram of the activation of the alloy of the present invention and the method for measuring the amount of hydrogen absorbed and released. Figure 2 is the equilibrium hydrogen pressure-composition diagram of the alloy of Example 1 and the conventional alloy for the alloy of the present invention. It is. 10...Reactor, 12...Hydrogen storage alloy sample, 1
4...Valve, 16...Reservoir, 18...Valve, 20...Hydrogen cylinder, 22...Valve, 24
...Rotary complete vacuum pump, 26...Pressure transducer, 28...Digital pressure indicator. Patent applicant: Nippon Yakin Kogyo Co., Ltd. Agent: Patent attorney Mura 1) Masaru Oil quantity
Patent attorney Takuya Hatano Figure 2

Claims (1)

【特許請求の範囲】 一般式Zr_x(Mn_1_−_y_−_zV_yFe
_z)_2で示されるジルコニウム系水素吸蔵用合金。 但し、式中、x,y,zはそれぞれ0.5<x<1.5
,0<y<1,0<z<1且つ、y+z≦1である。
[Claims] General formula Zr_x(Mn_1_-_y_-_zV_yFe
_z) A zirconium-based hydrogen storage alloy represented by _2. However, in the formula, x, y, z are each 0.5<x<1.5
, 0<y<1, 0<z<1 and y+z≦1.
JP60163946A 1985-07-26 1985-07-26 Zirconium alloy for hydrogen storage Pending JPS6227534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163946A JPS6227534A (en) 1985-07-26 1985-07-26 Zirconium alloy for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163946A JPS6227534A (en) 1985-07-26 1985-07-26 Zirconium alloy for hydrogen storage

Publications (1)

Publication Number Publication Date
JPS6227534A true JPS6227534A (en) 1987-02-05

Family

ID=15783821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163946A Pending JPS6227534A (en) 1985-07-26 1985-07-26 Zirconium alloy for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS6227534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247832A (en) * 1994-03-14 1995-09-26 Japan Metals & Chem Co Ltd Quick heating device for exhaust emission control
CN104651652A (en) * 2013-11-21 2015-05-27 北京有色金属研究总院 Preparation method of hydrogen absorption component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677355A (en) * 1980-12-01 1981-06-25 Matsushita Electric Ind Co Ltd Metallic material for storing hydrogen
JPS59208036A (en) * 1983-05-11 1984-11-26 Agency Of Ind Science & Technol Alloy for occluding hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677355A (en) * 1980-12-01 1981-06-25 Matsushita Electric Ind Co Ltd Metallic material for storing hydrogen
JPS59208036A (en) * 1983-05-11 1984-11-26 Agency Of Ind Science & Technol Alloy for occluding hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247832A (en) * 1994-03-14 1995-09-26 Japan Metals & Chem Co Ltd Quick heating device for exhaust emission control
CN104651652A (en) * 2013-11-21 2015-05-27 北京有色金属研究总院 Preparation method of hydrogen absorption component
CN104651652B (en) * 2013-11-21 2017-03-01 北京有色金属研究总院 A kind of preparation method inhaling hydrogen element

Similar Documents

Publication Publication Date Title
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
US4661415A (en) Hydrogen absorbing zirconium alloy
US4222770A (en) Alloy for occlusion of hydrogen
US4358316A (en) Alloys for hydrogen storage
US4347082A (en) Mischmetal alloy for storage of hydrogen
US4412982A (en) Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry
US4400348A (en) Alloy for occlusion of hydrogen
US4358432A (en) Material for hydrogen absorption and desorption
JPS6227534A (en) Zirconium alloy for hydrogen storage
US4421718A (en) Alloy for occlusion of hydrogen
JPS61250136A (en) Titanium-type hydrogen occluding alloy
US4512965A (en) Hydrogen storage materials of hyperstoichiometric alloys
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
JPS61276945A (en) Hydrogen occluding zirconium alloy
JPS619544A (en) Titanium alloy for occluding hydrogen
JPS5848481B2 (en) Hydrogen storage materials
JPH0247535B2 (en)
JPS6372851A (en) Zirconium-type alloy for hydrogen occlusion
US4349527A (en) Iron-titanium-niobium alloy
JPS6158545B2 (en)
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPH0477061B2 (en)
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy