JPH0477061B2 - - Google Patents

Info

Publication number
JPH0477061B2
JPH0477061B2 JP60087604A JP8760485A JPH0477061B2 JP H0477061 B2 JPH0477061 B2 JP H0477061B2 JP 60087604 A JP60087604 A JP 60087604A JP 8760485 A JP8760485 A JP 8760485A JP H0477061 B2 JPH0477061 B2 JP H0477061B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
pressure
hydrogen storage
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60087604A
Other languages
Japanese (ja)
Other versions
JPS61250135A (en
Inventor
Yasuaki Oosumi
Kazuo Ebato
Keiji Tamura
Hiroshi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP60087604A priority Critical patent/JPS61250135A/en
Publication of JPS61250135A publication Critical patent/JPS61250135A/en
Publication of JPH0477061B2 publication Critical patent/JPH0477061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、水素吸蔵合金に関し、特に利用温
度範囲100〜250℃、水素圧力1〜30気圧で金属水
素化物を形成することができ、しかも水素吸蔵圧
と放出圧の差、即ちヒステリシスが極めて小さい
という特徴のある水素吸蔵合金について提案す
る。 (従来の技術) 水素は原料が水で資源的な制約がないこと、ク
リーンであること、輸送・貯蔵が可能であるこ
と、自然の循環を乱さないことから化石燃料に変
わる新しいエネルギー源として注目されている。 しかし、水素は常温において気体であり、かつ
液化温度が極めて低いので、これを貯蔵する技術
の開発が大きな課題となつていた。 この課題を解決する一つの方法として、水素を
金属水素化物の形で貯蔵する方法が注目されてい
る。この方法は、150気圧の市販水素ボンペの2
割以下の容積、あるいは液体水素の8割以下の容
積で、同重量の水素を貯蔵することができるた
め、容器がコンパクトとなり、安全性や取扱い易
さの点で極めて優れている。 さて、水素を金属水素化物の形で吸蔵し、次に
放出するに適した材料が水素吸蔵合金であり、か
かる合金の水素吸蔵・放出の可逆反応に伴う反応
熱の発生または吸収を利用して蓄熱装置、ヒート
ポンプ、熱エネルギー、機械エネルギー変換装置
などの広範な応用システムの開発が期待されてい
る。 かかる水素吸蔵材料として要求される性質とし
ては、 1 安価であり、資源的に豊富であること。 2 活性化が容易で、水素吸蔵量が大きいこと。 3 使用温度において好適な水素吸蔵・放出平衡
圧を有し、吸蔵圧と放出圧との差であるヒステ
リシスが小さいこと。 4 水素吸蔵・放出反応が可逆的であり、その速
度が大きいこと。 などが上げられる。 ところで、従来の金属または水素吸蔵合金の中
で高温領域で利用され、水素吸蔵量が多いことで
知られているものとしては、マグネシウム係合金
がある。また特公昭59−38293号公報により、高
温領域で利用できる新規なチタン系水素吸蔵合金
が提案されている。前記特公昭59−38293号公報
記載の合金は、一般式がTiX Cr2-y Vyで示さ
れるチタン−クロム−バナジウム系水素吸蔵用合
金であり、式中x,yはそれぞれ0.8≦x≦1.4お
よび0<y<2である。この合金は水素吸蔵・放
出の温度範囲100〜250℃、水素圧力1〜40気圧で
金属水素化物を形成し、水素吸蔵量が比較的大き
いという特性を有する合金である。 (発明が解決しようとする問題点) 前記マグネシウム系合金としてマグネシウム−
ニツケル系合金、マグネシウム−銅系合金が知ら
れおり、これらの合金は焼結しやすく、このため
反応速度の低下が見られるなどの欠点があり、実
用上大きな問題を残していた。 また、前記特公昭59−38293号公報記載の合金
は、熱貯蔵用として利用する水素吸蔵合金の最も
重要な特性である吸蔵圧と放出圧との差、即ちヒ
ステリシスか極めて大きいという問題がいぜんと
して残されたままであつた。 (問題点を解決するための手段) 本発明の目的は、前記合金の有する特性をさら
に向上させることにあり、合金の利用温度範囲
100〜250℃、水素圧力1〜30気圧で金属水素化物
を形成でき、しかも水素吸蔵圧と放出圧との差で
あるヒステリシスの小さい水素吸蔵合金を提供す
る。 すなわち本発明合金は、原子数組成比が、Tik
Cr2-l Vn Aoの示性式で示されることを特徴
とする水素吸蔵用合金を提供する。ここで、式中
Aは、銅、希土類元素のいずれか1種または2種
の元素であり、0.8≦k≦1.4,0<l<2,0<
m<2,0<n≦0.2であり、2.0≦2−l+m+
n≦2.2なる関係を満足するものである。 以下に、本発明を合金についてその詳細に説明
する。 さて、本発明者らは、前記特公昭59−38293号
公報記載の合金Tix Cr2-y Vy中のTi,Cr,V
のうちいずれか1部を前述のAなる金属で置換、
あるいは合金全体にわずかに添加して水素吸蔵用
合金の特性変化の推移を研究した。その結果、全
く予期に反して水素吸蔵圧と放出圧との差である
ヒステリシスが大幅に減少することを新規に知見
して本発明を完成した。 次に本発明合金において、成分組成を限定する
理由を説明する。 本発明合金において、kが1.4より大きいと熱
力学的に不均化が生起しやすく、高温にならない
と解離しないTiH2が生成するため、吸蔵水素の
放出が困難となる。従つて、高温にするか、減圧
あるいは真空下での加熱によらなければ円滑な水
素放出が達成できなくなる。一方、kが0.8より
小さいと、活性化が極めて困難となるので、0.8
≦k≦1.4の範囲内にする必要がある。 またlおよびmがそれぞれ2以上のときは、吸
蔵した水素が殆んど放出されなくなるので、それ
ぞれ0<l<2,0<m<2にする必要がある。 また、nは0.2より大きいと水素吸蔵量が減少
し、さらに水素吸蔵・放出曲線におけるプラトー
域が2段状になつたり、ヒステリシスが大きくな
る傾向が現れるので、0<n≦0.2にする必要が
ある。 次に、これらl,m,nの関係が、2.0≦2−
l+m+n≦2.2の範囲内にする必要のある理由
を説明する。 前記(2−l+m+n)が2.0未満のときには、
吸蔵された水素の放出が困難となり、高温にする
かもしくは減圧あるいは真空下での加熱によらな
ければ円滑な水素の放出が達成できなくなる。一
方、(2−l+m+n)が2.2より大きいと、活性
化が極めて困難にあるので、2.0≦2−l+m+
n≦2.2にする必要がある。 本発明合金において、l=m+nでかつm≧n
のときには、前記特公昭59−38293号公報に記載
の合金であるTix Cr2-y Vy中のCr及び/又は
Vの一部がAなる金属によつて置換され、かつV
の原子数にAの原子数が等しいか、もしくは少な
い場合の合金であるが、第1表中の試料No.2,
4、第2表中の試料No.8の場合に明らかなよう
に、ヒステリシスが小さくなる。 また本発明合金において、l=m,m≧n,0
<n≦0.2のときには、2.0<2−l+m+n≦2.2
すなわち2.0<2+n≦2.2となり、以下の実施例
の第1表の試料No.1,3、第2表の試料No.6,7
に示すように、ヒステリシスが小さくなる。 ところで、本発明合金において、Aなる金属が
Tix Cr2-y Vy合金のCr及び/又はVの一部と
置換する場合は、バナジウムと同様にチタンおよ
びクロムとTiCr2型の六方晶を形成する金属化合
物となる。また、前記Aなる金属がTix Cr2-y
Vy合金に添加される場合は、その構造は不明で
あるが、添加量が少量の場合は、基本的には
TiCr2型の金属化合物である。上記2つの典型的
な例のほか、前記Aなる金属がTix Cr2-y Vy
の一部と置換している場合と、この合金に添加さ
れている場合の両方に跨る範囲も当然に存在す
る。 ところで、前記特公昭59−38293号公報に記載
のTix Cr2-y Vyで示される合金では、水素吸
蔵圧と放出圧の差、即ちヒステリシスが著しく大
きくなる。例えば、Ti1.2Cr1.2V0.8の組成の合金で
は、水素吸蔵圧が150℃で約22気圧、水素放出圧
が焼く4気圧であり、ヒステリシスは約18気圧も
ある。ヒステリシスが大きいことは、水素吸蔵・
放出操作をするために、水素吸蔵合金もしくは金
属水素化物をより大きな温度差で加熱、冷却する
か、あるいは大きな圧力差で水素を加圧・減圧し
なければならず、水素貯蔵能力、水素化反応熱を
有効に利用することができない。 前記Aなる金属の存在により、本発明合金の
140℃における水素吸蔵圧と放出圧の差、即ち、
ヒステリシスは、金属を置換ないし添加していな
い従来合金に比べると大幅に減少させることがで
きる。 Tix Cr2-y VyにAなる金属を置換および/
または添加した本発明の合金は、Tix Cr2-y
Vyに比べて、水素放出圧は殆んど変化すること
なく、水素吸蔵圧のみを低減してヒステリシスを
小さくするため特に有益である。金属Aの働きの
詳細は明確ではないが、金属Aの量が多くなると
合金の水素吸蔵量が減少し、水素吸蔵・放出圧が
全体的にやや低くなる。しかしながら、六方晶形
の結晶形を有する範囲では金属A単独での水素吸
蔵は現出しないため特に問題はない。従つて、六
方晶形を維持するために、Tik Cr2-l Vn Ao
合金においてnは、0<n≦0.2に限定されるの
である。 次に本発明合金の製造方法を述べる。 本発明合金を製造するには、従来から知られて
いるチタン多元系水素吸蔵合金の製造方法による
ことができる。なかでも、アーク溶融法による方
法が最も好適である。 次に、アーク溶融法による本発明合金の製造方
法を述べる。まず、Ti,Cr,Vおよび金属Aの
元素をそれぞれ秤量して混合した後、任意の形状
にブレス成形し、この成形体をアーク溶融炉に装
入して不活性雰囲気下で加熱溶融し、炉内で凝固
させて室温まで冷却した後炉外に取出す。この取
出した合金を均質にするためにこの合金を真空に
することのできる容器内に装入し、10-2Torr以
下の高真空雰囲気下で1000〜1100℃、8時間以上
炉中に保持した後、真空容器を炉外に取出し放令
するか、または真空容器を水中に投入して冷却す
る。その後、合金の表面積を拡大して水素吸蔵能
力を高めるため、破砕して粒状にする。 次に、本発明を実施例に基づいて説明する。 実施例 1 市販のTi,Cr,V,Cu,Laを適量秤取し、こ
れを高真空アーク溶融炉の銅製ルツボ内に装入
し、炉内を99.99のAr雰囲気とした後、焼く2000
℃に加熱溶融して焼く40gの下記の原子数組成の
ボタン状合金塊4種をそれぞれ製造した。 Ti1.2 Cr1.2 V0.8 Cu0.1 Ti1.2 Cr1.1 V0.8 Cu0.1 Ti1.2 Cr1.1 V0.9 La0.05 Ti1.2 Cr1.1 V0.8 La0.1 製造に当つては、各ボタン状試料をそれぞれ石
英管内に装入し、ロータリーポンプを用いて10-2
Torrの真空下で加熱し、炉内で1100℃、8時間
保持した後、試料を常温の水中に投入して急冷す
る均質熱処理を施した。その後−100メツシユに
粉砕して、水素の吸蔵・放出特性を調べた。 合金の活性化ならびに水素の吸蔵・放出量の測
定方法を第1図に示す原理図に基づいて説明す
る。 ステンレス製水素吸蔵・放出反応器10には、
前記粉砕した15grの水素吸蔵合金試料12が収納
されており、前記反応器10はバルブ14を経て
リザーバー16に連結されている。リザーバー1
6はバルブ18を経て水素ボンベ20に、またバ
ルブ22を経てロータリー式真空ポンプ24に連
結されている。バルブ14とリザーバー16との
管路中に圧力変換器26、デジタル圧力指示計2
8が配設されている。 反応器10を真空ポンプ24に接続して10-2
Torrの真空下140℃で脱気した。次に、反応器1
0を常温水で冷却しながら純度99.999%、圧力30
気圧の水素を器内に導入して水素の吸蔵を開始さ
せた。水素吸蔵が略完了した後、再び140℃で真
空脱気した後、常温水で冷却しながら、水素加圧
する操作を活性化が完了するまで繰り返した。 次に水素吸蔵・放出量を以下の如く測定した。 反応器10を140℃に保持した後真空ポンプ2
4を運転し、バルブ14,22を開いてリザーバ
ー16と反応器10内を真空にした後バルブ1
4,22を閉じる。バルブ18を開いてリザーバ
ー16に数気圧の水素を導入し、バルブ18を閉
じ、その圧力Pt1と雰囲気温度T1を測定する。次
いで、バルブ14を開き、リザーバー内の水素を
反応器10へ導入し、試料が水素を吸蔵して平衡
圧になつたときの圧力Pe1を測定する。バルブ1
4を閉じバルブ18を開いてリザーバー16内の
水素圧を数気圧増加させ、バルブ18を閉じその
圧力Pt2と雰囲気温度T2を測定する。バルブ14
を開いて反応器10に新たな水素を導入し、試料
がさらに水素を吸蔵して平衡圧になつたときの圧
力Pe2を測定する。この操作をPtn(nは繰り返し
回数)がおよそ40気圧になるまで繰り返す。n回
目の水素吸蔵量は次の容量で算出される。 圧力P、体積V、水素ガスの絶対温度T、水素
ガスのモル数M、機体定数R、理想気体から実在
水素ガスへの補正係数Z(圧力、温度の関数)と
すると、 PV=MZRT …(1) の関係がある。これを利用してn回目のリザーバ
ーの水素圧Ptn,Penと反応器の水素圧Pe(n−
1),Penおよびそれぞれの測定時の雰囲気温度
Tn,Tn+1,反応器の温度Tr(413°K)からn回目
の吸蔵水素量を求めることができる。 リザーバー16にPtnの圧力を導入した状態で
反応器10(内部空間容積V1)とリザーバー1
6(内容積V2)の中にある水素ガスMnモルは式
(2)となる。 Mn=1/R・(Pe(o-1)・V1/Z(Pe(o-
1)
,Tr)・Tr+Ptn・V2/Z(Ptn,Tn)Tn)…(2) 次にバルブ14を開き、合金試料12が新たに
水素ΔMnモル(H2分子換算)吸蔵して平衡圧
Penに達したとき、上記Mnモルの水素量は反応
器10とリザーバー16の中で次の通りに存在し
ている。 Mn=Pen/R・(V1/Z(Pen,Tr)・Tr+V2
/Z(Pen,T(o+1))・To+1)+ΔMn…(3) 従つて、n回目に合金試料12に吸蔵された水
素量ΔMnモルは式(2),(3)を等しいとした上で、
次の通り計算される。 ΔMn=1/R{(Pen/Z(Ptn,Tn)・Tn−
Pen/Z(Pen,T(o+1))・T(o+1))・V2 −(Pen/Z(Pen,Tr)−Pe(o-1
)
/Z(Pe(o-1),Tr)・V1/Tr}…(4) 式(4)を用いて各回の水素吸蔵量を算出し、水素
平衡圧と合金の水素吸蔵量との関係を得ることが
できる。水素放出量の測定はリザーバー16と反
応器20がほぼ40気圧の平衡水素圧になつた時か
ら開始する。バルブ14を閉じ、バルブ22を開
き、リザーバー16内の水素圧を数気圧減圧して
バルブ22を閉じる。圧力と雰囲気温度を測定す
る。次いでバルブ14を開き、反応器10内の水
素をリザーバー16を導入し、合金試料に吸蔵さ
れた水素を一部放出させ、平衡になつた圧力を測
定する。この操作を反応器10が真空になるまで
繰り返す。水素放出量の算出は、上記吸蔵の場合
の算出方法に準ずる。水素放出における水素平衡
圧と合金の水素放出量との関係を得ることができ
る。 このようにして等温における平衡水素圧力−組
成の関係を求めて、その結果を第1表に示す。同
表中試料No.5は公知組成材料(特公昭59−38293
号公報記載の合金)であり、この試料に対応する
本発明合金はNo.1,2,3,4である。第1表か
ら明らかなように、本発明合金は比較材に比べて
ヒステリシスが大幅に改善されている。又比較材
に比べて、水素放出圧は殆んど変化なく、水素吸
蔵圧が低減しているので、比較材の圧力特性から
大きくずれることがない。従つて、金属水素化物
反応装置の設計に有利である。尚、比較材では、
活性化にはより高圧の水素加圧が必要である。
(Industrial Application Field) The present invention relates to a hydrogen storage alloy, which can form a metal hydride at a temperature range of 100 to 250°C and a hydrogen pressure of 1 to 30 atm, and which has a hydrogen storage pressure and a release pressure. We propose a hydrogen storage alloy that has an extremely small difference, or hysteresis. (Conventional technology) Hydrogen is attracting attention as a new energy source that can replace fossil fuels because it uses water as a raw material and has no resource constraints, is clean, can be transported and stored, and does not disrupt the natural cycle. has been done. However, since hydrogen is a gas at room temperature and has an extremely low liquefaction temperature, developing technology to store it has been a major challenge. As one method to solve this problem, a method of storing hydrogen in the form of metal hydride is attracting attention. This method uses two commercially available hydrogen bombs at 150 atm.
Since the same weight of hydrogen can be stored with less than 80% of the volume of liquid hydrogen, the container becomes compact and is extremely safe and easy to handle. Now, hydrogen storage alloys are suitable materials for storing hydrogen in the form of metal hydrides and then releasing them. The development of a wide range of applied systems such as heat storage devices, heat pumps, thermal energy, and mechanical energy conversion devices is expected. The properties required for such a hydrogen storage material are: 1. It should be inexpensive and abundant in terms of resources. 2. Easy to activate and large hydrogen storage capacity. 3. It must have a suitable hydrogen storage/release equilibrium pressure at the operating temperature and have a small hysteresis, which is the difference between the storage pressure and the release pressure. 4. Hydrogen storage and release reactions are reversible and their speed is high. etc. are mentioned. By the way, among the conventional metals and hydrogen storage alloys, there is a magnesium alloy that is used in a high temperature region and is known to have a large hydrogen storage capacity. Furthermore, Japanese Patent Publication No. 59-38293 proposes a new titanium-based hydrogen storage alloy that can be used in high-temperature regions. The alloy described in Japanese Patent Publication No. 59-38293 is a titanium-chromium-vanadium hydrogen storage alloy whose general formula is TiXCr2 - yVy , where x and y are each 0.8≦x. ≦1.4 and 0<y<2. This alloy forms a metal hydride at a hydrogen storage/release temperature range of 100 to 250°C and a hydrogen pressure of 1 to 40 atmospheres, and has the property of having a relatively large hydrogen storage capacity. (Problems to be Solved by the Invention) As the magnesium-based alloy, magnesium-
Nickel-based alloys and magnesium-copper-based alloys are known, and these alloys have drawbacks such as easy sintering, resulting in a decrease in reaction rate, and have remained a major problem in practice. Furthermore, the alloy described in Japanese Patent Publication No. 59-38293 does not suffer from the problem of extremely large hysteresis, the most important characteristic of hydrogen storage alloys used for heat storage. It was left as it was. (Means for Solving the Problems) An object of the present invention is to further improve the properties of the alloy, and to improve the operating temperature range of the alloy.
To provide a hydrogen storage alloy which can form a metal hydride at 100 to 250°C and a hydrogen pressure of 1 to 30 atmospheres and has small hysteresis, which is the difference between hydrogen storage pressure and release pressure. That is, the alloy of the present invention has an atomic composition ratio of Ti k
Provided is a hydrogen storage alloy characterized by having the characteristic formula Cr 2-l V n A o . Here, A in the formula is one or two elements of copper and rare earth elements, 0.8≦k≦1.4, 0<l<2,0<
m<2,0<n≦0.2, and 2.0≦2−l+m+
This satisfies the relationship n≦2.2. In the following, the present invention will be explained in detail with respect to alloys. Now, the present inventors have discovered that Ti, Cr, and V in the alloy Ti x Cr 2-y V y described in Japanese Patent Publication No. 59-38293
Replace any one part with the metal A mentioned above,
Alternatively, we added a small amount to the entire alloy to study changes in the properties of the hydrogen storage alloy. As a result, the present invention was completed based on the new finding that hysteresis, which is the difference between hydrogen storage pressure and release pressure, was significantly reduced, which was completely unexpected. Next, the reason for limiting the composition of the alloy of the present invention will be explained. In the alloy of the present invention, if k is larger than 1.4, disproportionation tends to occur thermodynamically, and TiH 2 , which does not dissociate unless the temperature rises, is produced, making it difficult to release occluded hydrogen. Therefore, smooth hydrogen release cannot be achieved unless the temperature is increased or heating is performed under reduced pressure or vacuum. On the other hand, if k is smaller than 0.8, activation will be extremely difficult, so 0.8
It is necessary to keep it within the range of ≦k≦1.4. Further, when l and m are each 2 or more, almost no occluded hydrogen is released, so it is necessary to satisfy 0<l<2 and 0<m<2, respectively. In addition, if n is larger than 0.2, the hydrogen storage capacity will decrease, and the plateau region in the hydrogen storage/release curve will become two-stage, and hysteresis will tend to increase, so it is necessary to set 0<n≦0.2. be. Next, the relationship between these l, m, and n is 2.0≦2−
The reason why it is necessary to keep l+m+n≦2.2 will be explained. When the above (2-l+m+n) is less than 2.0,
It becomes difficult to release the occluded hydrogen, and smooth release of hydrogen cannot be achieved unless the temperature is increased or heating is performed under reduced pressure or vacuum. On the other hand, if (2-l+m+n) is larger than 2.2, activation is extremely difficult, so 2.0≦2-l+m+
It is necessary to make n≦2.2. In the alloy of the present invention, l=m+n and m≧n
In the case of
This is an alloy in which the number of atoms of A is equal to or less than the number of atoms of sample No. 2 in Table 1.
4. As is clear in the case of sample No. 8 in Table 2, the hysteresis is reduced. Furthermore, in the alloy of the present invention, l=m, m≧n, 0
When <n≦0.2, 2.0<2-l+m+n≦2.2
In other words, 2.0<2+n≦2.2, and Samples No. 1 and 3 in Table 1 and Samples No. 6 and 7 in Table 2 of the following Examples
As shown in , the hysteresis becomes smaller. By the way, in the alloy of the present invention, the metal A is
When replacing part of Cr and/or V in the Ti x Cr 2-y V y alloy, it becomes a metal compound that forms a TiCr 2 type hexagonal crystal with titanium and chromium, similar to vanadium. Further, the metal A is Ti x Cr 2-y
When added to V y alloy, its structure is unknown, but if the amount added is small, basically
TiCr is a type 2 metal compound. In addition to the above two typical examples, the metal A is Ti x Cr 2-y V y
Naturally, there is a range that spans both the case where it is substituted for a part of the alloy and the case where it is added to the alloy. By the way, in the alloy represented by Ti x Cr 2-y V y described in Japanese Patent Publication No. 59-38293, the difference between the hydrogen storage pressure and the hydrogen release pressure, that is, the hysteresis, becomes significantly large. For example, in an alloy with a composition of Ti 1.2 Cr 1.2 V 0.8 , the hydrogen storage pressure is about 22 atm at 150°C, the hydrogen release pressure is about 4 atm, and the hysteresis is about 18 atm. Large hysteresis means hydrogen storage and
In order to perform the release operation, the hydrogen storage alloy or metal hydride must be heated and cooled with a large temperature difference, or the hydrogen must be pressurized and depressurized with a large pressure difference, which reduces the hydrogen storage capacity and hydrogenation reaction. Heat cannot be used effectively. Due to the presence of metal A, the alloy of the present invention
The difference between hydrogen storage pressure and release pressure at 140℃, i.e.
Hysteresis can be significantly reduced compared to conventional alloys without metal substitution or addition. Ti x Cr 2-y V Substituting metal A in y and/
Or the added alloy of the present invention is Ti x Cr 2-y
Compared to V y , the hydrogen release pressure hardly changes and only the hydrogen storage pressure is reduced to reduce hysteresis, which is particularly advantageous. Although the details of the function of metal A are not clear, as the amount of metal A increases, the hydrogen storage capacity of the alloy decreases, and the overall hydrogen storage and release pressure becomes slightly lower. However, in a range having a hexagonal crystal form, metal A alone does not absorb hydrogen, so there is no particular problem. Therefore, to maintain the hexagonal shape, Ti k Cr 2-l V n A o
In the alloy, n is limited to 0<n≦0.2. Next, a method for manufacturing the alloy of the present invention will be described. The alloy of the present invention can be produced by a conventionally known method for producing a titanium multi-component hydrogen storage alloy. Among these, the arc melting method is most suitable. Next, a method for manufacturing the alloy of the present invention using an arc melting method will be described. First, the elements Ti, Cr, V, and metal A are weighed and mixed, then press-molded into an arbitrary shape, and this molded body is charged into an arc melting furnace and heated and melted in an inert atmosphere. After being solidified in the furnace and cooled to room temperature, it is taken out of the furnace. In order to make the extracted alloy homogeneous, it was charged into a container that can be evacuated and kept in a furnace at 1000 to 1100°C for more than 8 hours under a high vacuum atmosphere of 10 -2 Torr or less. After that, the vacuum container is taken out of the furnace and released, or the vacuum container is placed in water and cooled. The alloy is then crushed into granules to increase its surface area and increase its hydrogen storage capacity. Next, the present invention will be explained based on examples. Example 1 Appropriate amounts of commercially available Ti, Cr, V, Cu, and La were weighed and charged into a copper crucible of a high-vacuum arc melting furnace, and after creating an Ar atmosphere of 99.99 in the furnace, it was baked for 2000 min.
Four types of button-shaped alloy ingots each weighing 40 g and having the following atomic compositions were produced by heating, melting, and baking at .degree. Ti 1.2 Cr 1.2 V 0.8 Cu 0.1 Ti 1.2 Cr 1.1 V 0.8 Cu 0.1 Ti 1.2 Cr 1.1 V 0.9 La 0.05 Ti 1.2 Cr 1.1 V 0.8 La 0.1When manufacturing, each button-shaped sample was charged into a quartz tube. , 10 -2 using a rotary pump
After heating under a vacuum of Torr and holding the sample at 1100°C for 8 hours in a furnace, the sample was put into water at room temperature and rapidly cooled to perform a homogeneous heat treatment. After that, it was crushed to -100 mesh and its hydrogen absorption and release characteristics were investigated. The method of activating the alloy and measuring the amount of hydrogen absorbed and released will be explained based on the principle diagram shown in FIG. The stainless steel hydrogen storage/release reactor 10 includes:
The pulverized hydrogen storage alloy sample 12 of 15 gr is stored, and the reactor 10 is connected to a reservoir 16 via a valve 14. reservoir 1
6 is connected to a hydrogen cylinder 20 via a valve 18 and to a rotary vacuum pump 24 via a valve 22. A pressure transducer 26 and a digital pressure indicator 2 are installed in the pipeline between the valve 14 and the reservoir 16.
8 are arranged. Connect the reactor 10 to the vacuum pump 24 and
Degassed at 140°C under Torr vacuum. Next, reactor 1
Purity 99.999%, pressure 30 while cooling with room temperature water
Atmospheric hydrogen was introduced into the vessel to start hydrogen storage. After the hydrogen storage was almost completed, vacuum degassing was performed again at 140°C, and the operation of pressurizing hydrogen while cooling with room temperature water was repeated until activation was completed. Next, the amount of hydrogen absorption and release was measured as follows. After maintaining the reactor 10 at 140°C, the vacuum pump 2
4, open the valves 14 and 22 to create a vacuum in the reservoir 16 and the reactor 10, and then open the valve 1.
Close 4,22. The valve 18 is opened to introduce several atmospheres of hydrogen into the reservoir 16, the valve 18 is closed, and the pressure Pt 1 and the ambient temperature T 1 are measured. Next, the valve 14 is opened, hydrogen in the reservoir is introduced into the reactor 10, and the pressure Pe 1 when the sample absorbs hydrogen and reaches an equilibrium pressure is measured. Valve 1
4 and open the valve 18 to increase the hydrogen pressure in the reservoir 16 by several atmospheres, then close the valve 18 and measure the pressure Pt 2 and the ambient temperature T 2 . Valve 14
The reactor 10 is opened to introduce new hydrogen into the reactor 10, and the pressure Pe 2 at which the sample absorbs further hydrogen and reaches the equilibrium pressure is measured. Repeat this operation until Ptn (n is the number of repetitions) reaches approximately 40 atm. The n-th hydrogen storage amount is calculated using the following capacity. Assuming pressure P, volume V, absolute temperature T of hydrogen gas, number of moles of hydrogen gas M, airframe constant R, and correction coefficient Z (function of pressure and temperature) from ideal gas to real hydrogen gas, PV=MZRT...( 1) There is a relationship. Using this, the n-th reservoir hydrogen pressure Ptn, Pen and the reactor hydrogen pressure Pe (n-
1), Pen and ambient temperature at the time of each measurement
The amount of hydrogen absorbed for the nth time can be determined from Tn, Tn +1 , and the reactor temperature Tr (413°K). With Ptn pressure introduced into the reservoir 16, the reactor 10 (internal space volume V 1 ) and the reservoir 1
The hydrogen gas Mn mole in 6 (inner volume V 2 ) is expressed by the formula
(2) becomes. Mn=1/R・(Pe (o-1)・V 1 /Z(Pe (o-
1)
, Tr)・Tr+Ptn・V 2 /Z(Ptn, Tn)Tn)…(2) Next, the valve 14 is opened, and the alloy sample 12 newly absorbs ΔMn moles of hydrogen (in terms of 2 H molecules), and the equilibrium pressure is reached.
When Pen is reached, the amount of hydrogen for the above Mn moles is present in the reactor 10 and reservoir 16 as follows. Mn=Pen/R・(V 1 /Z(Pen, Tr)・Tr+V 2
/Z (Pen, T (o+1) )・T o+1 ) + ΔMn…(3) Therefore, the amount of hydrogen ΔMn moles occluded in alloy sample 12 at the nth time is expressed by equations (2) and (3). Assuming that they are equal,
It is calculated as follows. ΔMn=1/R{(Pen/Z(Ptn, Tn)・Tn−
Pen/Z (Pen, T (o+1) )・T (o+1) )・V 2 − (Pen/Z (Pen, Tr) − Pe (o-1
)
/Z(Pe (o-1) ,Tr)・V 1 /Tr}...(4) Calculate the hydrogen storage amount each time using equation (4), and calculate the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the alloy. You can get a relationship. Measurement of the amount of hydrogen released begins when the reservoir 16 and reactor 20 reach an equilibrium hydrogen pressure of approximately 40 atmospheres. The valve 14 is closed, the valve 22 is opened, the hydrogen pressure in the reservoir 16 is reduced by several atmospheres, and the valve 22 is closed. Measure pressure and ambient temperature. Next, the valve 14 is opened, hydrogen in the reactor 10 is introduced into the reservoir 16, a portion of the hydrogen occluded in the alloy sample is released, and the pressure at equilibrium is measured. This operation is repeated until the reactor 10 is evacuated. The amount of hydrogen released is calculated in accordance with the calculation method for occlusion described above. The relationship between the hydrogen equilibrium pressure in hydrogen release and the hydrogen release amount of the alloy can be obtained. In this way, the relationship between equilibrium hydrogen pressure and composition at isothermal conditions was determined, and the results are shown in Table 1. Sample No. 5 in the same table is a material with a known composition (Special Publication No. 59-38293
The alloys of the present invention corresponding to this sample are Nos. 1, 2, 3, and 4. As is clear from Table 1, the alloy of the present invention has significantly improved hysteresis compared to the comparative material. Furthermore, compared to the comparative material, the hydrogen release pressure is almost unchanged and the hydrogen storage pressure is reduced, so there is no significant deviation from the pressure characteristics of the comparative material. Therefore, it is advantageous for the design of metal hydride reactors. In addition, for comparison materials,
Activation requires higher pressure hydrogen.

【表】 実施例 2 市販のTi,Cr,V,Cu,Laを適量秤取し、実
施例1と同じ方法で下記の原子数組成の合金を溶
製した。 Ti1.2Cr1.2V0.8Cu0.05 Ti1.2Cr1.2V0.8La0.05 Ti1.2Cr1.2V0.75La0.05 このようにして得られたボタン状試料をロータ
リーポンプにより10-2Torrの真空下で1100℃、
8時間保持後、常温の水中に投入して急冷する均
質熱処理を施し、次いで−100メツシユに粉砕し
て活性化処理を行つた。次に、140℃における水
素吸蔵・放出量を実施例1と同じ方法で測定し等
温における平衡水素圧−組成の関係を求めた。こ
れらの結果を第2表に示す。同表中の試料No.9は
公知組成材料(特公昭59−38293号公報に記載の
合金)であり、この試料に対応する本発明合金
は、No.6,7,8である。また1例として試料No.
7の平衡水素圧−組成等温線を第2図に示す。点
線で示したのは、Ti1.2Cr1.2V0.8の組成を有する比
較材の合金の平衡水素圧−組成等温線である。第
2表および第4表から明らかなように、本発明合
金は比較材に比べてヒステリシスが大幅に改善さ
れている。又比較材に比べて、水素放出圧は殆ど
変化なく、水素吸蔵圧が低減しているので、比較
材の圧力特性から大きくずれることがないから、
金属水素化物反応装置の設計に有利である。尚、
比較材では、活性化にはより高圧の水素加圧が必
要である。
[Table] Example 2 Appropriate amounts of commercially available Ti, Cr, V, Cu, and La were weighed and melted into an alloy having the following atomic composition in the same manner as in Example 1. Ti 1.2 Cr 1.2 V 0.8 Cu 0.05 Ti 1.2 Cr 1.2 V 0.8 La 0.05 Ti 1.2 Cr 1.2 V 0.75 La 0.05The button-shaped sample thus obtained was heated at 1100°C under a vacuum of 10 -2 Torr using a rotary pump.
After holding for 8 hours, it was subjected to a homogeneous heat treatment in which it was put into water at room temperature and rapidly cooled, and then it was pulverized to -100 mesh and subjected to an activation treatment. Next, the amount of hydrogen absorption and release at 140°C was measured in the same manner as in Example 1, and the relationship between equilibrium hydrogen pressure and composition at an isothermal temperature was determined. These results are shown in Table 2. Sample No. 9 in the same table is a known composition material (alloy described in Japanese Patent Publication No. 59-38293), and the alloys of the present invention corresponding to this sample are Nos. 6, 7, and 8. Also, as an example, sample No.
The equilibrium hydrogen pressure-composition isotherm of No. 7 is shown in FIG. The dotted line shows the equilibrium hydrogen pressure-composition isotherm of a comparative alloy having a composition of Ti 1.2 Cr 1.2 V 0.8 . As is clear from Tables 2 and 4, the alloys of the present invention have significantly improved hysteresis compared to the comparative materials. In addition, compared to the comparison material, the hydrogen release pressure is almost unchanged and the hydrogen storage pressure is reduced, so there is no significant deviation from the pressure characteristics of the comparison material.
It is advantageous for the design of metal hydride reactors. still,
The comparative material requires higher hydrogen pressure for activation.

【表】 (発明の効果) 本発明合金は上述の諸特性を有することから、
本発明合金を使用することにより下記の如き効果
を挙げることができる。 平衡水素圧は、100〜250℃の温度範囲内で、
1〜30気圧の範囲にあるので取り扱い易く、産
業プラントからの工業排熱を利用することがで
きる。 水素の吸蔵圧と放出圧の差、即ちヒステリシ
スが従来合金に比べ小さいので、水素吸蔵能力
や水素化反応熱を有効に利用することができ
る。 活性化は140℃以下の真空脱気、30気圧以下
の水素加圧により容易に行うことができ、従来
合金に比べ活性化の温度、水素圧を低減するこ
とができる。 水素の吸蔵・放出速度は大きく、従来合金と
同等である。 水素の吸蔵・放出を何回繰り返しても合金自
体の劣化は実質的に認められない。 酸素、窒素、アルゴン、炭酸ガスなどの不純
ガスによる影響は少ない。 本発明合金は、以上の通り水素吸蔵合金として
要求される諸性能を殆ど具備しており、特に平衡
水素圧のヒステリシス、活性化の温度、水素圧
は、従来の水素吸蔵合金に比べ大幅に改善されて
いる。 また、本発明合金は、活性化が極めて容易で大
量の水素を密度高く吸蔵し得、且つヒステリシス
が小さく、水素の吸蔵・放出反応が100〜250℃の
温度範囲、水素圧力1〜30気圧で完全に可逆的に
行なわれるなど、水素吸蔵合金として数々の優れ
た特徴を有している。 従つて、本発明合金は、水素貯蔵材料としての
用途、水素吸蔵・放出反応に伴う反応熱を利用す
る排熱、地熱などの熱貯蔵システムや熱を機械エ
ネルギーに変換して利用するコンプレツサーなど
のエネルギー変換システム応用分野への用途など
に卓越した効果を発揮する。
[Table] (Effects of the invention) Since the alloy of the present invention has the above-mentioned properties,
By using the alloy of the present invention, the following effects can be achieved. Equilibrium hydrogen pressure is within the temperature range of 100-250℃,
Since it is in the range of 1 to 30 atmospheres, it is easy to handle, and industrial waste heat from industrial plants can be used. Since the difference between hydrogen storage pressure and release pressure, that is, hysteresis, is smaller than that of conventional alloys, the hydrogen storage capacity and hydrogenation reaction heat can be used effectively. Activation can be easily performed by vacuum degassing at 140°C or less and hydrogen pressurization at 30 atmospheres or less, making it possible to reduce the activation temperature and hydrogen pressure compared to conventional alloys. The hydrogen absorption and release rate is high and comparable to conventional alloys. No matter how many times hydrogen is absorbed and released, there is virtually no deterioration of the alloy itself. There is little influence from impurity gases such as oxygen, nitrogen, argon, and carbon dioxide. As described above, the alloy of the present invention has most of the performances required as a hydrogen storage alloy, and in particular, the hysteresis of equilibrium hydrogen pressure, activation temperature, and hydrogen pressure are significantly improved compared to conventional hydrogen storage alloys. has been done. In addition, the alloy of the present invention is extremely easy to activate, can store a large amount of hydrogen with high density, has small hysteresis, and can perform hydrogen storage and desorption reactions in a temperature range of 100 to 250°C and a hydrogen pressure of 1 to 30 atm. It has many excellent features as a hydrogen storage alloy, such as being completely reversible. Therefore, the alloy of the present invention can be used as a hydrogen storage material, in waste heat that utilizes the reaction heat associated with hydrogen absorption and release reactions, in heat storage systems such as geothermal heat, and in compressors that convert heat into mechanical energy and utilize it. It exhibits outstanding effects in applications such as energy conversion system applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明合金の活性化ならびに水素の
吸蔵・放出量の測定方法の説明図、第2図は本発
明合金7の合金と比較材の合金の平衡水素圧−組
成の等温線図である。 10……反応器、12……水素吸蔵用合金試
料、14……バルブ、16……リザーバー、18
……バルブ、20……水素ポンベ、22……バル
ブ、24……ロータリー式真空ポンプ、26……
圧力変換器、28……デジタル圧力指示計。
Figure 1 is an explanatory diagram of the activation of the present invention alloy and the method for measuring the amount of hydrogen storage and release, and Figure 2 is an isotherm diagram of equilibrium hydrogen pressure-composition of the alloy of the present invention alloy 7 and the comparative alloy. It is. 10...Reactor, 12...Hydrogen storage alloy sample, 14...Valve, 16...Reservoir, 18
...Valve, 20...Hydrogen pump, 22...Valve, 24...Rotary vacuum pump, 26...
Pressure transducer, 28...digital pressure indicator.

Claims (1)

【特許請求の範囲】 1 原子数組成比が下記の示性式で示される水素
吸蔵合金。 TiK Cr2-l Vn Ao 但し、式中 Aは銅、希土類元素のいずれか1種または2種
の元素であり、0.8≦k≦1.4,0<l<2,0<
m<2,0<n≦0.2,2.0≦2−l+m+n≦2.2
である。 2 l=m+n,m≧nである特許請求の範囲第
1項記載の合金。 3 l=m,m≧nである特許請求の範囲第1項
記載の合金。
[Scope of Claims] 1. A hydrogen storage alloy whose atomic composition ratio is expressed by the following formula. Ti K Cr 2-l V n A oHowever , in the formula, A is one or two elements of copper and rare earth elements, and 0.8≦k≦1.4, 0<l<2,0<
m<2, 0<n≦0.2, 2.0≦2−l+m+n≦2.2
It is. 2. The alloy according to claim 1, wherein l=m+n, m≧n. 3. The alloy according to claim 1, wherein l=m and m≧n.
JP60087604A 1985-04-25 1985-04-25 Hydrogen occluding alloy Granted JPS61250135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087604A JPS61250135A (en) 1985-04-25 1985-04-25 Hydrogen occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087604A JPS61250135A (en) 1985-04-25 1985-04-25 Hydrogen occluding alloy

Publications (2)

Publication Number Publication Date
JPS61250135A JPS61250135A (en) 1986-11-07
JPH0477061B2 true JPH0477061B2 (en) 1992-12-07

Family

ID=13919574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087604A Granted JPS61250135A (en) 1985-04-25 1985-04-25 Hydrogen occluding alloy

Country Status (1)

Country Link
JP (1) JPS61250135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002028767A1 (en) * 2000-10-02 2004-02-12 株式会社東北テクノアーチ Method for absorbing and releasing hydrogen storage alloy, hydrogen storage alloy, and fuel cell using the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626298B2 (en) * 1996-10-03 2005-03-02 トヨタ自動車株式会社 Hydrogen storage alloy and manufacturing method
US6835490B1 (en) 1999-03-29 2004-12-28 Tohoku Techno Arch Co., Ltd. Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938293A (en) * 1982-08-26 1984-03-02 Suminobu Kato Oily agent and composition thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938293A (en) * 1982-08-26 1984-03-02 Suminobu Kato Oily agent and composition thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002028767A1 (en) * 2000-10-02 2004-02-12 株式会社東北テクノアーチ Method for absorbing and releasing hydrogen storage alloy, hydrogen storage alloy, and fuel cell using the method
JP4716304B2 (en) * 2000-10-02 2011-07-06 株式会社 東北テクノアーチ Hydrogen storage alloy storage and release method, hydrogen storage alloy and fuel cell using the method

Also Published As

Publication number Publication date
JPS61250135A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
US5673556A (en) Disproportionation resistant metal hydride alloys for use at high temperatures in catalytic converters
Ono et al. Phase transformation and thermal expansion of Mg Ni alloys in a hydrogen atmosphere
Nakamura et al. Hydriding properties and crystal structure of NaCl-type mono-hydrides formed from Ti–V–Mn BCC solid solutions
JPS633019B2 (en)
Osumi et al. Hydrogen absorption-desorption characteristics of misch metal-nickel-silicon alloys
Kandavel et al. The effect of non-stoichiometry on the hydrogen storage properties of Ti-substituted AB2 alloys
JPH0477061B2 (en)
JPH0242893B2 (en)
Mungole et al. Hysteresis in MmNi5 systems with aluminium, manganese and tin substitutions
JPS6310215B2 (en)
Terashita et al. Hydriding properties of (Mg1− xMx) Ni2 C15-type Laves phase alloys
JPH039175B2 (en)
US4421718A (en) Alloy for occlusion of hydrogen
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
JPS6158545B2 (en)
JPH0247535B2 (en)
US4349527A (en) Iron-titanium-niobium alloy
JPH0577732B2 (en)
JPS61276945A (en) Hydrogen occluding zirconium alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS6227534A (en) Zirconium alloy for hydrogen storage
JP4768111B2 (en) Hydrogen storage alloy
JPH0224764B2 (en)
JPS583025B2 (en) Metal materials for hydrogen storage
JPS5821021B2 (en) Alloy for hydrogen storage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees