JPS6372851A - Zirconium-type alloy for hydrogen occlusion - Google Patents

Zirconium-type alloy for hydrogen occlusion

Info

Publication number
JPS6372851A
JPS6372851A JP62188998A JP18899887A JPS6372851A JP S6372851 A JPS6372851 A JP S6372851A JP 62188998 A JP62188998 A JP 62188998A JP 18899887 A JP18899887 A JP 18899887A JP S6372851 A JPS6372851 A JP S6372851A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
pressure
composition
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62188998A
Other languages
Japanese (ja)
Other versions
JPH0242893B2 (en
Inventor
Kazuo Ebato
江波戸 和男
Yasuaki Osumi
大角 泰章
Keiji Tamura
田村 敬二
Hiroshi Yoshida
裕志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP62188998A priority Critical patent/JPS6372851A/en
Publication of JPS6372851A publication Critical patent/JPS6372851A/en
Publication of JPH0242893B2 publication Critical patent/JPH0242893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To improve the maximum amount of hydrogen occlusion and hydrogen occluding and releasing velocities of the titled alloy to be obtained and also to improve hysteresis, by specifying a composition of a Zr alloy containing Fe, V, and metal A (at least one element among Ti, Nb, and Mo). CONSTITUTION:The titled alloy has a composition represented by a rational formula ZrXAy(Fe1-kVk)2 by atomic composition ratio, where A is mentioned above and the symbols (x), (y), and (k) stand for 0.4-1.0, >0-0.6, and 0.2-0.3, respectively. Owing to this composition, this alloy is easily activated and is capable of occluding large amounts of hydrogen in high density and also capable of exerting hydrogen releasing and occluding reactions perfectly reversibly and, moreover, it has high gaseous impurity-resisting property. Accordingly, this alloy is suitable for use in hydrogen storage and transportation system, hydrogen separation and purification system, etc., in particular as well as in heat accumulation devices, temperature sensors, etc., used at a temp. between ordinary temp. and about 100 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水素吸蔵用合金に関し、特に本発明はジルコニ
ウム系水素吸蔵用合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrogen storage alloy, and particularly the present invention relates to a zirconium-based hydrogen storage alloy.

(従来の技術) 水素は、資源的には豊富な元素であり、これを燃焼させ
ても水が生成するだけであるから生態系のバランスが崩
されることはなく、また貯蔵、輸送が容易であるなどの
理由から将来のクリーンエネルギーシステムにおける二
次エネルギーの主体になるものとみられている。
(Conventional technology) Hydrogen is an abundant element in terms of resources, and burning it only produces water, so the balance of the ecosystem is not disrupted, and it is easy to store and transport. For these reasons, it is expected to become the main source of secondary energy in future clean energy systems.

しかし水素は常温において気体であり、かつ液化温度が
極めて低いので、これを貯蔵する技術の開発が大きな課
題になっていた。上記課題を解決する一つの方式として
、水素を金属水素化物の形で貯蔵する方式が注目されて
いる。この方式によれば、150気圧の市販水素ボンベ
の2割以下の容積、あるいは液体水素の8割以下の容積
で同重量の水素を貯蔵することができるばかりでなく、
安全性、取扱い易さの点で極めて優れているからである
However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, developing technology to store it has been a major challenge. As one method for solving the above problems, a method of storing hydrogen in the form of metal hydride is attracting attention. According to this method, it is not only possible to store the same weight of hydrogen in less than 20% of the volume of a commercially available 150-atm hydrogen cylinder, or 80% of the volume of liquid hydrogen.
This is because it is extremely superior in terms of safety and ease of handling.

さて、水素を金属水素化物の形で吸収し、次に放出する
に適した材料が水素吸蔵用合金であり、かかる合金に水
素を吸蔵させ、次にこれらの合金から水素を放出させる
際の金属水素化物の生成あるいは分解反応に伴う反応熱
の発生または吸収を利用して蓄熱装置、ヒートポンプ、
熱エネルギー・機械エネルギー変換装置なとの広範な応
用システムの開発が期待されている。
Now, materials suitable for absorbing hydrogen in the form of metal hydrides and then releasing it are hydrogen storage alloys. Heat storage devices, heat pumps,
The development of a wide range of application systems such as thermal energy/mechanical energy conversion devices is expected.

水素吸蔵材料に要求される性質は、 1)安価であり資源的に豊富であること2)水素吸蔵量
が大きいこと 3)使用温度において好適な水素吸蔵・放出平衡圧を有
し、吸蔵圧と放出圧との差であるヒステリシスが小さい
こと 4)水素吸蔵・放出反応が可逆的であり、その速度が大
きいこと などが挙げられる。
The properties required of a hydrogen storage material are: 1) It should be inexpensive and abundant in terms of resources. 2) It should have a large hydrogen storage capacity. 3) It should have a suitable hydrogen storage/release equilibrium pressure at the operating temperature, and the 4) The hydrogen absorption/release reaction is reversible and its speed is high.

ところで、二元系水素吸蔵用合金、とくにZrV。By the way, binary hydrogen storage alloys, especially ZrV.

は、高い水素吸蔵能力を有し、活性化すなわち合金の表
面にある酸化膜、吸着ガス、付着水分などの水素化を抑
制する物質を除去する操作が容易で、しかもヒステリシ
スが小さく、水素反応速度が速く、ガス状不純物耐性が
強い合金として知られている。しかし、この合金は常温
において、平衡水素解離圧が10−e気圧と極度に安、
定な水素化合物ZrVJ4.1を常温において生成し、
その水素放出には数百度以上の温度と10−S気圧の真
空度が必要であり、加えてLaNi、と同程度に高価で
あるという特徴を有する。上記の長所を維持しながら水
素平衡圧を上げ、コスト低下を図ってつくられたのがJ
ournal of 1ess−Common Met
als、 73(1980) 329−338により知
られているラーバス相擬二元系化合物Zr(Fet−m
Vm)tである。
has a high hydrogen storage capacity, is easy to activate, that is, removes substances that inhibit hydrogenation such as oxide films on the surface of the alloy, adsorbed gas, and attached moisture, has low hysteresis, and has a high hydrogen reaction rate. It is known as an alloy that has high speed and strong resistance to gaseous impurities. However, this alloy has an extremely low equilibrium hydrogen dissociation pressure of 10-e atm at room temperature.
producing a constant hydrogen compound ZrVJ4.1 at room temperature,
Its hydrogen release requires a temperature of several hundred degrees or more and a vacuum of 10-S atmosphere, and it is also characterized by being as expensive as LaNi. J was created by increasing the hydrogen equilibrium pressure and reducing costs while maintaining the above advantages.
Our own of 1ess-Common Met
als, 73 (1980) 329-338.
Vm)t.

(発明が解決しようとする問題点) 上記化合物の中で、特に性質の良いZr(Fee、 ’
FsVo、ts)zは平衡水素解離圧が40℃でまだ0
.1気圧台であり、かつプラトー域(種々の温度におけ
る平衡水素圧と水素原子数/合金原子数の比との関係を
示す図、すなわちP−C−T線図において前記比が変化
しても平衡水素圧が余り変化しない比較的平坦な部分を
プラトー域と呼称されている)がない、従って、実際の
水素貯蔵や蓄熱などシステム応用に効率良く使えない合
金系であった。
(Problems to be solved by the invention) Among the above compounds, Zr (Fee, '
FsVo, ts)z is still 0 when the equilibrium hydrogen dissociation pressure is 40℃
.. 1 atm, and in the plateau region (a diagram showing the relationship between equilibrium hydrogen pressure and the ratio of the number of hydrogen atoms/number of alloy atoms at various temperatures, that is, the P-C-T diagram, even if the ratio changes) There is no relatively flat area in which the equilibrium hydrogen pressure does not change much (this is called the plateau region), so this alloy system cannot be used efficiently for actual system applications such as hydrogen storage or heat storage.

本発明の目的は、前記合金系Zr(Fet−i+Vm)
zの欠点を克服することにある。すなわち、プラトー域
のない低い平衡水素解離圧を、プラトー域を有し常温〜
100℃の範囲において1気圧程度以上になるようにし
、且つ他の緒特性を向上させるとともに安価な合金を提
供することにある。
The object of the present invention is to improve the alloy system Zr (Fet-i+Vm)
The purpose is to overcome the shortcomings of z. In other words, a low equilibrium hydrogen dissociation pressure with no plateau region can be maintained at room temperature to
The object of the present invention is to provide an alloy that can maintain a pressure of about 1 atm or more in a temperature range of 100° C., improve other mechanical properties, and be inexpensive.

(問題点を解決するための手段) 本発明の合金は、原子数組成で示性式がZrx Ay(
Fe、−+、 Vb)zで示されることを特徴とするジ
ルコニウム多元系水素吸蔵用合金であり、式中AはTi
、 Nb、 Noのなかから選ばれるいずれか少なくと
も一種の元素であり、0.4≦x≦1.0、0<y≦0
.6 、0.2≦k≦0.3  である。
(Means for Solving the Problems) The alloy of the present invention has an atomic composition with a specific formula of Zrx Ay (
It is a zirconium multi-component hydrogen storage alloy characterized by being represented by Fe, -+, Vb)z, where A is Ti
, Nb, and No, and 0.4≦x≦1.0, 0<y≦0
.. 6, 0.2≦k≦0.3.

(作 用) 本発明者らは上述の公知合金Zr(Fet−mVm)z
のZrの一部をTi、 Nb、 Noの1種以上で置換
するか添加して水素吸蔵用合金の特性変化の推移を研究
したところ、全く予期に反してプラトー域を具現し、そ
のプラトー圧が常温〜100℃において凡そ1〜20気
圧であり、水素有効放出量も多く、水素吸蔵・放出速度
も一層大きくなり、かつ水素最大吸蔵量、ヒステリシス
、活性化の容易さは従来の良好な値を維持でき、安価に
もなること、 を新規に知見して本発明を完成した。
(Function) The present inventors used the above-mentioned known alloy Zr(Fet-mVm)z
When we studied the changes in the properties of hydrogen storage alloys by replacing or adding a part of Zr with one or more of Ti, Nb, and No, we found that, completely unexpectedly, a plateau region was realized, and the plateau pressure increased. is approximately 1 to 20 atm at room temperature to 100°C, the effective amount of hydrogen released is large, the hydrogen storage and release rate is even higher, and the maximum hydrogen storage amount, hysteresis, and ease of activation are the same as conventional values. The present invention was completed based on the new findings that it is possible to maintain the quality of the product and to reduce the cost.

本発明の合金においてXが0.4より小さいか、yが0
.6より大きいと、水素吸蔵量が低下し、P−C−T線
図で金属間化合物相(β相)がなくなってプラトー域が
消失し、そしてヒステリシスが大きくなる。また、Xが
1.0を超えて大きくなるとラーバス相擬二元系化合物
の化学量論組成が崩れ、水素吸蔵・放出量が小さくなる
。従って、Xは0.4以上1.0以下、yは0.6以下
とする必要がある。また、kの値については、0.2よ
り小さくなるに従い水素吸Mlが極度に減少し、0.3
より大きくなるに従いプラトー域が消失し、平衡水素解
離圧が極度に低下するので、0.2≦k≦0.3とする
必要がある。
In the alloy of the present invention, X is less than 0.4 or y is 0.
.. When it is larger than 6, the hydrogen storage capacity decreases, the intermetallic compound phase (β phase) disappears in the PCT diagram, the plateau region disappears, and the hysteresis becomes large. Furthermore, when X increases beyond 1.0, the stoichiometric composition of the Rava phase pseudo binary compound collapses, and the amount of hydrogen absorption and release becomes small. Therefore, X needs to be 0.4 or more and 1.0 or less, and y needs to be 0.6 or less. In addition, as the value of k becomes smaller than 0.2, hydrogen absorption Ml decreases extremely, and 0.3
As it becomes larger, the plateau region disappears and the equilibrium hydrogen dissociation pressure decreases extremely, so it is necessary to satisfy 0.2≦k≦0.3.

次に本発明合金の製造方法について述べる。Next, a method for producing the alloy of the present invention will be described.

本発明合金を製造するには従来知られているジルコニウ
ム系水素吸蔵用合金の製造方法によることができるが、
アーク溶融法によることが最も好適である。そこで、以
下にアーク溶融法による本発明合金の製造方法を述べる
。まず、Zr、 Fe、 Vおよび金属Aの元素をそれ
ぞれ秤量して混合した後、任意の形状にプレス成形し、
この成形体をア−り溶融炉に装入して不活性雰囲気下で
加熱溶融し、炉内で凝固させて室温まで冷却した後炉外
に取出す、この取り出した合金を均質にするため、この
合金を真空にすることのできる容器内に装入し、10−
 ”Torr以下の高真空雰囲気中で1000〜110
0℃、8hr以上炉中に保持した後、水中に投入して冷
却するか、真空容器を炉外に取出し放冷する。
The alloy of the present invention can be produced by conventionally known methods for producing zirconium-based hydrogen storage alloys, but
The most preferred method is arc melting. Therefore, a method for producing the alloy of the present invention using an arc melting method will be described below. First, the elements Zr, Fe, V, and metal A are weighed and mixed, and then press-formed into an arbitrary shape.
This compact is charged into an arc melting furnace, heated and melted in an inert atmosphere, solidified in the furnace, cooled to room temperature, and then taken out of the furnace. The alloy is charged into a container that can be evacuated, and 10-
”1000 to 110 in a high vacuum atmosphere below Torr.
After being kept in the furnace at 0° C. for 8 hours or more, it is cooled by putting it into water, or the vacuum container is taken out of the furnace and left to cool.

その後、合金の表面積を拡大して水素吸蔵能力を高める
ため破砕して粒状にする。
The alloy is then crushed into granules to expand its surface area and increase its hydrogen storage capacity.

実施例1 市販のZr、 Fe、 Ti、 Nb、 Mo、 Ni
 (いずれも純度99.9%以上)、■(純度99.7
%)、 AI (99,4%)。
Example 1 Commercially available Zr, Fe, Ti, Nb, Mo, Ni
(all purity 99.9% or more), ■ (purity 99.7
%), AI (99,4%).

M+s(ミソシュメタル:希土類元素98.7%)を過
程適量秤量し、これを高真空アーク溶融炉の銅製ルツボ
内に装入し、炉内を99.99%Arの雰囲気とした後
、約2000℃に加熱溶融して約40gの表に示す試料
量1〜3及び嵐5,6の合金5種をそれぞれ製造した。
An appropriate amount of M+s (Misos metal: 98.7% of rare earth elements) was weighed during the process, and it was charged into a copper crucible of a high vacuum arc melting furnace, and after making the inside of the furnace an atmosphere of 99.99% Ar, it was heated to about 2000°C. By heating and melting, approximately 40 g of five types of alloys, samples 1 to 3 and Arashi 5 and 6 shown in the table, were produced.

なお、Matよ、La 2B、2%、 Ce 50.2
%。
In addition, Mat, La 2B, 2%, Ce 50.2
%.

Nd 15.4%、 Pr 4.8%、 Sm 0.1
%、 Fe O,8%、 MgO03%、  Aj!0
.2%の組成のものである。
Nd 15.4%, Pr 4.8%, Sm 0.1
%, FeO,8%, MgO03%, Aj! 0
.. It has a composition of 2%.

各ボタン状試料をそれぞれ石英管内に装入し、ロータリ
一式真空ポンプを用いて10−”Torrの真空下の加
熱炉内で1100℃、8時間保持した後、試料を常温の
水中に投入して急冷する均質熱処理を施した。その後−
100メツシユに粉砕した。
Each button-shaped sample was placed in a quartz tube and kept at 1100°C for 8 hours in a heating furnace under a vacuum of 10-” Torr using a rotary vacuum pump, and then placed in water at room temperature. Homogeneous heat treatment with rapid cooling was applied.After that-
It was crushed into 100 pieces.

合金の活性化ならびに水素の吸蔵・放出量の測定方法を
第1図に承す原理図について説明する。
The method of activating the alloy and measuring the amount of hydrogen absorbed and released will be explained with reference to the principle diagram shown in FIG. 1.

ステンレス製水素吸蔵・放出反応器10には前記粉砕し
た15gの水素吸蔵用合金試料12が収納されており、
前記反応器10はバルブ14を経てリザーバー16に連
結されている。リザーバー16はバルブ18を経て水素
ボンベ20に、またバルブ22を経てロータリ一式真空
ポンプ24に連結されている。バルブ14とリザーバー
16との間に圧力変換器26.デジタル圧力指示計28
が配設されている。
A hydrogen storage/release reactor 10 made of stainless steel contains 15 g of the pulverized hydrogen storage alloy sample 12,
The reactor 10 is connected to a reservoir 16 via a valve 14. The reservoir 16 is connected to a hydrogen cylinder 20 via a valve 18 and to a rotary vacuum pump 24 via a valve 22. A pressure transducer 26 between valve 14 and reservoir 16. Digital pressure indicator 28
is installed.

反応器10を真空ポンプ24に接続して10−”Tor
rの真空下40℃で脱気した0次に反応器10を常温水
で冷却しながら純度99.999%、圧力40気圧の水
素を反応器10内に導入して水素の吸蔵を開始させた。
The reactor 10 is connected to a vacuum pump 24 to provide a 10-” Tor
Next, the reactor 10 was degassed at 40° C. under a vacuum of R, and hydrogen with a purity of 99.999% and a pressure of 40 atm was introduced into the reactor 10 while cooling it with water at room temperature to start occluding hydrogen. .

水素の吸蔵が略終了した後再び40℃で真空脱気した後
、常温水で冷却しながら水素加圧する操作を活性化が完
了するまで操り返した。
After hydrogen occlusion was almost completed, vacuum degassing was performed again at 40° C., and the operation of pressurizing hydrogen while cooling with room temperature water was repeated until activation was completed.

次に水素吸蔵・放出量を以下の如く測定した。Next, the amount of hydrogen absorption and release was measured as follows.

反応器10を40℃に保持した後真空ポンプ24を運転
し、バルブ14.22を開いてリザーバー16と反応器
10内を真空にした後バルブ14.22を閉じる。バル
ブ18を開いてリザーバー16に散気圧の水素を4人し
、バルブ1Bを閉じその圧力Ptlと雰囲気温度TIK
を測定する0次いでバルブ14を開き、リザーバー16
内の水素を反応器10へ導入し、試料が水素を吸蔵して
平衡圧になったときの圧力pe1を測定する。バルブ1
4を閉じバルブ18を開いてリザーバー16内の水素圧
を散気圧増加させバルブ18を閉じ、その圧力Pt2と
雰囲気温度T2を測定する。
After the reactor 10 is maintained at 40° C., the vacuum pump 24 is operated, and the valve 14.22 is opened to evacuate the reservoir 16 and the reactor 10, and then the valve 14.22 is closed. Open the valve 18 to supply hydrogen at a diffused pressure to the reservoir 16, then close the valve 1B and set the pressure Ptl and the ambient temperature TIK.
Measure 0 then open valve 14 and drain reservoir 16.
The hydrogen in the sample is introduced into the reactor 10, and the pressure pe1 when the sample absorbs hydrogen and reaches an equilibrium pressure is measured. Valve 1
4 and open the valve 18 to increase the hydrogen pressure in the reservoir 16 to a diffused pressure, close the valve 18, and measure the pressure Pt2 and the ambient temperature T2.

バルブ14を開いて反応器10に新たな水素を導入し、
試料がさらに水素を吸蔵して平衡圧になったときの圧力
pezを測定する。この操作をPtn(nは繰返し回数
)がおよそ40気圧になるまで繰返す、n回目の水素吸
蔵量は次の要領で算出される。
opening valve 14 to introduce new hydrogen into reactor 10;
The pressure pez when the sample further absorbs hydrogen and reaches an equilibrium pressure is measured. This operation is repeated until Ptn (n is the number of repetitions) reaches approximately 40 atm, and the n-th hydrogen storage amount is calculated as follows.

圧力P1体積V、水素ガスの絶対温度T、水素ガスのモ
ル数M、気体定数R1理想気体から実在水素ガスへの補
正係数Z(圧力、温度の関数)とすると、 PV−MZRT の関係がある。これを利用してn回目のりザーバーの水
素圧PEn、Penと反応器の水素圧P6(n−1)+
penおよびそれぞれの測定時の雰囲気温度Tn。
Assuming pressure P1 volume V, absolute temperature T of hydrogen gas, number of moles of hydrogen gas M, gas constant R1 correction coefficient Z (function of pressure and temperature) from ideal gas to real hydrogen gas, there is the relationship PV-MZRT. . Using this, the n-th reservoir hydrogen pressure PEn, Pen and the reactor hydrogen pressure P6(n-1)+
pen and the ambient temperature Tn at the time of each measurement.

T (n+x) 、反応器の温度Tr(313K)から
n回目の@蔵水素量を求めることができる。
The amount of stored hydrogen at the nth time can be determined from T (n+x) and the reactor temperature Tr (313K).

リザーバー16にPtnの圧力を導入した状態で反応器
10(内部空間容積V1)とりザーバ−16(内容積V
2)の中にある水素ガスMnモルは式(1)となる。
With the pressure of Ptn introduced into the reservoir 16, the reactor 10 (internal space volume V1) is taken into the reservoir 16 (internal volume V1).
The hydrogen gas Mn mole in 2) is expressed by formula (1).

次にバルブ14を開き、合金試料12が新たに水素ΔM
nモル(OX分子換K)吸蔵して平衡圧Penに達した
とき、上記Mnモルの水素量は反応器10とリザーバー
16の中で式(2)の通りに存在している。
Next, the valve 14 is opened, and the alloy sample 12 is newly charged with hydrogen ΔM.
When n moles (K in terms of OX molecules) are absorbed and the equilibrium pressure Pen is reached, the amount of Mn moles of hydrogen is present in the reactor 10 and the reservoir 16 as shown in equation (2).

従ってn回目に合金試料に吸蔵された水素量ΔMnモル
は式(11,(2)を等しいとおいて式(3)の通り計
算される。
Therefore, the amount ΔMn moles of hydrogen occluded in the alloy sample for the nth time is calculated according to equation (3), with equations (11 and (2) being equal).

式(3)を用いて各回の水素吸蔵量を算出し、水素平衡
圧と合金の水素吸蔵量との関係を得ることができる。
The hydrogen storage amount for each time is calculated using equation (3), and the relationship between the hydrogen equilibrium pressure and the hydrogen storage amount of the alloy can be obtained.

水素の放出量の測定はりザーバ−16と反応器10がほ
ぼ40気圧の平衡水素圧になった時から開始する。バル
ブ14を閉じバルブ22を開き、リザーバー16内の水
素圧を散気圧減圧してバルブ22を閉じる。圧力と雰囲
気温度を測定する0次いでバルブ14を開き反応器10
内の水素をリザーバー16に導入し、合金試料12に吸
蔵された水素を一部放出させ平衡になった圧力を測定す
る。この操作を反応器10が真空になるまで繰返す、水
素放出量の算出は上記吸蔵の場合の算出方法に準する。
Measurement of the amount of hydrogen released begins when the equilibrium hydrogen pressure in the reservoir 16 and reactor 10 is approximately 40 atmospheres. The valve 14 is closed, the valve 22 is opened, the hydrogen pressure in the reservoir 16 is reduced to a diffused pressure, and the valve 22 is closed. Measure the pressure and ambient temperature. Then open the valve 14 and open the reactor 10.
The hydrogen contained in the alloy sample 12 is introduced into the reservoir 16, a portion of the hydrogen occluded in the alloy sample 12 is released, and the pressure at equilibrium is measured. This operation is repeated until the reactor 10 becomes vacuum, and the amount of hydrogen released is calculated in accordance with the calculation method for the storage case described above.

水素放出における平衡水素圧と合金の水素放出量との関
係を得ることができる。
The relationship between the equilibrium hydrogen pressure during hydrogen release and the hydrogen release amount of the alloy can be obtained.

このようにして等温における平衡水素圧カー組成の関係
を求めて、その結果を第1表の試料&1〜3及び5.6
に示す、同表中試料階5,6は公知組成材料である。
In this way, the relationship between the equilibrium hydrogen pressure car composition at isothermal conditions was determined, and the results were used for samples &1 to 3 and 5.6 in Table 1.
Sample floors 5 and 6 shown in the same table are materials with known compositions.

第1表に示した比較用の公知組成材の試料阻5は水素最
大吸蔵量は多いが、プラトー域が無く平衡水素解離圧は
1気圧以下で非常に低い、従って、1〜30気圧間の水
素放出量すなわち水素有効放出量が極度に小さくなり、
水素吸蔵用合金として適当な材料ではない。
Sample No. 5, which is a material with a known composition for comparison shown in Table 1, has a large maximum hydrogen storage capacity, but has no plateau region and has a very low equilibrium hydrogen dissociation pressure of less than 1 atm. The amount of hydrogen released, that is, the effective amount of hydrogen released, becomes extremely small.
It is not a suitable material as a hydrogen storage alloy.

このことから、比較材料としては、現在水素貯蔵装置や
ヒートポンプなどのシステム応用に試用されて広く知ら
れているミツシュメタル系合金(試料1lkL6)を用
いた。
For this reason, as a comparative material, Mitsushi metal alloy (sample 1lkL6), which is widely known and is currently being used for system applications such as hydrogen storage devices and heat pumps, was used.

第1表から判るように、本発明合金試料光1〜3を公知
材患6と比較すると次のとおりである。
As can be seen from Table 1, the alloy samples 1 to 3 of the present invention are compared with the known material No. 6 as follows.

1)本発明合金試料はどれもプラトー域を有しており、
平衡水素解離圧は1〜3気圧の範囲にある。
1) All of the alloy samples of the present invention have a plateau region,
Equilibrium hydrogen dissociation pressures range from 1 to 3 atmospheres.

2)水素最大吸蔵量は公知材とほぼ同等以上である。2) The maximum hydrogen storage capacity is approximately equal to or higher than that of known materials.

3)水素吸蔵速度は公知材に比べどの試料もはるかに大
きい。
3) The hydrogen absorption rate of all samples is much higher than that of known materials.

4) ヒステリシス指数は組成の特許請求の範囲の限界
に近い陽3を除いて公知材料よりもずっと小さい。
4) The hysteresis index is much smaller than known materials, except for positive 3, which is close to the claimed limits of composition.

5)活性化はどの試料も1回の操作で完了し公知材と同
等以上に容易である。
5) Activation of any sample can be completed in one operation and is easier than known materials.

実施例2 第1表に示す本発明合金材の試料患4及び公知の比較材
磁7を本実施例の対象とする。
Example 2 Sample No. 4 of the alloy material of the present invention and known comparative material No. 7 shown in Table 1 are used as objects of this example.

これらの試料は実施例1に記したと同じ原料。These samples are the same raw materials as described in Example 1.

同じ方法でボタン状試料に溶製し、同じ均質熱処理を施
し、−100メツシユに粉砕した。
A button-shaped sample was melted in the same manner, subjected to the same homogeneous heat treatment, and ground to -100 mesh.

本実施例では活性化時の真空脱気温度は80℃とし、水
素の吸蔵・放出量を測定する場合の試料収納反応器を試
料11h4とN117については80℃に保持した。そ
の他の活性化、水素吸蔵・放出量測定方法は実施例1と
同じである。
In this example, the vacuum degassing temperature during activation was set to 80°C, and the sample storage reactor used to measure the amount of hydrogen absorption and release was maintained at 80°C for samples 11h4 and N117. Other activation methods and hydrogen storage/release amount measurement methods are the same as in Example 1.

第1表に示した公知組成材料隘7は、同一組成の試料陽
5に比べて80℃と測定温度の上昇により平衡水素解離
圧は上がったが、それでも1気圧以下である。ヒステリ
シス指数、水素吸蔵速度。
Although the equilibrium hydrogen dissociation pressure of material No. 7 of the known composition shown in Table 1 was higher than that of sample No. 5 of the same composition due to an increase in the measurement temperature of 80° C., it was still less than 1 atm. Hysteresis index, hydrogen absorption rate.

水素最大吸蔵量は比較的良好な値であるがプラトー傾斜
が大きく、水素有効放出量が小さく、やはり水素吸蔵用
合金としては適当な材料ではない。
Although the maximum hydrogen storage amount is relatively good, the plateau slope is large and the effective hydrogen release amount is small, so it is not a suitable material as a hydrogen storage alloy.

第1表より、本発明合金の測定温度80℃である試料陽
4は比較材のぬ7に比べ次のことが判明した。
From Table 1, it was found that sample No. 4, which was an alloy of the present invention measured at a temperature of 80° C., had the following characteristics compared to comparative material No. 7.

1)平衡水素解離圧は1.7気圧と高い。1) The equilibrium hydrogen dissociation pressure is as high as 1.7 atm.

2) プラトー域をもち、プラトーの傾斜は比較材より
小さく、かつヒステリシスも小さい。
2) It has a plateau region, the slope of the plateau is smaller than the comparative material, and the hysteresis is also smaller.

3)水素最大吸蔵量は同等であり、水素有効放出量は大
きい。
3) The maximum hydrogen storage capacity is the same, and the effective hydrogen release capacity is large.

4)水素吸蔵速度は同等程度に速い。4) Hydrogen absorption rate is equally fast.

5)活性化も同等以上に容易である。5) Activation is equally or even easier.

(発明の効果) 本発明合金は上述の緒特性を有することから、本発明合
金を使用することにより下記の如き効果を挙げることが
できる。
(Effects of the Invention) Since the alloy of the present invention has the above-mentioned characteristics, the following effects can be achieved by using the alloy of the present invention.

1)本発明合金はすべて平衡水素圧のプラトー域を有し
ており、その解離圧は40℃で1〜3気圧、80℃で1
.7気圧である0合金組成を変化させて平衡水素圧を1
〜数気圧に変えることができるので、使い勝手の良い合
金である。
1) All the alloys of the present invention have a plateau region of equilibrium hydrogen pressure, and the dissociation pressure is 1 to 3 atm at 40°C and 1 atm at 80°C.
.. The equilibrium hydrogen pressure is 1 by changing the alloy composition, which is 7 atm.
It is an easy-to-use alloy because it can change the pressure to several atmospheres.

2)活性化は、常温での真空脱気、常温で30気圧の水
素加圧の操作1回だけで容易に終えることができる。
2) Activation can be easily completed with just one operation of vacuum degassing at room temperature and pressurization of hydrogen at 30 atm at room temperature.

3)水素最大吸蔵量、水素有効放出量は従来合金と同等
以上である。
3) The maximum hydrogen storage capacity and effective hydrogen release capacity are equal to or higher than those of conventional alloys.

4)水素吸蔵・放出速度は従来合金に比べて大きい、こ
のことは、繰返し使用が迅速にでき、仮に有効水素吸蔵
・放出量が小さくても全体としては使用効率のよい合金
となる。
4) The hydrogen absorption/release rate is higher than that of conventional alloys. This means that it can be used repeatedly and quickly, and even if the effective hydrogen absorption/release amount is small, the alloy has good usage efficiency as a whole.

5) ヒステリシスは従来合金に比べて同等以下である
ので、繰返し使用してもエネルギー損失が小さい効率の
良い使用ができる。
5) Since the hysteresis is the same or lower than that of conventional alloys, it can be used efficiently with little energy loss even when used repeatedly.

6) ジルコニウム合金系は元来、軸系、Ti系、希土
類系合金に比ベガス状不純物に耐える性質が強いが、本
発明合金も酸素、窒素、アルゴン。
6) Zirconium alloys are inherently more resistant to gas-like impurities than shaft-based, Ti-based, and rare earth-based alloys, but the alloy of the present invention also resists oxygen, nitrogen, and argon.

炭酸ガスなどの不純物による影響が殆どない。There is almost no effect from impurities such as carbon dioxide gas.

7) 水素吸蔵と放出を何回繰返しても合金自体の劣化
は実質的に認められない。
7) No matter how many times hydrogen absorption and release are repeated, there is virtually no deterioration of the alloy itself.

本発明のジルコニウム系水素吸蔵用合金は、以上の通り
水素吸蔵用材料として要求される諸性能を全て具えてお
り、特に水素最大吸蔵量、水素吸蔵・放出速度、ヒステ
リシスは従来の水素吸蔵用合金に比べて改善されている
。この合金は活性化が極めて容易で、大量の水素を密度
高く吸蔵することができ、水素の吸蔵・放出反応が完全
に可逆的に行われ、且つ、ガス状不純物に耐える性質が
強いなど、従来合金に比べ数々の特長を有する。
The zirconium-based hydrogen storage alloy of the present invention has all the performances required as a hydrogen storage material as described above, and in particular, the maximum hydrogen storage capacity, hydrogen storage/release rate, and hysteresis are superior to those of conventional hydrogen storage alloys. has been improved compared to. This alloy is extremely easy to activate, can store large amounts of hydrogen at high density, has completely reversible hydrogen storage and desorption reactions, and has strong resistance to gaseous impurities. It has many advantages compared to alloys.

従って、本発明合金は常温〜100℃で使用する蓄熱装
置、温度センサーなどには勿論、特に水素貯蔵・輸送、
水素分離・精製システムへの用途などに卓越した効果を
発揮する。
Therefore, the alloy of the present invention can be used not only for heat storage devices and temperature sensors used at room temperature to 100°C, but also for hydrogen storage and transportation.
Demonstrates outstanding effects in applications such as hydrogen separation and purification systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金の活性化並びに水素吸蔵・放出量の
測定方法の説明図である。 10・・・反応器、12・・・水素吸蔵用合金試料、1
4・・・バルブ、16・・・リザーバー、18・・・バ
ルブ、20・・・水素ボンベ、22・・・バルブ、24
・・・ロータリ一式真空ポンプ、26・・・圧力変換器
、28・・・デジタル式圧力指示計。
FIG. 1 is an explanatory diagram of a method for activating the alloy of the present invention and measuring the amount of hydrogen absorption and release. 10...Reactor, 12...Hydrogen storage alloy sample, 1
4... Valve, 16... Reservoir, 18... Valve, 20... Hydrogen cylinder, 22... Valve, 24
... Rotary complete vacuum pump, 26 ... Pressure transducer, 28 ... Digital pressure indicator.

Claims (1)

【特許請求の範囲】 1、原子数組成で示性式がZr_kAy(Fe_1_−
_kV_k)_2で示されることを特徴とするジルコニ
ウム系水素吸蔵用合金〔但し、式中Aはチタン、ニオブ
、モリブデンのなかから選ばれるいずれか少なくとも一
種の元素を示し、0.4≦x≦1.0、0<y≦0.6
、0.2≦k≦0.3である〕。
[Claims] 1. In terms of atomic composition, the specific formula is Zr_kAy(Fe_1_-
_kV_k)_2 [However, in the formula, A represents at least one element selected from titanium, niobium, and molybdenum, and 0.4≦x≦1 .0, 0<y≦0.6
, 0.2≦k≦0.3].
JP62188998A 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion Granted JPS6372851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62188998A JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62188998A JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59225103A Division JPS61104053A (en) 1984-10-27 1984-10-27 Zirconium-type hydrogen occluding alloy

Publications (2)

Publication Number Publication Date
JPS6372851A true JPS6372851A (en) 1988-04-02
JPH0242893B2 JPH0242893B2 (en) 1990-09-26

Family

ID=16233585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62188998A Granted JPS6372851A (en) 1987-07-30 1987-07-30 Zirconium-type alloy for hydrogen occlusion

Country Status (1)

Country Link
JP (1) JPS6372851A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210659A (en) * 1988-06-28 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy
EP0670575A1 (en) * 1993-12-13 1995-09-06 GESELLSCHAFT FÜR ANLAGEN- UND REAKTORSICHERHEIT ( GRS) mbH Device for removing free hydrogen from a gas mixture containing hydrogen and oxygen
CN108660338A (en) * 2018-05-18 2018-10-16 南京华东电子真空材料有限公司 A kind of zirconium ferrocolumbium and preparation method applied to vacuum electronic component
CN109225119A (en) * 2018-10-11 2019-01-18 南京恩瑞科技有限公司 A kind of preparation method of zirconium kind nonevaporable getter
CN110042304A (en) * 2019-04-22 2019-07-23 宁夏大学 A kind of high-pressure metal hydride composite hydrogen occluding tank high platform pressure hydrogen bearing alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210659A (en) * 1988-06-28 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy
EP0670575A1 (en) * 1993-12-13 1995-09-06 GESELLSCHAFT FÜR ANLAGEN- UND REAKTORSICHERHEIT ( GRS) mbH Device for removing free hydrogen from a gas mixture containing hydrogen and oxygen
US5499279A (en) * 1993-12-13 1996-03-12 Gesellschaft Fur Anlagen- Und Reaktorsicherheit Apparatus for removing free hydrogen from a gas mixture containing hydrogen and oxygen
CN108660338A (en) * 2018-05-18 2018-10-16 南京华东电子真空材料有限公司 A kind of zirconium ferrocolumbium and preparation method applied to vacuum electronic component
CN109225119A (en) * 2018-10-11 2019-01-18 南京恩瑞科技有限公司 A kind of preparation method of zirconium kind nonevaporable getter
CN110042304A (en) * 2019-04-22 2019-07-23 宁夏大学 A kind of high-pressure metal hydride composite hydrogen occluding tank high platform pressure hydrogen bearing alloy

Also Published As

Publication number Publication date
JPH0242893B2 (en) 1990-09-26

Similar Documents

Publication Publication Date Title
JPS633019B2 (en)
US5085944A (en) Rare earth metal-series alloys for storage of hydrogen
JP2935806B2 (en) Hydrogen storage material
US4347082A (en) Mischmetal alloy for storage of hydrogen
JPS6372851A (en) Zirconium-type alloy for hydrogen occlusion
JPS61199045A (en) Hydrogen occluding alloy
JPH039175B2 (en)
US4421718A (en) Alloy for occlusion of hydrogen
JPS6310215B2 (en)
JPS6158545B2 (en)
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
JPH0247535B2 (en)
JP2743123B2 (en) Materials for hydrogen storage
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPH0477061B2 (en)
JPS61276945A (en) Hydrogen occluding zirconium alloy
JPH0693366A (en) Hydrogen storage alloy
JPS6227534A (en) Zirconium alloy for hydrogen storage
JPS5822534B2 (en) Metal materials for hydrogen storage
JPH0224764B2 (en)
JPH0734175A (en) Hydrogen storage material
US20020139456A1 (en) High-capacity hydrogen storage alloy and method for producing the same
JPS6159389B2 (en)
JPH0375618B2 (en)
JPS6296632A (en) Metallic alloy for hydrogen storage