JPS6296632A - Metallic alloy for hydrogen storage - Google Patents

Metallic alloy for hydrogen storage

Info

Publication number
JPS6296632A
JPS6296632A JP60235118A JP23511885A JPS6296632A JP S6296632 A JPS6296632 A JP S6296632A JP 60235118 A JP60235118 A JP 60235118A JP 23511885 A JP23511885 A JP 23511885A JP S6296632 A JPS6296632 A JP S6296632A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
metallic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60235118A
Other languages
Japanese (ja)
Other versions
JPH0689434B2 (en
Inventor
Akira Tsukamoto
昭 塚本
Tatsumi Hagiwara
多津美 萩原
Kimikazu Mori
毛利 公和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60235118A priority Critical patent/JPH0689434B2/en
Publication of JPS6296632A publication Critical patent/JPS6296632A/en
Publication of JPH0689434B2 publication Critical patent/JPH0689434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To obtain an inexpensive metallic alloy for hydrogen storage occluding a large amount of hydrogen and easily releasing hydrogen in a wide temp. range by preparing an alloy by blending specific percentage of Zr, Fe and Cr. CONSTITUTION:The metallic alloy for hydrogen storage is prepared by providing a composition represented by a general expression, Zr(Fe1-xCrx)2, blending Zr, Fe and Cr so that 0.15<=x<=0.8 is satisfied, and carrying out melting in an inert gas atmosphere, such as Ar, etc., by an arc melting method and the like. In this way, a practical metallic alloy for hydrogen storage, having high rate of reaction with hydrogen by slight changes in pressure at a hydrogen equilibrium pressure (dissociation pressure) of about 10atm or below, occluding a large amount of hydrogen at a hydrogen equilibrium pressure of about 10atm or below, and causing no heat deterioration to a vessel in which the alloy is to be held because above-mentioned characteristics are obtained at low temp., can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は水素吸蔵合金に関し、特に水素を金属水素化
合物とし゛C貯蔵するZr、Fc、cr系の水素吸蔵合
金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hydrogen storage alloy, and particularly to a Zr, Fc, and Cr-based hydrogen storage alloy that stores hydrogen as a metal hydride compound.

(従来の技術) 水素は酸素と爆発的に反応し、生成されるものが水だけ
であって、公害のないクリーンエネルギーとして注目さ
れている。
(Prior art) Hydrogen reacts explosively with oxygen, producing only water, and is attracting attention as a clean energy source that does not cause pollution.

水素をエネルギー源として使用する場合、従来から気体
ないしは液体の状態で貯蔵されていたが、近時固体化さ
れた状態で貯蔵する水素吸蔵合金が提供されている。
When hydrogen is used as an energy source, it has conventionally been stored in a gaseous or liquid state, but recently hydrogen storage alloys that store it in a solid state have been provided.

この種の水素吸蔵合金は、水素を金属水素化合物として
貯蔵し、温度あるいは圧力を制御することで、水素の吸
蔵・放出、と発熱反応と吸熱反応とをそれぞれ可逆的に
進行できるという特質がある。
This type of hydrogen-absorbing alloy stores hydrogen as a metal hydride compound, and by controlling the temperature or pressure, hydrogen storage and release, as well as exothermic and endothermic reactions, can proceed reversibly. .

ところで、実用的な水素吸蔵合金に要求される特性は、
安価であって、活性化が容易で、単位重量当たりの水素
吸蔵量が多く、水素との反応が速く、しかも反応時の圧
力や温度ができるだけ低い方が望ましい。
By the way, the characteristics required for a practical hydrogen storage alloy are:
It is desirable that the material be inexpensive, easy to activate, have a large hydrogen storage capacity per unit weight, react quickly with hydrogen, and keep the pressure and temperature as low as possible during the reaction.

例えば自動車に搭載するエネルギー源としては、10気
圧以下で170℃以下の温度で使用できることが望まし
い。
For example, as an energy source installed in an automobile, it is desirable that the energy source can be used at a temperature of 170° C. or less at 10 atmospheres or less.

現在提供されている水素吸蔵合金としては、希土類系合
金、MO系合金、Ti系合金などがある。
Currently available hydrogen storage alloys include rare earth alloys, MO alloys, and Ti alloys.

(発明が解決しようとする問題点) 上記した各県の水素吸蔵合金には、それぞれ以下に示す
如き問題があって実用化が難しい。
(Problems to be Solved by the Invention) The hydrogen storage alloys produced in each prefecture described above have the following problems, making it difficult to put them into practical use.

すなわち、希土類系合金、例えば1aNi5は高価であ
り、また、Ma系合金、例えばMo2N1は低温での反
応速度が遅いという欠点があった。
That is, rare earth alloys such as 1aNi5 are expensive, and Ma alloys such as Mo2N1 have the disadvantage of slow reaction speed at low temperatures.

さらに、Ti系合金例えばTi Feは活性化が困難で
あって、水素の吸蔵に数百度以上の加熱を必要とするな
どの問題があった。
Furthermore, Ti-based alloys such as TiFe are difficult to activate and require heating to a temperature of several hundred degrees or more to absorb hydrogen.

この発明はこのような背景に鑑みてなされたものであっ
て、その目的とするところは、金属水素化合物としての
水素吸蔵量が多く、しかも合金組成の原子数を変えるこ
とで低温から^温までの広い温度範囲で水素を容易に放
出し、且つ、水素との反応が速い、安価な水素吸蔵合金
を提供することにある。
This invention was made in view of this background, and its purpose is to have a large amount of hydrogen storage as a metal hydride compound, and to change the number of atoms in the alloy composition so that it can be used from low to high temperatures. An object of the present invention is to provide an inexpensive hydrogen storage alloy that easily releases hydrogen over a wide temperature range and reacts quickly with hydrogen.

(問題点を解決するための手段及び作用)上記目的を達
成するため、この発明は水素吸蔵合金において、一般式
Zr(Fe   Crx)2−x で表わされる組成を有し、この一般式中の×が0.15
≦x≦0.8の範囲内の数からなることを特徴としてい
る。
(Means and effects for solving the problems) In order to achieve the above object, the present invention provides a hydrogen storage alloy having a composition represented by the general formula Zr(Fe Crx)2-x, × is 0.15
It is characterized by consisting of a number within the range of ≦x≦0.8.

上記構成の水素吸蔵合金は、アルゴンなどの不活性ガス
の雰囲気中で通常の合金製造法、例えばアークメルト法
などにより、Zr、Fe、−Crの原料金属の単相体を
、所定の配合比として溶融することにより容易に製造す
ることができる。
The hydrogen-absorbing alloy having the above structure is produced by mixing single-phase raw material metals of Zr, Fe, and -Cr in a predetermined blending ratio by a normal alloy manufacturing method, such as an arc melting method, in an atmosphere of an inert gas such as argon. It can be easily manufactured by melting it as

従って、この発明の水素吸蔵合金は、比較的安価なZr
 、、Fe 、Crから構成されているため、希土類系
合金のように高価にならない。
Therefore, the hydrogen storage alloy of the present invention is made of relatively inexpensive Zr.
, Fe, and Cr, so it is not expensive like rare earth alloys.

上記の製造法などにより得られた本発明の水素吸蔵合金
は、全組成域に亘って単相であって、水素の吸蔵により
結晶構造が変化しない。
The hydrogen storage alloy of the present invention obtained by the above manufacturing method has a single phase over the entire composition range, and the crystal structure does not change due to hydrogen storage.

また、多くの合金は、溶融後の合金組織を均一にするた
め、一般的にはアニール処理を必要とするが、この発明
の水素吸蔵合金は上述したように溶融することだけで単
相のものが得られるため、アニール処理を必要とせず、
従って製造時間を大幅に短縮できる有利性もある。
In addition, many alloys generally require annealing treatment to make the alloy structure uniform after melting, but the hydrogen storage alloy of this invention can be made into a single-phase alloy by simply melting as described above. is obtained, no annealing treatment is required,
Therefore, there is an advantage that manufacturing time can be significantly shortened.

得られた水素吸蔵合金の活性化は、サンプルセルを密封
容器内に入れて、約30分間真空ポンプで吸引して容器
内を脱気した後、容器内に室温で約30気圧の水素を導
入して約30分間放置し、合金に水素を吸蔵さゼて、初
期水素の導入を行なう。
To activate the obtained hydrogen storage alloy, place the sample cell in a sealed container, use a vacuum pump to degas the container for about 30 minutes, and then introduce hydrogen at about 30 atm at room temperature into the container. The alloy is then left to stand for about 30 minutes to absorb hydrogen into the alloy and perform the initial introduction of hydrogen.

その後再度真空脱気を行った後水素導入という手順を複
数回繰返すことになるが、例えばZrMn2と比較して
活性化は短時間で行なうことができる。
Thereafter, the procedure of performing vacuum degassing again and then introducing hydrogen is repeated several times, but activation can be performed in a shorter time than, for example, with ZrMn2.

ところで、zr  (F el−x Crx ) 2の
式で表わされる水素吸蔵合金は、0.15≦x≦0.8
の範囲内では、C14型tlexagona l La
ves相となり水素を良く吸蔵するが、0≦×≦ 0.
1の範囲内ではC15型Cubic Laves相とな
り水素を吸蔵しなくなる。
By the way, the hydrogen storage alloy represented by the formula zr (F el-x Crx ) 2 satisfies 0.15≦x≦0.8
Within the range of C14 type tlexagonal La
It becomes a ves phase and absorbs hydrogen well, but 0≦×≦0.
Within the range of 1, it becomes a C15 type cubic laves phase and does not absorb hydrogen.

本発明者らの実験によると、水素吸蔵量は、第1図に示
すように、x=1で1ユニツトセル当たり水素原子4.
2gで、Xの減少とともに緩やかに減少して、x=0.
15では水素原子3.111!Jとなり、これを超えて
Xがさらに減少すると、水素吸蔵量が急激に低下し、x
=0.05では水素の吸蔵がほとんど認められなかった
According to experiments conducted by the present inventors, the hydrogen storage capacity is 4.5 hydrogen atoms per unit cell when x=1, as shown in FIG.
2g, it gradually decreases as X decreases until x=0.
15 has 3.111 hydrogen atoms! J, and when X further decreases beyond this, the hydrogen storage capacity decreases rapidly, and x
=0.05, almost no hydrogen absorption was observed.

同図の結果からも明らかなように、単位ff1ffi当
たりの水素吸蔵量を考慮すると、Zr(Fe1−xCr
x)2で示される合金では、Xの下限を0゜15とすれ
ば、1ユニツトヒル当たり水素原子3゜1個以上の大き
な吸蔵量が得られる。
As is clear from the results in the same figure, when considering the amount of hydrogen storage per unit ff1ffi, Zr(Fe1-xCr
In the alloy represented by x)2, if the lower limit of

一方、第2図〜第7図にXの値を0.2から1゜0まで
段階的に変えて製造したzr (Fe1−xCrx)2
の各合金の水素平衡圧と温゛度および1、Holの合金
に対する水素の原子数どの測定結果を示しているが、こ
の結果によるとXの値を変化させれば広範囲な温度領域
で実用的な水素吸蔵合金が得られる。
On the other hand, Figures 2 to 7 show zr (Fe1-xCrx)2 manufactured by changing the value of X stepwise from 0.2 to 1°0.
It shows the measurement results of the hydrogen equilibrium pressure and temperature of each alloy, and the number of hydrogen atoms for the alloys of 1 and Hol.According to these results, if the value of A hydrogen storage alloy is obtained.

なかでも、X=0.4.0.6のものは、温度が100
℃〜200℃の間で、ヒートポンプとして利用できる良
好な特性が得られ、従来合金の希土類系(120℃以下
) 、 Zr Mn2 (200℃以上)の中間温度領
域で用いるものとして有用である。
Among them, those with X=0.4.0.6 have a temperature of 100
C. to 200.degree. C., it has good characteristics that can be used as a heat pump, and is useful in the intermediate temperature range of conventional rare earth alloys (120.degree. C. or lower) and ZrMn2 (200.degree. C. or higher).

また、X=0.3の水素吸蔵合金では、約30℃という
常温領域で、プラトー圧〈第2図〜第6図に示した各特
性図で水素平衡圧がほぼ一定で吸蔵量のみが増加する部
分の平衡圧)が数気圧程度を示し、しかも有効水素量が
合金1モル当たりの水素原子数で2以上と大きく、水素
貯蔵用として良好な特性を示す。
In addition, in the hydrogen storage alloy with The equilibrium pressure of the alloy is on the order of several atmospheres, and the effective amount of hydrogen is as large as 2 or more hydrogen atoms per mole of alloy, indicating good properties for hydrogen storage.

ところで、上記プラトー圧ないしはプラトー特性は、小
さい圧力変化で大きく水素吸蔵聞が変化し、反応速度が
速いことを示す指標となり、この特性を低い温度ででき
るだけ広い範囲で帯有した合金が望ましい。
Incidentally, the above-mentioned plateau pressure or plateau characteristic is an indicator that the hydrogen absorption capacity changes greatly with a small pressure change and the reaction rate is fast, and an alloy having this characteristic in as wide a range as possible at a low temperature is desirable.

この点からすると第7図に示したX=1.0の合金では
プラトー特性がほとんど得られず、第6図に示したx=
0.8の合金では130℃という比較的低い温度領域で
、これが認められ、且つ単位モル当たりの水素吸蔵1も
1〜2程度であって、実用上支障がないので、この発明
ではXの上限を0゜8としている。
From this point of view, the alloy with X=1.0 shown in FIG.
This is recognized in the relatively low temperature range of 130°C in the case of the alloy of No. is set to 0°8.

(実施例) 以下、この発明の好適な実施例について説明する。(Example) Hereinafter, preferred embodiments of the present invention will be described.

(実施例1) 純度99.7%のZr、同99.9%のFe。(Example 1) Zr with a purity of 99.7%, Fe with a purity of 99.9%.

同99.9%のC「をZr(Fe    Cr   )
0.8   0.2 2の組成比すなわち、Zr  (F el−x Cr 
x)、、2の組成比でX=0.2になるように衡a配合
し、アルゴン雰囲気中でプラズマトーチによる溶解を4
回繰返し、該組成の合金を製造した。
Zr (Fe Cr) with 99.9% C
The composition ratio of 0.8 0.2 2, that is, Zr (F el-x Cr
x), , 2 were mixed so that X = 0.2, and melted with a plasma torch in an argon atmosphere for 4 hours.
An alloy having the composition was produced by repeating the process several times.

この合金を大豆大の大きさに粗砕後、耐圧容器内の80
℃のオイルバス中にこれを浸漬して、真空脱気と30気
圧の水素加圧とを3回繰返して活性化を行なった。
After crushing this alloy into soybean-sized pieces, it was placed in a pressure container.
This was activated by immersing it in an oil bath at 0.degree. C. and repeating vacuum degassing and hydrogen pressurization at 30 atmospheres three times.

しかる後、公知の方法により得られた合金の1モル中に
金属水素化物として吸蔵する水素量を測定し、水素平衡
圧等8!線として求めたものが第2図である。
Thereafter, the amount of hydrogen occluded as a metal hydride in 1 mole of the alloy obtained by a known method was measured, and the hydrogen equilibrium pressure, etc. 8! Figure 2 shows what was determined as a line.

同図に示す曲線は、温度が0℃、30℃、75℃のもの
であって、縦軸は水素の平衡圧(気圧)、横軸は金属水
素化物の量(水素原子数/合金1モル)を示しており、
それぞれ比較的低い平衡圧1〜20気圧程度で良好なプ
ラトー特性を示した。
The curves shown in the figure are for temperatures of 0°C, 30°C, and 75°C, the vertical axis is the equilibrium pressure of hydrogen (atmospheric pressure), and the horizontal axis is the amount of metal hydride (number of hydrogen atoms/mol of alloy). ) is shown,
Each exhibited good plateau characteristics at a relatively low equilibrium pressure of about 1 to 20 atm.

(実施例2) 実施例1と同じ方法でX=0.3としたZ「(Fe  
 Cr   )  の合金を製造し、同様0.7   
0.32 に活性化処理を施した後、得られた合金の水素平衡圧等
温線を第3図に示す。
(Example 2) Z'(Fe
An alloy of Cr) was produced, and the same
The hydrogen equilibrium pressure isotherm of the obtained alloy after activation treatment at 0.32° C. is shown in FIG.

同図に示す曲線は、温度が30℃、75℃、135℃の
ものであって、実施例1とほぼ同じ水素平衡圧で良好な
プラトー特性が得られ、しかも100″C以下で10気
圧程度の平衡圧であるため、実施例1とともに水素貯蔵
用として適している。
The curves shown in the figure are for temperatures of 30°C, 75°C, and 135°C, and good plateau characteristics are obtained at approximately the same hydrogen equilibrium pressure as in Example 1, and at about 10 atm below 100"C. Since the equilibrium pressure is , it is suitable for hydrogen storage along with Example 1.

(実施例3) 実施例1と同じ方法で、x=0.4としたZ「(Fe 
   Cr   )  の合金を製造し、同様0.6 
  0.42 に活性化処理を施した後、得られた合金の水素平衡圧等
温線を第4図に示す。
(Example 3) Using the same method as in Example 1, Z'(Fe
An alloy of Cr) was produced, and the same
The hydrogen equilibrium pressure isotherm of the obtained alloy after activation treatment at 0.42° C. is shown in FIG.

同図に示す曲線は、75℃、121℃、172℃のもの
であって、特に172℃の曲線ではヒステリシス現象が
なくなっており、この条件では水素の吸蔵と放出が完全
に可逆的に行なわれる。
The curves shown in the figure are for 75°C, 121°C, and 172°C, and in particular, the hysteresis phenomenon disappears in the curve at 172°C, and hydrogen absorption and desorption are completely reversible under these conditions. .

(実施例4.5) 実施例1と同じ方法で、x=0.6,0.8[Zr(F
e    Cr   )  、  Zr(FeO,40
,62 Cr)]の2種類の合金を製造し、 0.2   0.82 活性化処理後に測定した特性を第5図、第6図に示す。
(Example 4.5) Using the same method as in Example 1, x=0.6, 0.8[Zr(F
eCr), Zr(FeO,40
, 62 Cr)] were manufactured, and the properties measured after activation treatment are shown in FIGS. 5 and 6.

これらの組成比においても220℃以下ないしは130
℃でプラトー特性を示し、水素平衡圧も10気圧以下で
あって、上記実施例と同様な用途に適用できる。
Even in these composition ratios, the temperature is below 220°C or 130°C.
It exhibits a plateau characteristic at ℃, and the hydrogen equilibrium pressure is also 10 atmospheres or less, and can be applied to the same applications as in the above embodiments.

(比較例1) 上記実施例1と同方法にてx−1,0(Zr C「2)
の合金を製造し、活性化処理後に測定した水素平衡圧等
wAIliIを第7図に示す。
(Comparative Example 1) x-1,0 (Zr C “2)” in the same manner as in Example 1 above.
Figure 7 shows the hydrogen equilibrium pressure wAIliI measured after manufacturing the alloy and activating it.

同図からも明らかなように、この組成比の合金では、い
ずれのI!度でもプラトー性が認められず、圧力を大き
くあげなければ吸蔵量が増加せず、しかも温度もかなり
高く実用上支障がある。
As is clear from the figure, in the alloy with this composition ratio, either I! No plateau is observed even at 100°C, and the amount of occlusion cannot be increased unless the pressure is significantly increased, and the temperature is also quite high, which poses a practical problem.

なお、第8図に示す水素平衡圧等温線は、従来の水素吸
蔵合金(ZrMn2)のものであって、プラトー特性が
認められる温度が、本発明の合金よりも高いa!度にあ
ることを比較するために呈示した。
Note that the hydrogen equilibrium pressure isotherm shown in FIG. 8 is for a conventional hydrogen storage alloy (ZrMn2), and the temperature at which plateau characteristics are observed is higher than that of the alloy of the present invention. Presented for comparison.

また、第9図は30気圧で水素吸蔵を行なわせた時の吸
蔵特性の経時変化を示しており、縦軸は。
Moreover, FIG. 9 shows the change over time in the storage characteristics when hydrogen storage is performed at 30 atmospheres, and the vertical axis is .

水素原子/合金モル数、横軸は時間(秒)でありて、x
=1.O,0,6,0,4のいずれの合金も、吸蔵が速
やかに行なわれ、約3分で飽和吸蔵量の95%以上に達
している。
Hydrogen atoms/number of alloy moles, horizontal axis is time (seconds), x
=1. In all the O, 0, 6, 0, and 4 alloys, occlusion occurs quickly, reaching 95% or more of the saturated occlusion amount in about 3 minutes.

さらに、第10図はZr(Fe   Cr  )−XX
2 で示される合金のXに対する生成エンタルピー変化ΔH
を示した図であって、Xの増加に伴いΔト1も増加して
いる。
Furthermore, FIG. 10 shows Zr(FeCr)-XX
2 Formation enthalpy change ΔH for alloy X with respect to
FIG. 6 is a diagram showing that as X increases, Δto1 also increases.

(発明の効果) 以上実施例で詳細に説明したように、この発明に係る水
素吸蔵合金によれば、10気圧以下の水素平衡圧(解離
圧)において、小さな圧力の変化で水素との反応速度が
速く、また10気圧以下の水素平衡圧において水素吸蔵
量が多く、これらの特性が得られる温度が低いため、合
金を収納する容器の熱劣化が発生せず、極めて実用的で
ある。
(Effects of the Invention) As explained in detail in the examples above, according to the hydrogen storage alloy according to the present invention, at a hydrogen equilibrium pressure (dissociation pressure) of 10 atmospheres or less, the reaction rate with hydrogen can be increased with a small pressure change. is fast, has a large amount of hydrogen storage at a hydrogen equilibrium pressure of 10 atmospheres or less, and the temperature at which these properties are obtained is low, so the container containing the alloy does not suffer from thermal deterioration, making it extremely practical.

また、Zr、Fe、Crを原料としているため、希土類
系合金よりも安価となる。
Furthermore, since Zr, Fe, and Cr are used as raw materials, it is cheaper than rare earth alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水素吸蔵合金のXと1ユニツトセル当
たりの水素吸蔵量(水素原子数)との関係を示す図、第
2図から第6図はこの発明の第1実施例から第5実施例
までの水素平衡圧と合金1モル当たりの水素原子数との
関係を−・定温度で測定したそれぞれの特性図、第7図
および第8図は比較例および従来例のそれぞれの特性図
、第9図は本発明合金および比較例合金の水素吸!fi
tの経時変化を示す図、第10図はXとエンタルピー変
化の関係を示す図である。 特許出願人     マ ツ ダ 株式会社代 理 人
     弁理士 −色 健 軸周     同 松本
雅利 第1図 ; υ                        
                  1.1./χ 第2図 第3図 第4図 /6ルタソのイく譚−号5112【 (87M)第5図 第6図 第7図
FIG. 1 is a diagram showing the relationship between X of the hydrogen storage alloy of the present invention and the hydrogen storage amount (number of hydrogen atoms) per unit cell, and FIGS. The relationship between the hydrogen equilibrium pressure and the number of hydrogen atoms per mole of alloy up to the example is shown in the respective characteristic diagrams measured at a constant temperature. Figures 7 and 8 are the respective characteristic diagrams of the comparative example and the conventional example. , Figure 9 shows the hydrogen absorption of the present invention alloy and the comparative example alloy! fi
FIG. 10 is a diagram showing the change in t over time, and FIG. 10 is a diagram showing the relationship between X and enthalpy change. Patent applicant Mazda Co., Ltd. Agent Patent attorney - Color Ken Shaft circumference Same Masatoshi Matsumoto Figure 1; υ
1.1. /χ Figure 2 Figure 3 Figure 4 /6 Lutaso's story No. 5112 [(87M) Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 一般式Zr(Fe_1_−_xCr_x)_2で表わさ
れる組成を有し、該一般式中のxが0.15≦x≦0.
8の範囲内の数からなることを特徴とする水素吸蔵合金
It has a composition represented by the general formula Zr(Fe_1_-_xCr_x)_2, where x in the general formula is 0.15≦x≦0.
A hydrogen storage alloy characterized by comprising a number within the range of 8.
JP60235118A 1985-10-23 1985-10-23 Hydrogen storage alloy Expired - Lifetime JPH0689434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60235118A JPH0689434B2 (en) 1985-10-23 1985-10-23 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60235118A JPH0689434B2 (en) 1985-10-23 1985-10-23 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS6296632A true JPS6296632A (en) 1987-05-06
JPH0689434B2 JPH0689434B2 (en) 1994-11-09

Family

ID=16981321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60235118A Expired - Lifetime JPH0689434B2 (en) 1985-10-23 1985-10-23 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0689434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035397A (en) * 2016-08-31 2018-03-08 株式会社神戸製鋼所 Hydrogen storage alloy and hydrogen purification device
CN110042304A (en) * 2019-04-22 2019-07-23 宁夏大学 A kind of high-pressure metal hydride composite hydrogen occluding tank high platform pressure hydrogen bearing alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131942A (en) * 1983-11-21 1985-07-13 コツパース コムパニー インコーポレーテツド Hydrogen storage material for superchemical weight alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131942A (en) * 1983-11-21 1985-07-13 コツパース コムパニー インコーポレーテツド Hydrogen storage material for superchemical weight alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035397A (en) * 2016-08-31 2018-03-08 株式会社神戸製鋼所 Hydrogen storage alloy and hydrogen purification device
CN110042304A (en) * 2019-04-22 2019-07-23 宁夏大学 A kind of high-pressure metal hydride composite hydrogen occluding tank high platform pressure hydrogen bearing alloy

Also Published As

Publication number Publication date
JPH0689434B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
US4069303A (en) Alloy useful as hydrogen storage material
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
US4347082A (en) Mischmetal alloy for storage of hydrogen
US4412982A (en) Zirconium-titanium-manganese-iron alloy characterized by ZrMn2 stoichiometry
JPS6296632A (en) Metallic alloy for hydrogen storage
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS61199045A (en) Hydrogen occluding alloy
JPS5848481B2 (en) Hydrogen storage materials
JPS61250136A (en) Titanium-type hydrogen occluding alloy
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
Suzuki et al. Hydrogen absorption-desorption characteristics of Ti-Co-Fe alloys
JPS619544A (en) Titanium alloy for occluding hydrogen
JPH0471985B2 (en)
US4576639A (en) Hydrogen storage metal material
JPS6372851A (en) Zirconium-type alloy for hydrogen occlusion
JPH0693366A (en) Hydrogen storage alloy
US4350673A (en) Method of storing hydrogen
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
JP3000680B2 (en) Materials for hydrogen storage
JP3451320B2 (en) Hydrogen storage alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPS6159389B2 (en)