JPH07268514A - Hydrogen occluding alloy and hydrogen occluding alloy electrode - Google Patents

Hydrogen occluding alloy and hydrogen occluding alloy electrode

Info

Publication number
JPH07268514A
JPH07268514A JP5751494A JP5751494A JPH07268514A JP H07268514 A JPH07268514 A JP H07268514A JP 5751494 A JP5751494 A JP 5751494A JP 5751494 A JP5751494 A JP 5751494A JP H07268514 A JPH07268514 A JP H07268514A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
lt
alloy
phase
hydrogen
consisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5751494A
Other languages
Japanese (ja)
Inventor
Akito Isomura
Takahiro Mishima
Hiroshi Miyamura
Tetsuo Sakai
Kunio Takahashi
Makoto Tsukahara
Hitoshi Uehara
貴弘 三島
斎 上原
誠 塚原
哲男 境
弘 宮村
秋人 磯村
国男 高橋
Original Assignee
Agency Of Ind Science & Technol
Imura Zairyo Kaihatsu Kenkyusho:Kk
工業技術院長
株式会社イムラ材料開発研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys

Abstract

PURPOSE:To obtain a hydrogen occluding alloy having excellent hydrogen occlud ing characteristics by forming three-dimensional network skeleton of a phase consisting essentially of an AB2 type Laves alloy phase into a base phase consisting of a Ti-V solid soln. alloy. CONSTITUTION:The Ti-V solid soln. alloy is formed that the alloy phase consisting essentially of the AB2 type Laves alloy phase forms the three- dimensional network skeleton and exists in the base phase consisting of the Ti-V solid soln. alloy. This alloy is preferably composed of TiValphaNibetaMgamma (A is Zr, Hf, Ta, M is Cr, Mn, Fe, Co, Cu, Nb, 1<=alpha<=10, 0.2<=beta<=2.0, 0.05etagamma<=1, 0<=delta<=2). The AB2 alloy phase described above is preferably composed of TiepsilonAxsiNietaVthetaMiota (A is Zr, Hf, Ta, M is Cr, Mn, Fe, Co, Cu, Nb, 0.1<=epsilon<=0.4, 0.1<=xsi<=0.4, 0.1<=eta<=0.6, 0.1<=theta<=0.5, 0<=l<=0.2, epsilon+xsi+eta+theta+iota=1). A hydrogen occluding alloy electrode having excellent characteristics and long life is obtd. by using this alloy.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、水素吸蔵合金及び水素吸蔵合金電極に関する。 The present invention relates to a hydrogen storage alloy and a hydrogen storage alloy electrode.

【0002】 [0002]

【従来技術とその課題】水素吸蔵合金は、大量の水素を可逆的に吸蔵・放出することができるため、水素ガスの貯蔵用材料、ヒートポンプ等の熱利用システム用の材料、ニッケル−水素電池用の負極用材料などとして幅広い用途への利用が期待されている。 BACKGROUND OF THE INVENTION Hydrogen absorbing alloy, a large amount of the hydrogen to be able to reversibly occluding and releasing, storage material for hydrogen gas, materials for heat utilization systems such as heat pumps, nickel - hydrogen for batteries use of the wide range of applications is expected as such a negative electrode material.

【0003】水素吸蔵合金には、LaNi 5等のAB 5 [0003] The hydrogen-absorbing alloy, AB 5 such as LaNi 5
型合金、ZrMn 2等のAB 2型ラーベス合金、TiF Type alloy, AB 2 type Laves alloy such as ZrMn 2, TiF
e等のAB型合金、Mg 2 Ni等のA 2 B型合金、Ti AB type alloys e like, A 2 B type alloys such as Mg 2 Ni, Ti
−V等の固溶体合金などが知られている。 Such as a solid solution alloy is known, such as -V. この中でも、 Among this,
特に、固溶体合金は、水素吸蔵量が非常に大きく、しかもコスト面において他の合金に比べて有利であるという特徴がある。 In particular, solid solution alloys, the hydrogen storage capacity is very large and there is a feature that is advantageous compared to other alloys in terms of cost.

【0004】しかしながら、固溶体合金は、水素の吸蔵・放出を繰り返す際のサイクル寿命が短く、またニッケル−水素電池用の負極として用いる場合の電気化学的な反応が比較的遅いため、これらの点において未だ改善の余地がある。 However, solid solution alloy has a short cycle life when repeating the storage and release of hydrogen and nickel - is relatively slow electrochemical reaction when used as a negative electrode for a hydrogen battery, in these respects still there is room for improvement.

【0005】 [0005]

【発明が解決しようとする課題】従って、本発明は、水素吸蔵特性に優れ、電池の負極用材料としても好適な水素吸蔵合金を提供することを主な目的とする。 [0005] Accordingly, the present invention has excellent hydrogen storage characteristics, the main purpose is to provide a negative electrode for a suitable hydrogen storage alloy as a material of the battery.

【0006】 [0006]

【課題を解決するための手段】本発明者は、上記従来技術の問題に鑑み、Ti−V系固溶体合金にニッケルを添加することによってその電気化学的反応を促進させ、水素吸蔵特性の改善を試みた。 The present inventors SUMMARY OF THE INVENTION In view of the above prior art problems, to promote its electrochemical reaction by adding nickel to the Ti-V-based solid solution alloy, the improvement of the hydrogen storage properties I tried. しかし、ニッケル単独の添加では、例えばニッケル−水素電池用の負極として用いた場合、バナジウムの電解液中への溶解が著しいため、 However, the addition of nickel alone, for example, nickel - when used as the negative electrode for a hydrogen battery, because significant dissolution of the vanadium to the electrolytic solution,
サイクル寿命が短く、放電容量も小さく、上記特性を十分改善できないことが判明した。 Short cycle life, discharge capacity is small, and the characteristics were found to be not sufficiently improved.

【0007】そこで、本発明者は、さらに特定の元素をニッケルと併用して添加したところ、従来では見られなかった特異な構造をもつ水素吸蔵合金が得られ、この合金はサイクル寿命、放電容量等の水素吸蔵特性が大幅に改善されることを見出し、本発明を完成するに至った。 [0007] Therefore, the present inventor has further where certain elements were added in combination with the nickel hydrogen storage alloy having a unique structure not seen in the conventional can be obtained, this alloy cycle life, discharge capacity It found that the hydrogen storage characteristics and the like is greatly improved, and have completed the present invention.

【0008】即ち、本発明は、Ti−V系固溶体合金において、Ti−V系固溶体合金からなる母相中に、AB Namely, the present invention provides a Ti-V-based solid solution alloy, in a mother phase made of Ti-V-based solid solution alloy, AB
2型ラーベス合金相を主相とする相が3次元網目骨格を形成して存在することを特徴とする水素吸蔵合金に係るものである。 Those of the hydrogen-absorbing alloy, wherein a phase of type 2 Laves alloy phase as a main phase is present to form a three-dimensional network skeleton.

【0009】以下、本発明について詳細に説明する。 [0009] In the following, the present invention will be described in detail.

【0010】本発明の水素吸蔵合金は、上記のようにT [0010] Hydrogen storage alloys of the present invention, as described above T
i−V系固溶体合金からなる母相中に、AB 2型ラーベス合金相を主相とする相が3次元網目骨格を形成して存在するという特異な構造を有するものである。 in a mother phase made of i-V-based solid solution alloy, and has a unique structure that phase of the main phase AB 2 type Laves alloy phase is present to form a three-dimensional network skeleton.

【0011】上記Ti−V系固溶体合金は、合金全体としてTiVαNiβAγMδなる組成を有することが望ましい。 [0011] The Ti-V-based solid solution alloy, it is desirable to have a TiVαNiβAγMδ a composition alloy as a whole. 上記組成式中Aは、Zr、Hf及びTaの少なくとも1種の元素を示す。 In the composition formula A is, Zr, at least one element of Hf and Ta. これら元素(A)が全く含まれていない場合には、3次元網目骨格を形成すべき相が析出しなくなるおそれがあるので好ましくない。 If these elements (A) is not included at all, since there is a possibility that the phase to form the three-dimensional network skeleton will not precipitate undesirable. 上記M The above M
は、Cr、Mn、Fe、Co、Cu及びNbの少なくとも1種の元素を示す。 Shows Cr, Mn, Fe, Co, at least one element of Cu and Nb. なお、本発明の効果を低減させない限り、上記以外の他の元素が含まれていても良い。 As long as not to reduce the effect of the present invention, it may contain other elements than the above. 上記組成式中αは1〜10、βは0.2〜2、γは0.0 1-10 α in the composition formula, beta is 0.2 to 2, gamma is 0.0
5〜1、δは0〜2の範囲であることが好ましい。 5 to 1, [delta] is preferably in the range of 0-2. 上記α、β、γ及びδのうち1つでも、これらの数値範囲外となる場合は、水素吸蔵量が低下するか、或いはAB 2 The alpha, beta, 1 any time of the γ and [delta], is and if these numerical range, or the hydrogen storage capacity is lowered, or AB 2
型ラーベス相を主相とする相が三次元網目骨格として析出しなくなるおそれがあるので好ましくない。 Phases of the type Laves phase as a main phase is not preferred because it may not precipitated as a three-dimensional network skeleton.

【0012】本発明合金中のAB 2型ラーベス合金相を主相とする相(以下「第2相」という。)は、TiεA [0012] Phase is the main phase of the AB 2 type Laves alloy phase present invention alloy (hereinafter referred to as "the second phase".) Is, Tiipushiron'ei
ζNiηVθMιなる組成を有する。 Having ζNiηVθMι a composition. 上記組成式中AはZr、Hf及びTaの少なくとも1種の元素を示す。 In the composition formula A represents Zr, at least one element of Hf and Ta. これらの元素が含まれていない場合は、ラーベス合金相そのものが析出しなくなるので好ましくない。 If these elements are not included, undesirable Laves alloy phase itself is not precipitated. また、同式中Mは、V、Cr、Mn、Fe、Co、Cu及びNbの少なくとも1種の元素を示す。 Also, M in the equation denotes V, Cr, Mn, Fe, Co, at least one element of Cu and Nb. なお、本発明の効果に悪影響を及ぼさない範囲であれば、これらの元素以外の元素が含まれていても差支えない。 Incidentally, as long as it does not adversely affect the effects of the present invention, no problem also contain elements other than these elements. また、上記組成式中ε Further, in the composition formula ε
は0.1〜0.4、ζは0.1〜0.4、ηは0.1〜 0.1 is 0.1~0.4, ζ is 0.1~0.4, η is
0.6、θは0.1〜0.5、ιは0〜0.2、かつε 0.6, θ is 0.1~0.5, ι is 0 to 0.2, and ε
+ζ+η+θ+ι=1であることが望ましい。 + It is desirably ζ + η + θ + ι = 1. これらのいずれかが上記の数値範囲外となる場合は、耐久性の低下又は水素吸蔵反応の阻害を招くおそれがあるので好ましくない。 If any of these is out the above numerical range, there is a fear causing a decrease or inhibition of the hydrogen-absorbing reaction of durability is not preferable.

【0013】第2相中、AB 2型ラーベス合金相の含有率は通常5体積%以上であり、残部は他の相を含んでいても良い。 A second Aichu, content of AB 2 type Laves alloy phase is usually 5% by volume or more, the balance may contain other phases.

【0014】上記第2相は、上記のTiVαNiβAγ [0014] The second phase, the above TiVαNiβAγ
Mδ系固溶体合金からなる母相中に3次元網目骨格を形成している。 In a mother phase made of Mδ based solid solution alloy to form a three-dimensional network skeleton. Ti−V系固溶体合金における第2相の占める体積割合は、合金全体の組成、製造条件等によって異なり、合金の用途等に応じて適宜設定すれば良い。 The volume ratio of the second phase in Ti-V-based solid solution alloy, the composition of the entire alloy, depends manufacturing conditions may be appropriately set depending on the application of the alloy.

【0015】本発明の水素吸蔵合金は、上記TiVαN The hydrogen storage alloy of the present invention, the TiVαN
iβAγMδなる組成に調製した原料粉末を、アーク溶解法等の公知の方法により加熱溶解させ、これを冷却することによって得ることができる。 The iβAγMδ becomes raw material powder prepared in the composition, dissolved under heating by a known method such as arc melting method, which can be obtained by cooling. 上記の原料粉末は、 The above raw material powder,
市販の原料粉末をそのまま適用することができる。 It can be directly applied to commercial raw material powder. また、必要に応じて、CaB 6等のように、溶湯から酸化物を除去する働きをもつ添加剤を配合することもできる。 Further, if necessary, as such CaB 6, also it is incorporated additives having the function to remove oxides from the melt.

【0016】本発明の水素吸蔵合金電極は、上記の本発明の水素吸蔵合金を含有するものである。 The hydrogen absorbing alloy electrode of the present invention are those containing a hydrogen storage alloy of the present invention described above. 例えば、上記のTiVαNiβAγMδなる組成に調製した原料粉末に銅粉等を配合し、これを所定の形状にプレス成形等により成形すれば得られる。 For example, the copper powder or the like incorporated in the raw material powder prepared in TiVαNiβAγMδ a composition described above, be obtained by molding by press molding or the like into a predetermined shape.

【0017】 [0017]

【発明の効果】このように、本発明の水素吸蔵合金は、 [Effect of the Invention] Thus, the hydrogen storage alloy of the present invention,
母相に対して第2相が3次元網目骨格を形成して存在しているので、当該第2相がTi−V系固溶体合金をマイクロカプセル化したような状態となり、これにより水素の吸蔵・放出に伴う微粉化が大幅に抑制されることとなる。 Since the second phase against the parent phase are present to form a three-dimensional network skeleton, a state such as the second phase is microencapsulated Ti-V-based solid solution alloy, thereby absorbing and hydrogen micronized related to discharge is to be greatly suppressed.

【0018】また、第2相が保護膜となって水素吸蔵合金の主要元素であるバナジウムの溶解を抑制乃至防止することができるので、耐アルカリ性が改善される結果、 [0018] As a result of the second phase since the solubility of vanadium which is a main element of the hydrogen storage alloy becomes protective film can be suppressed or prevented, alkali resistance is improved,
サイクル寿命を向上させることができる。 It is possible to improve the cycle life. さらに、第2 In addition, the second
相は、反応触媒相としての役割も果たすため、本発明水素吸蔵合金を電極として使用する場合には、放電時の反応速度を増大させることも可能となる。 Phase, to fulfill a role as a reaction catalyst phase, when using the present invention the hydrogen storage alloy as an electrode, it is possible to increase the reaction rate at the time of discharge.

【0019】 [0019]

【実施例】以下、実施例を示し、本発明の特徴とするところをより明確にする。 EXAMPLES Hereinafter, Examples, and it is an aspect of the present invention to clarify.

【0020】実施例1 市販のTi、V、Ni及びZrを用いて、組成がTiV [0020] Example 1 Commercially available Ti, V, using Ni and Zr, composition TiV
3 Ni 0.56 Zr 0.05となるように秤量して混合し、アーク溶解法により加熱溶解させて合金を作製した。 3 Ni 0.56 were weighed so that the Zr 0.05 were mixed to prepare an alloy by heating dissolved by an arc melting method. 得られた合金を樹脂に封入して断面を研磨した後、走査型電子顕微鏡及びEPMAにより合金断面の元素分析を行った。 The resulting alloy was polished cross-section enclosed in a resin, were subjected to elemental analysis of the alloy section by a scanning electron microscope and EPMA. その断面の状態を図1に示す。 The state of the cross-section shown in FIG.

【0021】上記の結果、Ti−V系固溶体合金相Ti [0021] The above results, Ti-V-based solid solution alloy phase Ti
5.76 Ni 0.32 Zr 0.02の粒界部分にAB 2型ラーベス合金相を主相とする相Ti 0.25 Zr 0.16 Ni 0.320.27 V 5.76 Ni 0.32 phase Ti 0.25 as a main phase an AB 2 type Laves alloy phase in grain boundary of the Zr 0.02 Zr 0.16 Ni 0.32 V 0.27
(白い部分)が析出し、母相に対して3次元網目骨格を形成していることが確認された。 (White portion) is deposited, it was confirmed that by forming a three-dimensional network skeleton compared with the main phase.

【0022】実施例2 市販のTi、V、Ni及びHfを用いて、組成がTiV [0022] Using Example 2 Commercially available Ti, V, Ni, and Hf, composition TiV
3 Ni 0.56 Hf 0.24となるように秤量して混合し、アーク溶解法により加熱溶解させて合金を作製した。 3 Ni 0.56 were weighed so that the Hf 0.24 were mixed to prepare an alloy by heating dissolved by an arc melting method. 得られた合金を樹脂に封入して断面を研磨した後、走査型電子顕微鏡及びEPMAにより合金断面の元素分析を行った。 The resulting alloy was polished cross-section enclosed in a resin, were subjected to elemental analysis of the alloy section by a scanning electron microscope and EPMA.

【0023】その結果、Ti−V系固溶体合金相TiV [0023] As a result, TiV-based solid solution alloy phase TiV
5.34 Ni 0.30 Hf 0.09の粒界部分にAB 2型ラーベス合金相を主相とする相Ti 0.25 Hf 0.18 Ni 0.290.28が析出し、母相に対して3次元網目骨格を形成していることが確認された。 5.34 Ni 0.30 phase Ti 0.25 as a main phase an AB 2 type Laves alloy phase in grain boundary of the Hf 0.09 Hf 0.18 Ni 0.29 V 0.28 is deposited, that forms a three-dimensional network skeleton compared with the main phase confirmed.

【0024】実施例3 表1に示す組成の本発明合金(試料No.1〜12)で電極を作製し、この電極を用いて電池を作製した。 [0024] to prepare an electrode in the present invention alloys having compositions shown in Example 3 in Table 1 (Sample No.1~12), a battery was prepared using the electrode.

【0025】試料No. [0025] The sample No. 1〜15の組成の合金粉末0. Alloy powder 0 of the composition of 1 to 15.
2gを電解銅粉0.6gと混合して直径13mmのペレット状にプレスした電極を負極とし、水酸化ニッケル電極を正極とし、6M水酸化カリウム水溶液を電解液としてニッケル−水素電池を作製した。 The electrode was pressed to 2g mixed with electrolytic copper powder 0.6g into pellets with a diameter of 13mm and a negative electrode, a nickel hydroxide electrode as a positive electrode, nickel 6M aqueous potassium hydroxide as the electrolyte solution - to produce hydrogen battery. この電池を20mA 20mA This battery
の電流で5時間充電した後、10mAの電流で放電させた際の充放電サイクル試験の結果を表1に示す。 After charging with the current 5 hours, Table 1 shows the results of a charge-discharge cycle test when discharged at 10mA of current.

【0026】なお、比較のため、本発明合金の組成をもたない合金粉末を用いて上記と同様にして作製した電極(比較試料No.1〜4)を用いて同様の電池を作製し、充放電サイクル試験をした。 [0026] Incidentally, manufactured in the same manner as the battery using for comparison, electrodes prepared in the same manner as described above using an alloy powder with no composition of the present invention alloy (Comparative Sample Nanba1~4), and the charge-discharge cycle test. その結果も表1に併記する。 The results are also are also shown in Table 1.

【0027】 [0027]

【表1】 [Table 1]

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】実施例1の水素吸蔵合金の結晶構造を走査型電子顕微鏡で観察した状態を示す図である。 1 is a diagram showing a state of observation of the crystal structure of the hydrogen storage alloy of Example 1 with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 国男 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 三島 貴弘 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 磯村 秋人 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 宮村 弘 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Kariya, Aichi Hachiken-cho 5-chome, Kunio Takahashi address 50 stock company Imura material developed in the Laboratory (72) inventor Takahiro Mishima Kariya, Aichi Hachiken-cho 5-chome 50 address stock company Imura material developed in the Laboratory (72) inventor Isomura autumn people Kariya, Aichi Hachiken-cho 5-chome 50 address stock company Imura material developed in the Laboratory (72) inventor border Tetsuo Osaka Prefecture Ikeda Midorigaoka 1-chome No. 8 No. 31 industrial technology Institute Osaka industrial technology in the Laboratory (72) inventor Hiroshi Miyamura Osaka Prefecture Ikeda Midorigaoka 1-chome No. 8 No. 31 industrial technology Institute Osaka industrial technology in the Laboratory (72) inventor Uehara Osaka Prefecture Ikeda, Hitoshi city ​​Midorigaoka 1-chome No. 8 No. 31 industrial technology Institute Osaka industrial technology Research Institute in

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】Ti−V系固溶体合金において、Ti−V 1. A Ti-V-based solid solution alloy, Ti-V
    系固溶体合金からなる母相中に、AB 2型ラーベス合金相を主相とする相が3次元網目骨格を形成して存在することを特徴とする水素吸蔵合金。 System in a mother phase made of a solid solution alloy, the hydrogen storage alloy, wherein the phase as a main phase an AB 2 type Laves alloy phase is present to form a three-dimensional network skeleton.
  2. 【請求項2】Ti−V系固溶体合金が、合金全体としてTiVαNiβAγMδ(但し、AはZr、Hf及びT 2. A Ti-V-based solid solution alloy, TiVarufaenuaibetaeiganmaemuderuta alloy as a whole (however, A is Zr, Hf and T
    aの少なくとも1種の元素、MはCr、Mn、Fe、C At least one element of a, M is Cr, Mn, Fe, C
    o、Cu及びNbの少なくとも1種の元素、1≦α≦1 o, at least one element of Cu and Nb, 1 ≦ α ≦ 1
    0、0.2≦β≦2、0.05≦γ≦1、0<δ≦2) 0,0.2 ≦ β ≦ 2,0.05 ≦ γ ≦ 1,0 <δ ≦ 2)
    なる組成を有する請求項1記載の水素吸蔵合金。 Hydrogen storage alloy of claim 1 having a composition comprising.
  3. 【請求項3】AB 2型ラーベス合金相を主相とする相が、TiεAζNiηVθMι(但し、AはZr、Hf 3. A phase as the main phase of the AB 2 type Laves alloy phase, TiεAζNiηVθMι (where, A is Zr, Hf
    及びTaの少なくとも1種の元素、MはCr、Mn、F And at least one element of Ta, M is Cr, Mn, F
    e、Co、Cu及びNbの少なくとも1種の元素、0. At least one element of e, Co, Cu and Nb, 0.
    1≦ε≦0.4、0.1≦ζ≦0.4、0.1≦η≦ 1 ≦ ε ≦ 0.4,0.1 ≦ ζ ≦ 0.4,0.1 ≦ η ≦
    0.6、0.1≦θ≦0.5、0<ι≦0.2、かつε 0.6,0.1 ≦ θ ≦ 0.5,0 <ι ≦ 0.2, and ε
    +ζ+η+θ+ι=1)なる組成である請求項1又は2 + Ζ + η + θ + ι = 1) is a composition according to claim 1 or 2
    に記載の水素吸蔵合金。 Hydrogen storage alloy according to.
  4. 【請求項4】Ti−V系固溶体合金が合金全体としてT T 4. A Ti-V-based solid solution alloy alloy as a whole
    iVαNiβAγ(但し、AはZr、Hf及びTaの少なくとも1種の元素、1≦α≦10、0.2≦β≦2、 IVarufaenuaibetaeiganma (provided that at least one element of A is Zr, Hf and Ta, 1 ≦ α ≦ 10,0.2 ≦ β ≦ 2,
    0.05≦γ≦1)なる組成を有する請求項1記載の水素吸蔵合金。 0.05 ≦ γ ≦ 1) comprising the hydrogen storage alloy of claim 1 having composition.
  5. 【請求項5】AB 2型ラーベス合金相を主相とする相が、TiεAζNiηVθ(但し、AはZr、Hf及びTaの少なくとも1種の元素、0.1≦ε≦0.4、 5. A phase as the main phase of the AB 2 type Laves alloy phase, Tiipushiron'eizetaenuaiitabuishita (provided that at least one element of A is Zr, Hf and Ta, 0.1 ≦ ε ≦ 0.4,
    0.1≦ζ≦0.4、0.1≦η≦0.6、0.1≦θ 0.1 ≦ ζ ≦ 0.4,0.1 ≦ η ≦ 0.6,0.1 ≦ θ
    ≦0.5、かつε+ζ+η+θ=1)なる組成である請求項1、2及び4のいずれかに記載の水素吸蔵合金。 ≦ 0.5, and ε + ζ + η + θ = 1) comprising hydrogen-absorbing alloy according to any one of claims 1, 2 and 4 are compositions.
  6. 【請求項6】Ti−V系固溶体合金において、Ti−V 6. The Ti-V-based solid solution alloy, Ti-V
    系固溶体合金からなる母相中に、AB 2型ラーベス合金相を主相とする相が3次元網目骨格を形成して存在する水素吸蔵合金を含有することを特徴とする水素吸蔵合金電極。 In a mother phase made of the system solid solution alloy, a hydrogen storage alloy electrode, characterized by containing a hydrogen storage alloy phase as a main phase an AB 2 type Laves alloy phase is present to form a three-dimensional network skeleton.
JP5751494A 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode Pending JPH07268514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5751494A JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5751494A JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode
US08410798 US5690799A (en) 1994-03-28 1995-03-27 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US08822043 US5776626A (en) 1994-03-28 1997-03-24 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode

Publications (1)

Publication Number Publication Date
JPH07268514A true true JPH07268514A (en) 1995-10-17

Family

ID=13057853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5751494A Pending JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode

Country Status (1)

Country Link
JP (1) JPH07268514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268513A (en) * 1994-03-28 1995-10-17 Agency Of Ind Science & Technol Hydrogen occluding alloy and hydrogen occluding alloy electrode
EP1026763A1 (en) * 1997-09-30 2000-08-09 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
US6632567B2 (en) * 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge maintenance intensified electrochemical hydrogen occlusion alloy and charge maintenance intensifying electrochemical cell
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storage method and hydride electrode material
JPH03294405A (en) * 1990-04-11 1991-12-25 Energy Conversion Devices Inc Continuous manufacture of negative electrode consisting of pulverized hydrogen occlusion alloy material
JPH05247568A (en) * 1990-10-11 1993-09-24 Hitachi Maxell Ltd Hydrogen storage alloy electrode and battery using them
JPH07268513A (en) * 1994-03-28 1995-10-17 Agency Of Ind Science & Technol Hydrogen occluding alloy and hydrogen occluding alloy electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge maintenance intensified electrochemical hydrogen occlusion alloy and charge maintenance intensifying electrochemical cell
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storage method and hydride electrode material
JPH03294405A (en) * 1990-04-11 1991-12-25 Energy Conversion Devices Inc Continuous manufacture of negative electrode consisting of pulverized hydrogen occlusion alloy material
JPH05247568A (en) * 1990-10-11 1993-09-24 Hitachi Maxell Ltd Hydrogen storage alloy electrode and battery using them
JPH07268513A (en) * 1994-03-28 1995-10-17 Agency Of Ind Science & Technol Hydrogen occluding alloy and hydrogen occluding alloy electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268513A (en) * 1994-03-28 1995-10-17 Agency Of Ind Science & Technol Hydrogen occluding alloy and hydrogen occluding alloy electrode
JP2719884B2 (en) * 1994-03-28 1998-02-25 工業技術院長 The hydrogen storage alloy and a hydrogen storage alloy electrode
EP1026763A1 (en) * 1997-09-30 2000-08-09 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
EP1026763A4 (en) * 1997-09-30 2004-12-22 Sanyo Electric Co Hydrogen absorbing allow electrode and method of producing the same
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
DE19918329B4 (en) * 1998-04-30 2008-02-14 Toyota Jidosha Kabushiki Kaisha, Toyota And hydrogen-absorbing alloy electrode comprising the hydrogen absorbing alloy
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6632567B2 (en) * 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
US5277999A (en) Electrochemical hydrogen storage alloys and batteries fabricated these alloys having significantly improved performance characteristics
Tsukahara et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes
EP0293660B1 (en) Hydrogen storage electrodes
US4898794A (en) Hydrogen absorbing Ni,Zr-based alloy and rechargeable alkaline battery
US5242656A (en) Active material of hydrogen storage alloy electrode
JP2000073132A (en) Hydrogen storage alloy and secondary battery
Wang et al. Phase structure and electrochemical properties of La0. 67Mg0. 33Ni3. 0− xCox (x= 0.0, 0.25, 0.5, 0.75) hydrogen storage alloys
JP2001040442A (en) Hydrogen storage alloy
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH09283174A (en) Alkaline storage battery
Yang et al. Effect of alloying with Ti, V, Mn on the electrochemical properties of Zr Cr Ni based Laves phase metal hydride electrodes
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
CN1062057A (en) Hydrogen-bearing alloy electrode
JPH1129832A (en) Hydrogen storage material
US6309779B1 (en) Hydrogen storage alloy electrode and method for manufacturing the same
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
US5944977A (en) Hydrogen-occluding alloy pretreatment method, pretreated hydrogen-occluding alloy, and nickel-hydrogen secondary battery employing the same as an anode
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2008163421A (en) Hydrogen storage alloy and nickel-hydrogen storage battery
Inoue et al. Charge–discharge characteristics of TiV2. 1Ni0. 3 alloy surface-modified by ball-milling with Ni or Raney Ni
Baddour-Hadjean et al. An electrochemical study of mono-substituted intermetallic hydrides
JPH0888020A (en) Hydride secondary battery
US7005212B2 (en) Hydrogen absorbing alloy and secondary battery
EP1227165A1 (en) Hydrogen-occluding alloy and process for producing the same