JP3188780B2 - Hydrogen storage alloy and electrode using the same - Google Patents

Hydrogen storage alloy and electrode using the same

Info

Publication number
JP3188780B2
JP3188780B2 JP04055993A JP4055993A JP3188780B2 JP 3188780 B2 JP3188780 B2 JP 3188780B2 JP 04055993 A JP04055993 A JP 04055993A JP 4055993 A JP4055993 A JP 4055993A JP 3188780 B2 JP3188780 B2 JP 3188780B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
carbon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04055993A
Other languages
Japanese (ja)
Other versions
JPH06228688A (en
Inventor
康 高井
和弘 山田
孝 戸出
重信 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP04055993A priority Critical patent/JP3188780B2/en
Publication of JPH06228688A publication Critical patent/JPH06228688A/en
Application granted granted Critical
Publication of JP3188780B2 publication Critical patent/JP3188780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金に関し、特
にアルカリ蓄電池用電極として好適な水素吸蔵合金及び
それを用いた電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy suitable as an electrode for an alkaline storage battery and an electrode using the same.

【0002】[0002]

【従来技術】水素を吸蔵・放出する水素吸蔵合金が発見
されて以来、その応用は、単なる水素貯蔵手段にとどま
らず、ヒートポンプや電池へと展開が図られてきた。特
に、水素吸蔵合金を負電極として用いるアルカリ蓄電池
は殆ど実用の域に達しており用いる水素吸蔵合金も次々
に改良されている。即ち、当初に検討されたLaNi5
合金は(特開昭51−13934号公報参照)、水素吸
蔵量が大きいという利点がある一方、アルカリ溶液や酸
溶液によって腐蝕され易く、そのため微粉化しやすい
上、La金属が高価であるという欠点があった。
2. Description of the Related Art Since the discovery of a hydrogen storage alloy that absorbs and releases hydrogen, its application has been expanded not only to hydrogen storage means but also to heat pumps and batteries. In particular, alkaline storage batteries using a hydrogen storage alloy as a negative electrode have almost reached practical use, and the hydrogen storage alloy used has been continuously improved. That is, the LaNi 5 initially studied
Alloys (see JP-A-51-13934) have the advantage that they have a large hydrogen storage capacity, but they are susceptible to corrosion by alkali solutions and acid solutions, and are therefore liable to be pulverized and expensive La metal. there were.

【0003】かかる欠点は、Laの一部を、Ce、P
r、Ndその他の希土類元素に置換することによって、
及び/又はNiの一部をCo、Al、Mn等の金属で置
換することによって改良された(例えば、特開昭53−
048918号、同54−064014号、同60−2
50558号、同61−233969号及び同62−4
3064号各公報参照)。
[0003] The disadvantage is that a part of La is made of Ce, P
By substituting r, Nd and other rare earth elements,
And / or by replacing a part of Ni with a metal such as Co, Al, Mn (for example,
048918, 54-0664014, 60-2
Nos. 50558, 61-233969 and 62-4
No. 3064).

【0004】これらの改良合金は、LaNi5 合金と比
べると、水素吸蔵量が若干減少するものの、アルカリ溶
液や酸溶液に対する腐蝕性が改善され、電極として用い
た場合には、アルカリ蓄電池の充放電サイクル寿命を延
ばすことができる。しかしながら、工業的観点からすれ
ば尚充放電サイクル寿命が短く、その性能は未だ不十分
であった。
[0004] Although these improved alloys have a slightly reduced hydrogen storage capacity as compared with the LaNi 5 alloy, they have improved corrosion resistance to alkali solutions and acid solutions, and when used as electrodes, charge and discharge of alkaline storage batteries. The cycle life can be extended. However, from an industrial point of view, the charge / discharge cycle life is still short, and its performance is still insufficient.

【0005】また、LaNi5 合金及びこれらの改良合
金を負極に用いたアルカリ蓄電池は、50℃以上の高温
で使用すると電気容量が著しく低下し、その後室温に戻
しても容量が十分に回復しないという欠点があった。
尚、La−Ce−Pr−Ndの混合物は、一般にミッシ
ュメタル(Mmと略す)として知られている。本発明者
等は、水素吸蔵合金に含有される炭素量の影響について
検討するうち、炭素の含有量を100ppm以上500
ppm以下とすると共に、使用する合金の組成を特定の
ものとした場合には、水素吸蔵合金の腐蝕性が大巾に改
善されること、及び、アルカリ電池用負電極として特に
好適であることを見い出し本発明に到達した。
Further, the alkaline storage battery using a LaNi5 alloy or an improved alloy thereof as a negative electrode has a disadvantage that when used at a high temperature of 50 ° C. or more, the electric capacity is significantly reduced, and the capacity is not sufficiently recovered even after returning to room temperature. was there.
The mixture of La-Ce-Pr-Nd is generally known as a misch metal (abbreviated as Mm). The present inventors studied the influence of the amount of carbon contained in the hydrogen storage alloy, and found that the carbon content was 100 ppm or more and 500 ppm or more.
ppm or less, and when the composition of the alloy to be used is a specific one, the corrosiveness of the hydrogen storage alloy is greatly improved, and that it is particularly suitable as a negative electrode for an alkaline battery. The present invention has been found.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の第1の
目的は、耐腐蝕性が大きく、水素貯蔵やヒートポンプ等
に使用した場合の微粉化が抑制された、長寿命の水素吸
蔵合金を提供することにある。本発明の第2の目的は、
アルカリ蓄電池の負電極として好適な水素吸蔵合金を提
供することにある。本発明の第3の目的は、充放電のサ
イクル寿命の長い水素吸蔵合金からなるアルカリ蓄電池
用電極を提供することにある。更に、本発明の第4の目
的は、50℃以上の高温における使用から室温に戻した
場合の容量回復率が高い水素吸蔵合金からなる、アルカ
リ蓄電池用電極を提供することにある。
SUMMARY OF THE INVENTION Accordingly, a first object of the present invention is to provide a long-life hydrogen storage alloy which has high corrosion resistance and is suppressed from being pulverized when used for hydrogen storage or a heat pump. Is to do. A second object of the present invention is to
An object of the present invention is to provide a hydrogen storage alloy suitable as a negative electrode of an alkaline storage battery. A third object of the present invention is to provide an electrode for an alkaline storage battery comprising a hydrogen storage alloy having a long charge and discharge cycle life. Further, a fourth object of the present invention is to provide an electrode for an alkaline storage battery comprising a hydrogen storage alloy having a high capacity recovery rate when used at a high temperature of 50 ° C. or higher and returned to room temperature.

【0007】[0007]

【課題を解決するための手段】本発明の上記の諸目的
は、炭素の含有量が100ppm以上500ppm以下
であると共に、一般式Lna Ni5-(b+c+d) Cob Al
cd で表されることを特徴とする水素吸蔵合金によっ
て達成された。上記一般式中のLnは40〜80重量%
のLa、10〜60重量%のCe、5重量%以下のPr
及び5重量%以下のNdからなる組成の金属、MはM
n、Fe及びCuの中から選択される少なくとも一種の
元素を表し、aは0.95≦a≦1.05、bは、0.
2≦b≦1.0、cは0.1≦c≦1.0、dは0≦d
≦0.5の有理数を表す。
Means for Solving the Problems The above various objects of the present invention, together with the carbon content is 100ppm or 500ppm or less, the general formula Ln a Ni 5- (b + c + d) Co b Al
was achieved by the hydrogen absorbing alloy is characterized by being represented by c M d. Ln in the above general formula is 40 to 80% by weight.
La, 10-60 wt% Ce, 5 wt% or less Pr
And a metal having a composition consisting of 5% by weight or less of Nd.
n, at least one element selected from Fe and Cu, a is 0.95 ≦ a ≦ 1.05, and b is 0.
2 ≦ b ≦ 1.0, c is 0.1 ≦ c ≦ 1.0, d is 0 ≦ d
Represents a rational number of ≦ 0.5.

【0008】以下、本発明について詳述する。本発明で
使用する一般式Lna Ni5-(b+c+d) Cob Alc d
で表される水素吸蔵合金は、LaNi5 の改良型として
位置づけられる。即ち、Lnは、少なくともLa及びC
eからなる組成の希土類元素であり、実用的観点から、
特にLaは40〜80重量%、Ceは10〜60重量%
であることが好ましい。Laが80重量%を越えるとL
aNi5 合金に似て、それを負電極とした場合には、ア
ルカリ蓄電池の充放電のサイクル寿命が極端に短くなる
と共にコスト的に不利となり、40重量%未満では、水
素吸蔵量が不十分となる。
Hereinafter, the present invention will be described in detail. Formula for use in the present invention Ln a Ni 5- (b + c + d) Co b Al c M d
Is positioned as an improved type of LaNi 5 . That is, Ln is at least La and C
e is a rare earth element having a composition consisting of
In particular, La is 40 to 80% by weight, Ce is 10 to 60% by weight.
It is preferred that When La exceeds 80% by weight, L
Similar to ANI 5 alloy, when it is it a negative electrode, cost becomes disadvantageous with charge-discharge cycle life of the alkaline storage battery is extremely short, it is less than 40% by weight, the hydrogen storage capacity is insufficient Become.

【0009】La及びCe以外の元素として、特に、P
rを5重量%以下、好ましくは1重量%以下及びNdを
5重量%以下、好ましくは1重量%以下含有させた場合
には、アルカリ蓄電池用電極として特に好適なものとな
る。Pr及びNdは少なくとも0.1重量%添加するこ
とが好ましい。又、Co、Al及びMは、夫々水素吸蔵
合金に耐腐蝕性を付与する作用を有する。Coの含有量
bは、0.2≦b≦1.0であるが、特に0.5≦b≦
1.0の範囲とすることが好ましい。Alの含有量c
は、0.1≦c≦1.0であるが、特に、0.2≦c≦
0.5とすることが好ましい。
As elements other than La and Ce, in particular, P
When r is 5% by weight or less, preferably 1% by weight or less and Nd is 5% by weight or less , preferably 1% by weight or less , it is particularly suitable as an electrode for an alkaline storage battery. It is preferable to add at least 0.1% by weight of Pr and Nd. Further, Co, Al and M each have an action of imparting corrosion resistance to the hydrogen storage alloy. The content b of Co is 0.2 ≦ b ≦ 1.0, particularly 0.5 ≦ b ≦
It is preferred to be in the range of 1.0. Al content c
Is 0.1 ≦ c ≦ 1.0, and in particular, 0.2 ≦ c ≦
It is preferably 0.5.

【0010】Mは、Mn、Fe及びCuの中から選択さ
れる少なくとも一種の元素であるが、特にMn及び/又
はCuとすることが好ましい。またその含有量dは、0
≦d≦0.5であるが、特に、0.1≦d≦0.3であ
ることが好ましい。本発明の水素吸蔵合金の特徴は、前
記合金の組成と共に、水素吸蔵合金中に、100ppm
以上500ppm以下の炭素を添加する点である。
[0010] M is at least one element selected from Mn, Fe and Cu, and is particularly preferably Mn and / or Cu. The content d is 0
≦ d ≦ 0.5, and particularly preferably 0.1 ≦ d ≦ 0.3. The feature of the hydrogen storage alloy of the present invention is that, together with the composition of the alloy , 100 ppm in the hydrogen storage alloy
The point is that carbon of at least 500 ppm is added.

【0011】水素吸蔵合金中の炭素の作用機構は必ずし
も明確ではないが、以下の如く推定することができる。
即ち、水素吸蔵合金に添加された炭素は、通常、合金粒
界に析出する。この場合、添加する炭素の量が100p
pm以上500ppm以下と少ない場合には、粒界に僅
かに析出する炭素が膜を形成し、その膜がアルカリ溶液
や酸溶液に対して保護膜として働く。一方、添加する炭
素の量が500ppm以上と多くなるにつれ、粒界に形
成される炭素の膜が厚くなり、水素の吸蔵・放出の障害
になるばかりでなく、過剰な炭素が水素と反応し、腐食
を促進させると考えられている。
Although the mechanism of action of carbon in the hydrogen storage alloy is not always clear, it can be estimated as follows.
That is, the carbon added to the hydrogen storage alloy usually precipitates at the alloy grain boundaries. In this case, the amount of added carbon is 100 p.
If it is as small as pm or more and 500 ppm or less, carbon slightly precipitated at the grain boundary forms a film, and the film functions as a protective film against an alkali solution or an acid solution. On the other hand, as the amount of carbon added increases to 500 ppm or more, the carbon film formed at the grain boundaries becomes thicker, which not only hinders the absorption and release of hydrogen, but also causes excess carbon to react with hydrogen, It is believed to promote corrosion.

【0012】また、本発明において、Nb、Si、T
a、Ti、V及びZrのうち少なくとも1種の元素を、
炭素の当量に対して3倍以下の量添加することが好まし
いのは、これらの元素が粒界に僅かに析出する炭素と反
応して不活性な炭素化合物を形成し、このようにして粒
界に形成された不活性な膜が、更に、アルカリ溶液や酸
溶液に対する耐蝕性を向上させるものと考えられる。従
って、上記の金属の使用量は、含有される炭素の当量の
3倍以下で十分である。
In the present invention, Nb, Si, T
a, at least one element of Ti, V and Zr,
It is preferable that these elements be added in an amount equal to or less than 3 times the equivalent of carbon because these elements react with carbon slightly precipitated at the grain boundaries to form inert carbon compounds, and thus the grain boundaries are reduced. It is considered that the inert film formed in the above further improves the corrosion resistance to an alkali solution or an acid solution. Therefore, the amount of the above-mentioned metal used is not more than three times the equivalent of the contained carbon.

【0013】本発明の水素吸蔵合金は、公知の方法によ
って500ppm以下の炭素を添加したLnNi
5−(b+c+d)CoAlの合金を製造し、
次に、含有される炭素の当量の3倍以下の量の、前記炭
素不活性化金属を加えて溶解することにより容易に得る
ことができる。また、公知のバインダーを用いて賦形す
ることにより、容易に電極とすることができる。本発明
の水素吸蔵合金を負電極として使用したアルカリ蓄電池
は、充放電を繰り返したときのサイクル寿命が長い上、
50℃以上の高温における使用から、室温での使用に戻
した時の容量回復率が高く優れている。
[0013] Hydrogen storage alloys of the present invention, Ln a Ni added with fewer carbon 500ppm by methods known
To produce a 5- (b + c + d) Co b Al c M d of the alloy,
Next, it can be easily obtained by adding and dissolving the carbon inactivating metal in an amount of three times or less the equivalent of the carbon contained. An electrode can be easily formed by shaping using a known binder. The alkaline storage battery using the hydrogen storage alloy of the present invention as a negative electrode has a long cycle life when repeated charging and discharging,
It has a high capacity recovery rate when used at a high temperature of 50 ° C. or higher and returned to use at room temperature.

【0014】[0014]

【発明の効果】本発明の水素吸蔵合金はミッシュメタル
を使用することができるので安価である。又、極少量の
炭素を含有させてあるので腐蝕性が大巾に改善され、水
素の吸蔵・放出を繰り返しても微粉化し難いのみなら
ず、アルカリ溶液や酸溶液に対する耐蝕性が大きいの
で、アルカリ蓄電池用負電極として好適である。
The hydrogen storage alloy of the present invention is inexpensive because misch metal can be used. In addition, since a very small amount of carbon is contained, the corrosiveness is greatly improved, and it is not only difficult to pulverize even if hydrogen is repeatedly absorbed and released, but also has a high corrosion resistance to an alkali solution or an acid solution. It is suitable as a negative electrode for a storage battery.

【0015】[0015]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0016】実施例1〜19.La(純度99%以
上)、Ce(純度99%以上)、Pr(純度99%以
上)、Nd(純度99%以上)、2種類のミッシュメタ
ルLm(La61%、Ce8%、Pr24%、Nd7
%)及びMm(La25%、Ce50%、Pr10%、
Nd15%)、Ni(純度99%以上)、Co(純度9
9%以上)、Al(純度99%以上)及びM(Mn、F
e、Cu)の各金属元素を、所定の配合組成になるよう
に秤量して混合した。更に、炭素を合金に対して100
ppm〜500ppm添加し、その炭素を不活性化する
為の金属を適宜添加した後、アーク溶解法により加熱溶
解させて、表1の組成を有する水素吸蔵合金を製造し
た。
Embodiments 1-19. La (purity 99% or more), Ce (purity 99% or more), Pr (purity 99% or more), Nd (purity 99% or more), two types of misch metal Lm (La 61%, Ce 8%, Pr 24%, Nd7
%) And Mm (La 25%, Ce 50%, Pr 10%,
Nd 15%), Ni (purity 99% or more), Co (purity 9)
9% or more), Al (99% or more purity) and M (Mn, F
e, Cu) were weighed and mixed so as to have a predetermined composition. In addition, carbon is
After adding a metal to inactivate the carbon as appropriate, it was heated and melted by an arc melting method to produce a hydrogen storage alloy having the composition shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】得られた合金を粉砕し、粒径が75μm以
下の粉末にした。この粉末10gに対し、3重量%のポ
リビニルアルコールの水溶液を2.5gの割合で混合し
てペースト状とし、このペーストを発泡状ニッケル金属
多孔体内に充填、乾燥した後、加圧成形して厚さ0.5
〜1.0mmの極板を製作し、次いでリード線を取り付
けて負極とした。正極としては、多孔質のニッケル焼結
体にNi(OH)2 を含浸させ、これを化成処理してN
iOOH電極を製作した。
The obtained alloy was pulverized to a powder having a particle size of 75 μm or less. 2.5 g of a 3% by weight aqueous solution of polyvinyl alcohol is mixed with 10 g of the powder to form a paste. The paste is filled in a foamed nickel metal porous body, dried, and then pressed and molded to a thickness. 0.5
A negative electrode having a thickness of about 1.0 mm was manufactured, and then a lead wire was attached to form a negative electrode. As the positive electrode, a porous nickel sintered body is impregnated with Ni (OH) 2 , which is subjected to a chemical conversion treatment, and
An iOOH electrode was fabricated.

【0019】以上の負極と正極を、ポリオレフィン不織
布製のセパレーターを介して貼り合せると共に、電解液
として6モル/リットルのKOHを使用し、電池を形成
させた。得られた電池について、40mAの電流で2時
間充電した後、20mAの電流で電池電圧が0.6vに
なるまで放電する充放電を繰り返し、20℃におけるサ
イクル寿命を調べると共に、温度を50℃に上げた後2
0℃に戻した時の容量の回復率も調べた。それらの結果
を表3に示す。
The above-described negative electrode and positive electrode were bonded via a polyolefin nonwoven fabric separator, and a battery was formed using 6 mol / liter KOH as an electrolytic solution. After charging the obtained battery for 2 hours at a current of 40 mA, the battery was repeatedly charged and discharged at a current of 20 mA until the battery voltage reached 0.6 V. The cycle life at 20 ° C. was examined, and the temperature was raised to 50 ° C. After raising 2
The recovery rate of the capacity when returned to 0 ° C. was also examined. Table 3 shows the results.

【0020】比較例1〜12.実施例と同様にして、合
金中のPr及びNdが各々5重量%を越える試料を作製
し(表2)、実施例と同様の試験を行った。結果は、表
3に示した通りである。
Comparative Examples 1 to 12 In the same manner as in the examples, samples in which Pr and Nd in the alloy each exceeded 5% by weight were prepared (Table 2), and the same tests as in the examples were performed. The results are as shown in Table 3.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】表3の結果から明らかな如く、合金中の炭
素量が100ppm以上500ppm以下の場合には、
容量保存率が85%以上と良好であった。また、合金中
の希土類元素組成分であるPr及びNdが5重量%を越
えない場合には、容量回復率が85重量%以上と良好で
ある。更に、炭素を不活性化させる金属を含有させ、不
活性炭素化合物化したものが更に改善されることが実証
された。
As is clear from the results in Table 3, when the amount of carbon in the alloy is 100 ppm or more and 500 ppm or less,
The capacity storage rate was as good as 85% or more. When Pr and Nd, which are the rare earth element composition components in the alloy, do not exceed 5% by weight, the capacity recovery rate is as good as 85% by weight or more. Further, it has been proved that an inert carbon compound containing a metal for inactivating carbon is further improved.

フロントページの続き (72)発明者 田島 重信 福井県武生市北府2丁目1番5号 信越 化学工業株式会社 磁性材料研究所 内 (56)参考文献 特開 平4−253158(JP,A) 特開 昭62−119864(JP,A) 特開 平5−156395(JP,A) 特開 平3−294444(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 H01M 4/38 H01M 4/24 - 4/26 Continuation of front page (72) Inventor Shigenobu Tajima 2-5-1-5 Kitafu, Takefu-shi, Fukui Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory (56) References JP-A-4-253158 (JP, A) JP 1987-19864 (JP, A) JP-A-5-156395 (JP, A) JP-A-3-294444 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1 / 00-49/14 H01M 4/38 H01M 4/24-4/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素の含有量が100ppm以上500
ppm以下であると共に、一般式LnaNi5-(b+c+d)
Cob Alcd で表されることを特徴とする水素吸蔵
合金;但し、一般式中のLnは40〜80重量%のL
a、10〜60重量%のCe、5重量%以下のPr及び
5重量%以下のNdからなる組成の金属、MはMn、F
e及びCuの中から選択される少なくとも一種の元素を
表し、a〜dは下記の範囲の有理数を表す。 0.95≦a≦1.05 0.2 ≦b≦1.0 0.1 ≦c≦1.0 0 ≦d≦0.5
1. A carbon content of 100 ppm or more and 500 ppm or more.
with ppm or less, the general formula Ln a Ni 5- (b + c + d)
Co b Al c M hydrogen absorbing alloy is characterized by being represented by d; however, the Ln in the general formula of 40 to 80 wt% L
a, a metal having a composition of 10 to 60% by weight of Ce, 5% by weight or less of Pr and 5% by weight or less of Nd, M is Mn, F
It represents at least one element selected from e and Cu, and ad represents a rational number in the following range. 0.95 ≦ a ≦ 1.05 0.2 ≦ b ≦ 1.0 0.1 ≦ c ≦ 1.0 0 ≦ d ≦ 0.5
【請求項2】 炭素の当量に対して3倍以下の、Si、
Ti、Zr、Ta、Nb及びVからなる群の中から選択
される少なくとも一種の元素を含有する、請求項1に記
載された水素吸蔵合金。
2. The method according to claim 1, wherein the amount of Si,
The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy contains at least one element selected from the group consisting of Ti, Zr, Ta, Nb, and V.
【請求項3】 請求項1又は2に記載された水素吸蔵合
金からなるアルカリ蓄電池用電極。
3. An electrode for an alkaline storage battery comprising the hydrogen storage alloy according to claim 1 or 2.
JP04055993A 1993-02-03 1993-02-03 Hydrogen storage alloy and electrode using the same Expired - Fee Related JP3188780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04055993A JP3188780B2 (en) 1993-02-03 1993-02-03 Hydrogen storage alloy and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04055993A JP3188780B2 (en) 1993-02-03 1993-02-03 Hydrogen storage alloy and electrode using the same

Publications (2)

Publication Number Publication Date
JPH06228688A JPH06228688A (en) 1994-08-16
JP3188780B2 true JP3188780B2 (en) 2001-07-16

Family

ID=12583816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04055993A Expired - Fee Related JP3188780B2 (en) 1993-02-03 1993-02-03 Hydrogen storage alloy and electrode using the same

Country Status (1)

Country Link
JP (1) JP3188780B2 (en)

Also Published As

Publication number Publication date
JPH06228688A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS6191863A (en) Sealed alkaline storage battery
JP3095101B2 (en) Hydrogen storage alloy and electrode using the same
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP3188780B2 (en) Hydrogen storage alloy and electrode using the same
JP4010630B2 (en) Hydrogen storage alloy electrode
JP3188781B2 (en) Hydrogen storage alloy and electrode using the same
JP3188788B2 (en) Hydrogen storage alloy and electrode using the same
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JPH08148179A (en) Nickel-hydrogen storage battery
JPH0754703B2 (en) Metal oxide / hydrogen battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JPH06279900A (en) Hydrogen storage alloy and electrode using the alloy
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3152845B2 (en) Nickel-metal hydride battery
JPH06215767A (en) Rare earth element-based hydrogen absorbing alloy electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees