JP2004273346A - Hydrogen storage alloy for alkali storage battery, and alkali storage battery - Google Patents

Hydrogen storage alloy for alkali storage battery, and alkali storage battery Download PDF

Info

Publication number
JP2004273346A
JP2004273346A JP2003064676A JP2003064676A JP2004273346A JP 2004273346 A JP2004273346 A JP 2004273346A JP 2003064676 A JP2003064676 A JP 2003064676A JP 2003064676 A JP2003064676 A JP 2003064676A JP 2004273346 A JP2004273346 A JP 2004273346A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage battery
storage alloy
alkaline
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003064676A
Other languages
Japanese (ja)
Other versions
JP2004273346A5 (en
Inventor
Shigekazu Yasuoka
茂和 安岡
Tetsuyuki Murata
徹行 村田
Jun Ishida
潤 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003064676A priority Critical patent/JP2004273346A/en
Publication of JP2004273346A publication Critical patent/JP2004273346A/en
Publication of JP2004273346A5 publication Critical patent/JP2004273346A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkali storage battery using a hydrogen storage alloy containing a rare earth element, magnesium, nickel, and aluminum as a negative electrode, with a heightened capacity and improved cycle life. <P>SOLUTION: In the alkali storage battery provided with a positive electrode 1, a negative electrode 2 using the hydrogen storage alloy, and an alkaline electrolyte solution 3, the hydrogen storage alloy containing a rare earth element, magnesium, nickel, and aluminum, fulfilling the relations; 0.10≤d/(a+b), 0.15≤b/(a+b)≤0.19, b/c≤0.06, is used for the negative electrode, wherein, a is a composition ratio of rare earth element, b is a composition ratio of magnesium, c is a composition ratio of nickel, and d is a composition ratio of aluminum. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、アルカリ蓄電池の負極に用いるアルカリ蓄電池用水素吸蔵合金及びこのアルカリ蓄電池用水素吸蔵合金を負極に用いたアルカリ蓄電池に係り、特に、上記のアルカリ蓄電池用水素吸蔵合金の組成を改善して、容量が大きく、サイクル寿命にも優れたアルカリ蓄電池が得られるようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来、アルカリ蓄電池として、ニッケル・カドミウム蓄電池が一般に使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。
【0003】
そして、このようなニッケル・水素蓄電池が各種のポータブル機器に使用されるようになり、このニッケル・水素蓄電池をさらに高性能化させることが期待されている。
【0004】
ここで、このようなニッケル・水素蓄電池においては、その負極に使用する水素吸蔵合金として、CaCu型の結晶を主相とする希土類−ニッケル系の水素吸蔵合金や、Ti,Zr,V及びNiを含むラーベス相系の水素吸蔵合金等が一般に使用されていた。
【0005】
しかし、これらの水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、ニッケル・水素蓄電池の容量をさらに高容量化させることが困難であるという問題があった。
【0006】
そして、近年においては、水素吸蔵合金における水素吸蔵能力を向上させるために、上記の希土類−ニッケル系の水素吸蔵合金にMg等を含有させた水素吸蔵合金を用いるようにしたものが提案されている。
【0007】
しかし、上記のように希土類−ニッケル系の水素吸蔵合金にMg等を含有させた水素吸蔵合金をニッケル・水素蓄電池の負極に用いた場合、合金容量(水素吸蔵合金1gあたりの電気容量)は大きいものの、この水素吸蔵合金がアルカリ電解液により酸化されて、アルカリ蓄電池内のアルカリ電解液が消費され、サイクル寿命が低下するという問題があった。
【0008】
このため、最近においては、希土類−ニッケル系の水素吸蔵合金にMgとAlとを含有させた水素吸蔵合金であって、アルカリ水溶液中におけるAlの溶出量を抑制した水素吸蔵合金を負極に用い、サイクル寿命が低下するのを抑制するようにしたアルカリ蓄電池が提案されている(例えば、特許文献1参照)。
【0009】
しかし、このように希土類−ニッケル系の水素吸蔵合金にMgとAlとを含有させた水素吸蔵合金を負極に用いた場合において、Alの添加量を多くすると、合金容量が低下するという問題があり、合金容量が大きくて、サイクル寿命にも優れたアルカリ蓄電池を得ることは困難であった。
【0010】
【特許文献1】
特開2001−223000号公報
【0011】
【発明が解決しようとする課題】
この発明は、希土類元素とマグネシウムとニッケルとアルミニウムとを含む水素吸蔵合金を負極に用いたアルカリ蓄電池における上記ような問題を解決することを課題とするものであり、上記のような水素吸蔵合金を用いた場合においても、容量が大きく、サイクル寿命にも優れたアルカリ蓄電池が得られるようにすることを課題とするものである。
【0012】
【課題を解決するための手段】
この発明におけるアルカリ蓄電池用水素吸蔵合金においては、上記のような課題を解決するため、希土類元素とマグネシウムとニッケルとアルミニウムとを含む水素吸蔵合金であって、希土類元素の組成比をa、マグネシウムの組成比をb、ニッケルの組成比をc、アルミニウムの組成比をdとした場合に、0.10≦d/(a+b)、0.15≦b/(a+b)≦0.19、b/c≦0.06の条件を満たすようにしたのである。
【0013】
また、この発明におけるアルカリ蓄電池においては、上記のような課題を解決するため、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、負極の水素吸蔵合金に、上記のようなアルカリ蓄電池用水素吸蔵合金を用いるようにしたのである。
【0014】
ここで、上記のアルカリ蓄電池用水素吸蔵合金において、ニッケルに対するマグネシウムの割合を少なくすると、この水素吸蔵合金における水素吸蔵能力が向上して、高容量のアルカリ蓄電池が得られるようになるため、この発明においては、上記のようにb/cの値が0.06以下になった水素吸蔵合金を用いるようにしたのである。特に、高容量のアルカリ蓄電池を得るためには、このb/cの値が0.056以下のものを用いることが望ましい。ここで、マグネシウムは希土類元素の一部と置換された状態になり、このマグネシウムの量が多くなると、水素吸蔵合金の結晶構造が崩れて水素吸蔵能力が低下すると考えられる。また、希土類元素とマグネシウムとの合計量に対するマグネシウムの量については、上記のようにb/(a+b)の値が0.15〜0.19の範囲になった水素吸蔵合金を用いるようにしたのである。
【0015】
また、希土類元素とマグネシウムとの合計量に対するアルミニウムの量が少なくなりすぎると、アルカリ蓄電池におけるサイクル寿命が低下するため、この発明においては、上記のようにd/(a+b)の値が0.10以上になった水素吸蔵合金を用いるようにしたのである。
【0016】
【実施例】
以下、この発明の実施例に係るアルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池について具体的に説明すると共に、比較例を挙げ、この発明の実施例のアルカリ蓄電池においては、電池容量が低下することなく、サイクル寿命が向上することを明らかにする。なお、この発明におけるアルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0017】
(実施例1)
実施例1においては、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを用い、La:Pr:Nd:Mg:Ni:Al=0.17:0.34:0.34:0.15:3.30:0.20のモル比になった水素吸蔵合金のインゴットを溶解炉により調製し、このインゴットをアルゴン雰囲気中において1000℃で10時間熱処理した後、このインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、平均粒径が55μmで、組成がLa0.17Pr0.34Nd0.34Mg0.15Ni3.30Al0.20の水素吸蔵合金粉末を得た。
【0018】
(実施例2〜12)
実施例2〜12においても、上記の実施例1の場合と同様に、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを用いる一方、LaとPrとNdとMgとNiとAlとのモル比を下記の表1に示すように変更し、それ以外は、上記の実施例1の場合と同様にして、平均粒径が55μmになった各組成の水素吸蔵合金粉末を得た。
【0019】
(比較例1〜4)
比較例1〜4においても、上記の実施例1の場合と同様に、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを用いる一方、LaとPrとNdとMgとNiとAlとのモル比を下記の表1に示すように変更し、それ以外は、上記の実施例1の場合と同様にして、平均粒径が55μmになった各組成の水素吸蔵合金粉末を得た。
【0020】
そして、上記の実施例1〜12及び比較例1〜4において得た各水素吸蔵合金について、希土類元素とMgとの合計量に対するMgの割合b/(a+b)、希土類元素とMgとの合計量に対するAlの割合d/(a+b)、Niに対するMgの割合b/cを求め、その結果を表1に示した。
【0021】
また、上記の実施例1〜13及び比較例1〜4において得た各水素吸蔵合金について、Cu−Kα線をX線源とするX線回折測定装置(RIGAKU RINT2000システム)を用い、スキャンスピード2°/min,スキャンステッブ0.02°,走査範囲20°〜80°の範囲でX線回折測定を行った。
【0022】
この結果、上記の実施例1〜12及び比較例1〜4においては、CaCu型の結晶構造とは異なり、CeNi型、CeNi型及びこれらに類する結晶構造を有していることが分かった。なお、上記の実施例6の水素吸蔵合金粉末における測定結果を図1に示した。
【0023】
(比較例X)
比較例Xにおいては、一般に使用されているCaCu型の結晶を主相とする希土類−ニッケル系の水素吸蔵合金であって、組成がLa0.2Pr0.4Nd0.4Ni3.78Mn0.3Co0.8Al0.3、平均粒径が55μmになった水素吸蔵合金粉末を用いるようにした。
【0024】
そして、上記の実施例1〜12、比較例1〜4及び比較例Xの各水素吸蔵合金粉末を用い、それぞれ水素吸蔵合金粉末100重量部に対して、Niパウダーを50重量部の割合で加え、ペレット状に加圧成形して、各水素吸蔵合金粉末を用いた各負極を作製した。
【0025】
一方、正極としては、3mol%の硝酸コバルトと3mol%の硝酸亜鉛とを加えた硝酸ニッケル水溶液を、多孔度85%のニッケル焼結基板に化学含浸法により含浸させて作製した円筒状になった焼結式ニッケル極を使用し、アルカリ電解液としては、30重量%の水酸化カリウム水溶液を用い、図2に示すような試験用アルカリ蓄電池を作製した。
【0026】
ここで、この試験用アルカリ蓄電池においては、図2に示すように、容器10内に上記のアルカリ電解液3を収容させ、上記の円筒状になった正極1内に負極2を位置させるようにして、上記の正極1と負極2とを上記のアルカリ電解液3中に浸漬させると共に、参照極4として酸化水銀電極を浸漬させた。
【0027】
そして、上記の各負極2を使用し、60mA/gの電流で160%まで充電させた後、60mA/gの電流で参照極4に対する負極2の電位が−0.5Vになるまで放電させ、このような充放電を5回繰り返して行い、各負極2における最大合金容量を求め、上記の比較例Xの水素吸蔵合金粒子を用いた負極における最大合金容量を100とした指数で、上記の各負極における最大合金容量を算出し、その結果を表1に合わせて示した。
【0028】
また、実施例12及び比較例3,4の水素吸蔵合金粉末を用いた各試験用アルカリ蓄電池については、上記のように60mA/gの電流で160%まで充電させた後、60mA/gの電流で参照極4に対する負極2の電位が−0.5Vになるまで放電させ、このような充放電を繰り返して、それぞれ最大合金容量の60%になるまでのサイクル数を求め、比較例4のものにおけるサイクル数を100とした指数で、これらの試験用アルカリ蓄電池におけるサイクル寿命を算出し、その結果を表1に合わせて示した。
【0029】
【表1】

Figure 2004273346
【0030】
この結果、Niに対するMgの割合b/cが0.060以下になった実施例1〜13及び比較例3,4の水素吸蔵合金粉末を用いた各試験用アルカリ蓄電池は、Niに対するMgの割合b/cが0.060を越える比較例1,2の水素吸蔵合金粉末を用いた各試験用アルカリ蓄電池や、一般に使用されている比較例XのLa0.2Pr0.4Nd0.4Ni3.78Mn0.3Co0.8Al0.3からなる水素吸蔵合金を用いた試験用アルカリ蓄電池に比べて、合金容量が大きくなっていた。
【0031】
また、希土類元素とMgとの合計量に対するAlの割合d/(a+b)が0.10以上になった実施例12の水素吸蔵合金粉末を用いた試験用アルカリ蓄電池は、希土類元素とMgとの合計量に対するAlの割合d/(a+b)が0.10未満になった比較例3,4の水素吸蔵合金粉末を用いた各試験用アルカリ蓄電池に比べて、サイクル寿命が向上していた。
【0032】
【発明の効果】
以上詳述したように、この発明におけるアルカリ蓄電池においては、その負極における水素吸蔵合金として、希土類元素とマグネシウムとニッケルとアルミニウムとを含み、希土類元素の組成比をa、マグネシウムの組成比をb、ニッケルの組成比をc、アルミニウムの組成比をdとした場合に、0.10≦d/(a+b)、0.15≦b/(a+b)≦0.19、b/c≦0.06の条件を満たすものを用いるようにしたため、容量が大きく、サイクル寿命にも優れたアルカリ蓄電池が得られるようになった。
【図面の簡単な説明】
【図1】この発明の実施例6において得た水素吸蔵合金のX線回折測定結果を示した図である。
【図2】この発明の各実施例及び各比較例のアルカリ蓄電池用水素吸蔵合金を用いて作製した試験用アルカリ蓄電池の概略説明図である。
【符号の説明】
1 正極
2 負極
3 アルカリ電解液[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage alloy for an alkaline storage battery used for a negative electrode of an alkaline storage battery and an alkaline storage battery using the hydrogen storage alloy for an alkaline storage battery as a negative electrode, and in particular, by improving the composition of the hydrogen storage alloy for an alkaline storage battery described above. It is characterized in that an alkaline storage battery having a large capacity and an excellent cycle life is obtained.
[0002]
[Prior art]
In the past, nickel-cadmium storage batteries were generally used as alkaline storage batteries.However, in recent years, they have a higher capacity than nickel-cadmium storage batteries, and they are superior in environmental safety because they do not use cadmium. Attention has been paid to nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode.
[0003]
Then, such nickel-metal hydride storage batteries have come to be used in various portable devices, and it is expected that the nickel-metal hydride storage batteries will have higher performance.
[0004]
Here, in such a nickel-hydrogen storage battery, as a hydrogen storage alloy used for its negative electrode, a rare earth-nickel-based hydrogen storage alloy having a CaCu type 5 crystal as a main phase, Ti, Zr, V and Ni are used. A Laves phase hydrogen-absorbing alloy containing, for example, has generally been used.
[0005]
However, these hydrogen storage alloys do not always have sufficient hydrogen storage capacity, and have a problem that it is difficult to further increase the capacity of the nickel-metal hydride storage battery.
[0006]
In recent years, in order to improve the hydrogen storage capacity of the hydrogen storage alloy, a hydrogen storage alloy using Mg or the like in the rare earth-nickel-based hydrogen storage alloy has been proposed. .
[0007]
However, when the hydrogen storage alloy containing Mg or the like in the rare earth-nickel based hydrogen storage alloy as described above is used for the negative electrode of the nickel-metal hydride storage battery, the alloy capacity (electric capacity per 1 g of the hydrogen storage alloy) is large. However, there has been a problem that the hydrogen storage alloy is oxidized by the alkaline electrolyte, the alkaline electrolyte in the alkaline storage battery is consumed, and the cycle life is reduced.
[0008]
For this reason, recently, a hydrogen storage alloy containing a rare earth-nickel-based hydrogen storage alloy containing Mg and Al and suppressing the elution amount of Al in an alkaline aqueous solution is used for the negative electrode, There has been proposed an alkaline storage battery in which a reduction in cycle life is suppressed (for example, see Patent Document 1).
[0009]
However, when the hydrogen storage alloy containing Mg and Al in the rare earth-nickel-based hydrogen storage alloy is used for the negative electrode, there is a problem that if the amount of Al added is increased, the alloy capacity is reduced. It has been difficult to obtain an alkaline storage battery having a large alloy capacity and excellent cycle life.
[0010]
[Patent Document 1]
JP 2001-223000 A
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems in an alkaline storage battery using a hydrogen storage alloy containing a rare earth element, magnesium, nickel, and aluminum for a negative electrode. It is another object of the present invention to provide an alkaline storage battery having a large capacity and excellent cycle life even when used.
[0012]
[Means for Solving the Problems]
The hydrogen storage alloy for an alkaline storage battery according to the present invention is a hydrogen storage alloy containing a rare earth element, magnesium, nickel, and aluminum, in which the composition ratio of the rare earth element is a, When the composition ratio is b, the composition ratio of nickel is c, and the composition ratio of aluminum is d, 0.10 ≦ d / (a + b), 0.15 ≦ b / (a + b) ≦ 0.19, b / c That is, the condition of ≦ 0.06 was satisfied.
[0013]
Further, in the alkaline storage battery of the present invention, in order to solve the above problems, a positive electrode, a negative electrode using a hydrogen storage alloy, and in an alkaline storage battery including an alkaline electrolyte, the hydrogen storage alloy of the negative electrode, The hydrogen storage alloy for an alkaline storage battery as described above is used.
[0014]
Here, in the hydrogen storage alloy for an alkaline storage battery, when the ratio of magnesium to nickel is reduced, the hydrogen storage capacity of the hydrogen storage alloy is improved, and a high-capacity alkaline storage battery can be obtained. In the above, a hydrogen storage alloy having a value of b / c of 0.06 or less is used as described above. In particular, in order to obtain a high-capacity alkaline storage battery, it is desirable to use one having a value of b / c of 0.056 or less. Here, it is considered that magnesium is replaced with a part of the rare earth element, and when the amount of magnesium increases, the crystal structure of the hydrogen storage alloy is broken and the hydrogen storage capacity is reduced. As for the amount of magnesium with respect to the total amount of the rare earth element and magnesium, a hydrogen storage alloy having a value of b / (a + b) in the range of 0.15 to 0.19 was used as described above. is there.
[0015]
Further, if the amount of aluminum is too small relative to the total amount of the rare earth element and magnesium, the cycle life of the alkaline storage battery is reduced. Therefore, in the present invention, the value of d / (a + b) is 0.10 as described above. The hydrogen storage alloy described above was used.
[0016]
【Example】
Hereinafter, the hydrogen storage alloy for an alkaline storage battery and the alkaline storage battery according to the embodiment of the present invention will be specifically described, and a comparative example will be given.In the alkaline storage battery of the embodiment of the present invention, the battery capacity is not reduced. Clarify that cycle life is improved. The hydrogen storage alloy for an alkaline storage battery and the alkaline storage battery according to the present invention are not limited to those shown in the following embodiments, but can be implemented by appropriately changing the scope of the invention without changing its gist.
[0017]
(Example 1)
In Example 1, La: Pr: Nd: Mg: Ni: Al = 0.17: 0.34: 0.34 using rare earth elements La, Pr, and Nd, Mg, Ni, and Al. : 0.15: 3.30: 0.20, a hydrogen storage alloy ingot having a molar ratio of 0.15: 3.30: 0.20 was prepared in a melting furnace, and the ingot was heat-treated at 1000 ° C. for 10 hours in an argon atmosphere. The material was pulverized mechanically in an active atmosphere and classified, and the average particle size was 55 μm and the composition was La 0.17 Pr 0.34 Nd 0.34 Mg 0.15 Ni 3.30 Al 0.20 . A hydrogen storage alloy powder was obtained.
[0018]
(Examples 2 to 12)
In Examples 2 to 12, similarly to the case of Example 1 described above, while using rare earth elements La, Pr, and Nd, Mg, Ni, and Al, La, Pr, Nd, Mg, and Ni are used. The molar ratio between Al and Al was changed as shown in Table 1 below, and the other conditions were the same as in Example 1 above, except that the hydrogen storage alloy powder having the average particle diameter of 55 μm was obtained. Obtained.
[0019]
(Comparative Examples 1-4)
In Comparative Examples 1 to 4, similarly to the case of Example 1 described above, while using rare earth elements La, Pr, and Nd, Mg, Ni, and Al, La, Pr, Nd, Mg, and Ni are used. The molar ratio between Al and Al was changed as shown in Table 1 below, and the other conditions were the same as in Example 1 above, except that the hydrogen storage alloy powder having the average particle diameter of 55 μm was obtained. Obtained.
[0020]
Then, for each of the hydrogen storage alloys obtained in Examples 1 to 12 and Comparative Examples 1 to 4, the ratio b / (a + b) of Mg to the total amount of rare earth elements and Mg, and the total amount of rare earth elements and Mg The ratio d / (a + b) of Al to Ni and the ratio b / c of Mg to Ni were determined. The results are shown in Table 1.
[0021]
For each of the hydrogen storage alloys obtained in Examples 1 to 13 and Comparative Examples 1 to 4, a scan speed of 2 was measured using an X-ray diffractometer (RIGAKU RINT2000 system) using Cu-Kα radiation as an X-ray source. X-ray diffraction measurement was performed in the range of ° / min, scan step 0.02 °, and scan range of 20 ° to 80 °.
[0022]
As a result, the above Examples 1 to 12 and Comparative Examples 1 to 4 had a Ce 2 Ni 7 type, a CeNi 3 type and a crystal structure similar thereto unlike the CaCu 5 type crystal structure. I understood. FIG. 1 shows the measurement results of the hydrogen storage alloy powder of Example 6 described above.
[0023]
(Comparative Example X)
In Comparative Example X, in general rare-earth and has CaCu 5 type crystal that is used as a main phase - a hydrogen storage alloy of nickel, 0.2 composition La Pr 0.4 Nd 0.4 Ni 3. 78 Mn 0.3 Co 0.8 Al 0.3 and a hydrogen storage alloy powder having an average particle size of 55 μm were used.
[0024]
Then, using each of the hydrogen storage alloy powders of Examples 1 to 12, Comparative Examples 1 to 4, and Comparative Example X, Ni powder was added at a ratio of 50 parts by weight to 100 parts by weight of the hydrogen storage alloy powder. Then, each negative electrode was formed by pressure molding into a pellet shape, using each hydrogen storage alloy powder.
[0025]
On the other hand, the positive electrode was formed into a cylindrical shape produced by impregnating a nickel sintered substrate having a porosity of 85% by a chemical impregnation method with an aqueous nickel nitrate solution containing 3 mol% of cobalt nitrate and 3 mol% of zinc nitrate. Using a sintered nickel electrode and a 30% by weight aqueous solution of potassium hydroxide as an alkaline electrolyte, a test alkaline storage battery as shown in FIG. 2 was produced.
[0026]
In this test alkaline storage battery, as shown in FIG. 2, the above-mentioned alkaline electrolyte 3 is contained in a container 10 and the negative electrode 2 is positioned in the above-mentioned cylindrical positive electrode 1. Then, the positive electrode 1 and the negative electrode 2 were immersed in the alkaline electrolyte 3 and a mercury oxide electrode was immersed as the reference electrode 4.
[0027]
Then, using each of the negative electrodes 2 described above, the battery was charged to 160% at a current of 60 mA / g, and then discharged at a current of 60 mA / g until the potential of the negative electrode 2 with respect to the reference electrode 4 became −0.5 V. Such charge / discharge was repeated 5 times, the maximum alloy capacity in each negative electrode 2 was obtained, and the above-mentioned index was defined as an index with the maximum alloy capacity in the negative electrode using the hydrogen storage alloy particles of Comparative Example X being 100. The maximum alloy capacity in the negative electrode was calculated, and the results are shown in Table 1.
[0028]
The alkaline storage batteries for test using the hydrogen storage alloy powders of Example 12 and Comparative Examples 3 and 4 were charged at a current of 60 mA / g to 160% as described above, and then charged at a current of 60 mA / g. The discharge was performed until the potential of the negative electrode 2 with respect to the reference electrode 4 became −0.5 V, and such charge / discharge was repeated to determine the number of cycles until the respective alloy volumes reached 60% of the maximum alloy capacity. The cycle life of these test alkaline storage batteries was calculated using an index with the number of cycles in 100 taken as 100, and the results are shown in Table 1.
[0029]
[Table 1]
Figure 2004273346
[0030]
As a result, the alkaline storage batteries for test using the hydrogen storage alloy powders of Examples 1 to 13 and Comparative Examples 3 and 4 in which the ratio b / c of Mg to Ni was 0.060 or less, the ratio of Mg to Ni Each test alkaline storage battery using the hydrogen storage alloy powder of Comparative Examples 1 and 2 where b / c exceeds 0.060, and La 0.2 Pr 0.4 Nd 0.4 of Comparative Example X which is generally used The alloy capacity was larger than that of a test alkaline storage battery using a hydrogen storage alloy made of Ni 3.78 Mn 0.3 Co 0.8 Al 0.3 .
[0031]
In addition, the alkaline storage battery for test using the hydrogen storage alloy powder of Example 12 in which the ratio d / (a + b) of Al to the total amount of the rare earth element and Mg was 0.10 or more was obtained by using the rare earth element and the Mg. The cycle life was improved as compared with the alkaline storage batteries for test using the hydrogen storage alloy powders of Comparative Examples 3 and 4 in which the ratio d / (a + b) of Al to the total amount was less than 0.10.
[0032]
【The invention's effect】
As described in detail above, in the alkaline storage battery of the present invention, the hydrogen storage alloy in the negative electrode contains a rare earth element, magnesium, nickel, and aluminum, and the composition ratio of the rare earth element is a, the composition ratio of magnesium is b, When the composition ratio of nickel is c and the composition ratio of aluminum is d, 0.10 ≦ d / (a + b), 0.15 ≦ b / (a + b) ≦ 0.19, and b / c ≦ 0.06. Since an alkaline storage battery satisfying the conditions is used, an alkaline storage battery having a large capacity and an excellent cycle life can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray diffraction measurement result of a hydrogen storage alloy obtained in Example 6 of the present invention.
FIG. 2 is a schematic explanatory view of a test alkaline storage battery manufactured using the hydrogen storage alloy for an alkaline storage battery of each of the examples and comparative examples of the present invention.
[Explanation of symbols]
1 positive electrode 2 negative electrode 3 alkaline electrolyte

Claims (2)

アルカリ蓄電池の負極に用いるアルカリ蓄電池用水素吸蔵合金であって、希土類元素とマグネシウムとニッケルとアルミニウムとを含み、希土類元素の組成比をa、マグネシウムの組成比をb、ニッケルの組成比をc、アルミニウムの組成比をdとした場合に、0.10≦d/(a+b)、0.15≦b/(a+b)≦0.19、b/c≦0.06の条件を満たすことを特徴とするアルカリ蓄電池用水素吸蔵合金。A hydrogen storage alloy for an alkaline storage battery used for a negative electrode of an alkaline storage battery, including a rare earth element, magnesium, nickel, and aluminum, a composition ratio of a rare earth element, a composition ratio of magnesium, b, and a composition ratio of nickel, c, When the composition ratio of aluminum is d, the following conditions are satisfied: 0.10 ≦ d / (a + b), 0.15 ≦ b / (a + b) ≦ 0.19, and b / c ≦ 0.06. Hydrogen storage alloy for alkaline storage batteries. 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、負極の水素吸蔵合金として、請求項1に記載したアルカリ蓄電池用水素吸蔵合金を用いたことを特徴とするアルカリ蓄電池。An alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, wherein the hydrogen storage alloy for an alkaline storage battery according to claim 1 is used as the hydrogen storage alloy for the negative electrode. Alkaline storage battery.
JP2003064676A 2003-03-11 2003-03-11 Hydrogen storage alloy for alkali storage battery, and alkali storage battery Pending JP2004273346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064676A JP2004273346A (en) 2003-03-11 2003-03-11 Hydrogen storage alloy for alkali storage battery, and alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064676A JP2004273346A (en) 2003-03-11 2003-03-11 Hydrogen storage alloy for alkali storage battery, and alkali storage battery

Publications (2)

Publication Number Publication Date
JP2004273346A true JP2004273346A (en) 2004-09-30
JP2004273346A5 JP2004273346A5 (en) 2008-04-10

Family

ID=33125908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064676A Pending JP2004273346A (en) 2003-03-11 2003-03-11 Hydrogen storage alloy for alkali storage battery, and alkali storage battery

Country Status (1)

Country Link
JP (1) JP2004273346A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087722A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
JP2007087723A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
JP2007087631A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
JP2007092115A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2007149647A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2007250250A (en) * 2006-03-14 2007-09-27 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2011082129A (en) * 2009-09-11 2011-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy electrode for alkaline storage battery using the same
US7951326B2 (en) 2005-08-11 2011-05-31 Gs Yuasa International Ltd. Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951326B2 (en) 2005-08-11 2011-05-31 Gs Yuasa International Ltd. Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy
US8277582B2 (en) 2005-08-11 2012-10-02 Gs Yuasa International Ltd. Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery, and production method of hydrogen absorbing alloy
JP2007087631A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
JP2007087722A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
JP2007087723A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery
US7678502B2 (en) 2005-09-21 2010-03-16 Sanyo Electric Co., Ltd. Alkaline storage cell and hydrogen storage alloy for negative electrode of alkaline storage cell
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery
JP2007092115A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2007149647A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2007250250A (en) * 2006-03-14 2007-09-27 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2011082129A (en) * 2009-09-11 2011-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy electrode for alkaline storage battery using the same

Similar Documents

Publication Publication Date Title
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP4342186B2 (en) Alkaline storage battery
JP2011008994A (en) Alkaline storage battery, and alkaline storage battery system
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP5196932B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
JP4989033B2 (en) Hydrogen storage alloys and nickel / hydrogen storage batteries for alkaline storage batteries
JP2007123228A (en) Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP4342196B2 (en) Alkaline storage battery
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP4514477B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2007066675A (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2007063611A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP4573609B2 (en) Alkaline storage battery
JP2006278189A (en) Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery
US20060078794A1 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811