JP4514477B2 - Hydrogen storage alloy for alkaline storage battery and alkaline storage battery - Google Patents

Hydrogen storage alloy for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP4514477B2
JP4514477B2 JP2004060292A JP2004060292A JP4514477B2 JP 4514477 B2 JP4514477 B2 JP 4514477B2 JP 2004060292 A JP2004060292 A JP 2004060292A JP 2004060292 A JP2004060292 A JP 2004060292A JP 4514477 B2 JP4514477 B2 JP 4514477B2
Authority
JP
Japan
Prior art keywords
alkaline
hydrogen storage
storage alloy
storage battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004060292A
Other languages
Japanese (ja)
Other versions
JP2005248252A5 (en
JP2005248252A (en
Inventor
徹行 村田
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004060292A priority Critical patent/JP4514477B2/en
Publication of JP2005248252A publication Critical patent/JP2005248252A/en
Publication of JP2005248252A5 publication Critical patent/JP2005248252A5/ja
Application granted granted Critical
Publication of JP4514477B2 publication Critical patent/JP4514477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、アルカリ蓄電池及びこのアルカリ蓄電池の負極に使用されるアルカリ蓄電池用水素吸蔵合金に係り、特に、アルカリ蓄電池の負極に水素吸蔵能力の高い水素吸蔵合金を用いて、アルカリ蓄電池の容量を高めると共に、充放電によりこの水素吸蔵合金が微粉化されてアルカリ電解液によって酸化されるのを防止し、アルカリ蓄電池におけるサイクル寿命を向上させるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery and a hydrogen storage alloy for an alkaline storage battery used for the negative electrode of the alkaline storage battery, and in particular, to increase the capacity of the alkaline storage battery by using a hydrogen storage alloy having a high hydrogen storage capacity for the negative electrode of the alkaline storage battery. At the same time, the hydrogen storage alloy is prevented from being pulverized by charge / discharge and being oxidized by the alkaline electrolyte, thereby improving the cycle life of the alkaline storage battery.

近年、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池に比べて高容量であり、カドミウムを使用しないため環境安全性にも優れているという点から、負極の材料に水素吸蔵合金を用いたニッケル・水素蓄電池が広く用いられるようになった。   In recent years, nickel-hydrogen storage batteries using a hydrogen storage alloy as the negative electrode material have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Became widely used.

そして、このようなニッケル・水素蓄電池が各種のポータブル機器に使用されるようになり、このニッケル・水素蓄電池をさらに高性能化させることが期待されている。   Such nickel / hydrogen storage batteries are used in various portable devices, and it is expected that the nickel / hydrogen storage batteries will have higher performance.

ここで、このニッケル・水素蓄電池においては、その負極に使用する水素吸蔵合金として、CaCu5型の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、Ti,Zr,V及びNiを含むラーベス相系の水素吸蔵合金等が一般に使用されていた。 Here, in this nickel-hydrogen storage battery, as a hydrogen storage alloy used for the negative electrode, a rare earth-nickel hydrogen storage alloy having a CaCu 5 type crystal as a main phase, or Laves containing Ti, Zr, V and Ni. A phase-type hydrogen storage alloy or the like has been generally used.

しかし、これらの水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、ニッケル・水素蓄電池の容量をさらに高めることが困難であった。   However, these hydrogen storage alloys do not necessarily have sufficient hydrogen storage capacity, and it has been difficult to further increase the capacity of the nickel-hydrogen storage battery.

そして、近年においては、上記のような希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させた水素吸蔵合金を用いることが提案されている(例えば、特許文献1参照)。   In recent years, in order to improve the hydrogen storage capacity in the rare earth-nickel hydrogen storage alloy as described above, a hydrogen storage alloy containing Mg or the like in the rare earth-nickel hydrogen storage alloy is used. It has been proposed (see, for example, Patent Document 1).

しかし、上記のような水素吸蔵合金をアルカリ蓄電池の負極に使用して充放電を繰り返して行った場合、この水素吸蔵合金が微粉化されると共に、この水素吸蔵合金がアルカリ電解液と反応して酸化され、アルカリ蓄電池内におけるアルカリ電解液が次第に消費されて、アルカリ蓄電池内における抵抗が増大し、アルカリ蓄電池のサイクル寿命が低下するという問題があった。特に、最近においては、電池容量をさらに高めるために、正極や負極の活物質量を多くして、電池中におけるアルカリ電解液の量を少なくすることが行われるようになり、このような場合には、アルカリ電解液の消費により、アルカリ蓄電池のサイクル寿命がさらに大きく低下するという問題があった。
特開2001−316744号公報
However, when the above-described hydrogen storage alloy is used for the negative electrode of an alkaline storage battery and repeatedly charged and discharged, the hydrogen storage alloy is pulverized and the hydrogen storage alloy reacts with the alkaline electrolyte. Oxidized, and the alkaline electrolyte in the alkaline storage battery is gradually consumed, increasing the resistance in the alkaline storage battery and reducing the cycle life of the alkaline storage battery. Recently, in order to further increase the battery capacity, the amount of the active material of the positive electrode and the negative electrode is increased to reduce the amount of alkaline electrolyte in the battery. However, there is a problem that the cycle life of the alkaline storage battery is further reduced due to consumption of the alkaline electrolyte.
JP 2001-316744 A

この発明は、希土類−ニッケル系水素吸蔵合金にMg等を含有させて、水素吸蔵能力を向上させた水素吸蔵合金を負極に使用し、容量を高めるようにしたアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、上記のアルカリ蓄電池を繰り返して充放電させた場合において、負極に使用した水素吸蔵合金が微粉化されて、この水素吸蔵合金がアルカリ電解液と反応して酸化されるのを抑制し、上記のアルカリ蓄電池におけるサイクル寿命を向上させることを課題とするものである。   The present invention has the above-mentioned problems in an alkaline storage battery in which a rare earth-nickel-based hydrogen storage alloy contains Mg or the like and a hydrogen storage alloy with improved hydrogen storage capacity is used for the negative electrode to increase the capacity. In the case where the above alkaline storage battery is repeatedly charged and discharged, the hydrogen storage alloy used for the negative electrode is pulverized, and this hydrogen storage alloy reacts with the alkaline electrolyte. The object is to suppress oxidation and improve the cycle life of the alkaline storage battery.

この発明におけるアルカリ蓄電池用水素吸蔵合金においては、上記のような課題を解決するため、水素吸蔵合金として、一般式Ln1-xMgxNiy-aAla(式中、LnはLa,Pr,Nd,Yから選択される希土類元素とZrのみで構成され、上記の希土類元素全体中におけるランタンの量が50原子%を超えるとともに、0.05≦x<0.20、2.8≦y≦3.9、0.10≦a≦0.25の条件を満たす。)で表わされるものを用いた。 In the hydrogen-absorbing alloy for an alkaline storage battery in the present invention, to solve the above problems, the hydrogen-absorbing alloy, in the general formula Ln 1-x Mg x Ni ya Al a ( wherein, Ln is La, Pr, Nd , Y, and only the rare earth element selected from Zr, the amount of lanthanum in the entire rare earth element exceeds 50 atomic%, and 0.05 ≦ x <0.20, 2.8 ≦ y ≦ 3 .9, and the condition of 0.10 ≦ a ≦ 0.25 is satisfied).

また、この発明におけるアルカリ蓄電池においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極における水素吸蔵合金に、上記のようなアルカリ蓄電池用水素吸蔵合金を用いるようにした。   Further, in the alkaline storage battery according to the present invention, in the alkaline storage battery provided with the positive electrode, the negative electrode using the hydrogen storage alloy, and the alkaline electrolyte, the hydrogen storage alloy for the negative electrode includes the hydrogen storage for alkaline storage battery as described above. An alloy was used.

そして、この発明におけるアルカリ蓄電池のように、その負極に、上記の一般式に示される水素吸蔵合金のように、希土類元素全体中におけるランタンの量が50原子%を超えるものを用いると、この水素吸蔵合金の水素吸蔵能力が高くて、高容量のアルカリ蓄電池が得られると共に、このアルカリ蓄電池を繰り返して充放電させた場合に、この水素吸蔵合金が微粉化するのが抑制され、この水素吸蔵合金がアルカリ電解液と反応して酸化されるのも防止されるようになる。 Then, when an alkaline storage battery of the present invention is used with a negative electrode whose lanthanum content in the entire rare earth element exceeds 50 atomic%, such as the hydrogen storage alloy represented by the above general formula, The hydrogen storage capacity of the storage alloy is high, and a high capacity alkaline storage battery is obtained, and when this alkaline storage battery is repeatedly charged and discharged, the hydrogen storage alloy is prevented from being pulverized, and this hydrogen storage alloy Is prevented from reacting with the alkaline electrolyte and being oxidized.

ここで、上記の一般式Ln1-xMgxNiy-aAla(式中、LnはLa,Pr,Nd,Yから選択される希土類元素とZrのみで構成され、上記の希土類元素全体中におけるランタンの量が50原子%を超えるとともに、0.05≦x<0.20、2.8≦y≦3.9、0.10≦a≦0.25の条件を満たす。)で表わされる水素吸蔵合金において、0.05≦x<0.20の条件を満たすようにしたのは、xが0.05未満になると、水素吸蔵合金における水素吸蔵能力が低下する一方、xが0.20以上になると、酸化されやすいMgが増加して、水素吸蔵合金が酸化されやすくなるためである。また、2.8≦y≦3.9の条件を満たすようにしたのは、yが2.8未満になると、水素吸蔵合金において目的の合金相と異なる合金相が増大し、水素吸蔵放出に伴う残留水素が増加して、水素放出量が著しく低下する一方、yが3.9を超えると、水素吸蔵量が著しく低下するためである。また、0.10≦a≦0.25の条件を満たすようにしたのは、aが0.1未満になると、水素吸蔵合金が酸化されやすくなる一方、aが0.25を超えると、水素吸蔵合金における水素吸蔵能力が低下するためである。 Here, in the above general formula Ln 1-x Mg x Ni ya Al a ( wherein, Ln is La, Pr, Nd, consists only of a rare earth element and Zr is selected from Y, in the entire aforementioned rare earth elements with the amount of lanthanum exceeds 50 atomic%, hydrogen represented by satisfying the 0.05 ≦ x <0.20,2.8 ≦ y ≦ 3.9,0.10 ≦ a ≦ 0.25.) In the occlusion alloy, 0.05 ≦ x <0.20 was made to satisfy the condition that when x is less than 0.05, the hydrogen occlusion ability of the hydrogen occlusion alloy is lowered, while x is 0.20 or more. This is because Mg which is easily oxidized increases and the hydrogen storage alloy is easily oxidized. In addition, the condition of 2.8 ≦ y ≦ 3.9 is set so that when y is less than 2.8, the alloy phase different from the target alloy phase increases in the hydrogen storage alloy, and the hydrogen storage and release occurs. This is because the accompanying residual hydrogen increases and the hydrogen release amount is remarkably reduced, while when y exceeds 3.9, the hydrogen storage amount is remarkably reduced. Further, the condition of 0.10 ≦ a ≦ 0.25 is set such that when a is less than 0.1, the hydrogen storage alloy is easily oxidized, whereas when a exceeds 0.25, hydrogen This is because the hydrogen storage capacity of the storage alloy decreases.

また、上記の水素吸蔵合金において、上記の希土類元素とジルコニウムとを含有させると共に、上記のマグネシウムとニッケルとアルミニウムとの他にコバルトを含有させると、水素吸蔵合金がアルカリ電解液によって酸化されるのが一層防止されるようになる。 Moreover, in the hydrogen storage alloy, when the rare earth element and zirconium are contained and cobalt is contained in addition to the magnesium, nickel, and aluminum, the hydrogen storage alloy is oxidized by the alkaline electrolyte. Is further prevented.

この発明においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極に、上記の一般式で示される水素吸蔵合金を用いるようにしたため、この水素吸蔵合金の水素吸蔵能力が高く、高容量のアルカリ蓄電池が得られる。 In the present invention, in the alkaline storage battery including the positive electrode, the negative electrode using the hydrogen storage alloy, and the alkaline electrolyte, the hydrogen storage alloy represented by the above general formula is used for the negative electrode. The hydrogen storage capacity of the storage alloy is high, and a high capacity alkaline storage battery can be obtained.

また、上記の一般式に示されるように希土類元素全体中におけるランタンの量が50原子%を超える水素吸蔵合金を用いるようにしたため、このアルカリ蓄電池を繰り返して充放電した場合に、この水素吸蔵合金が微粉化するのが抑制され、この水素吸蔵合金がアルカリ電解液と反応して酸化されるのも防止され、アルカリ蓄電池内におけるアルカリ電解液が次第に消費されて、アルカリ蓄電池のサイクル寿命が低下するのが抑制されるようになる。特に、電池容量をさらに高めるために、正極や負極の活物質量を多くして、電池中におけるアルカリ電解液の量を少なくした場合、例えば、アルカリ電解液の量を電池の理論容量に対して1.2g/Ah以下にした場合においては、アルカリ電解液の消費によるアルカリ蓄電池のサイクル寿命の低下が一層抑制されるようになる。 Further, as shown in the above general formula, since the hydrogen storage alloy in which the amount of lanthanum in the whole rare earth element exceeds 50 atomic% is used, when this alkaline storage battery is repeatedly charged and discharged, this hydrogen storage alloy Is prevented from reacting with the alkaline electrolyte and oxidized, and the alkaline electrolyte in the alkaline storage battery is gradually consumed, reducing the cycle life of the alkaline storage battery. Will be suppressed. In particular, in order to further increase the battery capacity, when the amount of the active material of the positive electrode or the negative electrode is increased to reduce the amount of the alkaline electrolyte in the battery, for example, the amount of the alkaline electrolyte is reduced with respect to the theoretical capacity of the battery In the case of 1.2 g / Ah or less, a decrease in the cycle life of the alkaline storage battery due to consumption of the alkaline electrolyte is further suppressed.

以下、この発明の実施例に係るアルカリ蓄電池用水素吸蔵合金電極及びアルカリ蓄電池について具体的に説明すると共に、比較例を挙げ、この発明の実施例に係るアルカリ蓄電池においては、充放電を繰り返して行った場合に、その負極に用いた水素吸蔵合金が微粉化されたり、酸化されたりするのが抑制されて、アルカリ蓄電池のサイクル寿命が低下するのが防止されることを明らかにする。なお、この発明におけるアルカリ蓄電池用水素吸蔵合金及電極及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the hydrogen storage alloy electrode for alkaline storage battery and the alkaline storage battery according to the embodiment of the present invention will be specifically described, and a comparative example will be given. In the alkaline storage battery according to the embodiment of the present invention, charging and discharging are repeated. In this case, it is clarified that the hydrogen storage alloy used for the negative electrode is prevented from being pulverized or oxidized, thereby preventing the cycle life of the alkaline storage battery from being lowered. In addition, the hydrogen storage alloy and electrode for alkaline storage batteries and the alkaline storage battery in the present invention are not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof.

(実施例1)
実施例1においては、負極を作製するにあたり、希土類元素であるLa,Pr及びNdと、Zrと、Mgと、Niと、Alと、Coとを用い、これらを所定の合金組成になるように混合し、これを高周波誘導溶解させた後、これを冷却させて、組成が(La0.592Pr0.199Nd0.206Zr0.0040.83Mg0.17Ni3.15Al0.15Co0.1になった水素吸蔵合金
のインゴットを作製した。
Example 1
In Example 1, in preparing the negative electrode, rare earth elements such as La, Pr, and Nd, Zr , Mg, Ni, Al, and Co are used so that these have a predetermined alloy composition. The mixture was mixed and melted by induction induction, and then cooled to produce a hydrogen storage alloy ingot having a composition of (La 0.592 Pr 0.199 Nd 0.206 Zr 0.004 ) 0.83 Mg 0.17 Ni 3.15 Al 0.15 Co 0.1 . .

そして、この水素吸蔵合金のインゴットをアルゴン雰囲気中において950℃で熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、体積平均粒径が65μmになった上記の水素吸蔵合金の粉末を得た。なお、水素吸蔵合金の粉末の体積平均粒径は、レーザー回折式粒度分布測定装置(島津製作所社製:SALD−2000)を用いて測定した。   Then, the hydrogen storage alloy ingot was heat treated in an argon atmosphere at 950 ° C. to homogenize, and then the hydrogen storage alloy ingot was mechanically pulverized in an inert atmosphere, and this was classified into a volume. A powder of the above hydrogen storage alloy having an average particle size of 65 μm was obtained. The volume average particle size of the hydrogen storage alloy powder was measured using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation: SALD-2000).

そして、上記の水素吸蔵合金の粉末100重量部に対して、結着剤のポリエチレンオキシドを0.5重量部、ポリビニルピロリドンを0.6重量部加え、これらを均一に混合してスラリーを調製し、このスラリーをニッケルめっきしたパンチングメタルからなる集電体の両面に均一に塗布し、これを乾燥し圧延させた後、所定の寸法に切断して、上記の水素吸蔵合金を含む負極を作製した。   Then, with respect to 100 parts by weight of the hydrogen storage alloy powder, 0.5 parts by weight of polyethylene oxide as a binder and 0.6 parts by weight of polyvinyl pyrrolidone are added and mixed uniformly to prepare a slurry. The slurry was uniformly applied to both surfaces of a nickel-plated punching metal current collector, dried and rolled, and then cut into predetermined dimensions to produce a negative electrode containing the above hydrogen storage alloy. .

一方、正極を作製するにあたっては、活物質の水酸化ニッケル100重量部に対して、0.2重量%のヒドロキシプロピルセルロース水溶液を50重量部加え、これらを混合させてスラリーを調製し、このスラリーをニッケル発泡体に充填し、これを乾燥させて圧延させた後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。   On the other hand, in preparing the positive electrode, 50 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution is added to 100 parts by weight of nickel hydroxide as an active material, and these are mixed to prepare a slurry. Was filled in a nickel foam, dried and rolled, and then cut into predetermined dimensions to produce a positive electrode composed of a non-sintered nickel electrode.

また、セパレータとしてはポリプロピレン製の不織布を使用し、アルカリ電解液としては、KOHとNaOHとLiOHとを合計で30重量%含むアルカリ電解液を使用した。   Moreover, the nonwoven fabric made from a polypropylene was used as a separator, and the alkaline electrolyte containing 30 weight% of KOH, NaOH, and LiOH in total was used as alkaline electrolyte.

そして、これらを使用して、理論容量が1500mAhになった、図1に示すような円筒型になった実施例1のアルカリ蓄電池を作製した。   Then, using these, an alkaline storage battery of Example 1 having a theoretical capacity of 1500 mAh and having a cylindrical shape as shown in FIG. 1 was produced.

ここで、実施例1のアルカリ蓄電池を作製するにあたっては、図1に示すように、負極1と正極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させると共に、この電池缶4内に上記のアルカリ電解液を2.0g注液させた。なお、このアルカリ蓄電池の理論容量に対するアルカリ電解液の量は1.33g/Ahである。そして、上記の正極を正極リード5を介して正極蓋6に接続させると共に、負極を負極リード7を介して電池缶4に接続させ、電池缶4の周囲に絶縁パッキン8を介して正極蓋6を取り付け、電池缶4の開口部を封口すると共に、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に正極外部端子9を設け、この正極蓋6に正極外部端子9との間にコイルスプリング10を配し、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気中に放出されるようにした。
Here, in producing the alkaline storage battery of Example 1, as shown in FIG. 1, the separator 3 is interposed between the negative electrode 1 and the positive electrode 2, and these are spirally wound and accommodated in the battery can 4. In addition, 2.0 g of the alkaline electrolyte was poured into the battery can 4. In addition, the quantity of the alkaline electrolyte with respect to the theoretical capacity of this alkaline storage battery is 1.33 g / Ah. The positive electrode 2 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 1 is connected to the battery can 4 via the negative electrode lead 7, and the positive electrode is connected to the periphery of the battery can 4 via the insulating packing 8. The lid 6 was attached to seal the opening of the battery can 4, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, the positive electrode external terminal 9 is provided on the positive electrode lid 6, and the coil spring 10 is disposed between the positive electrode cover 6 and the positive electrode external terminal 9. When the internal pressure of the battery rises abnormally, the coil spring 10 is provided. 10 was compressed so that the gas inside the battery was released into the atmosphere.

(実施例2及び比較例1,2)
実施例2及び比較例1,2においては、上記の実施例1における負極の作製において、負極に用いる水素吸蔵合金の組成だけを変更し、それ以外は、上記の実施例1の場合と同様にして、実施例2及び比較例1,2の各アルカリ蓄電池を作製した。
(Example 2 and Comparative Examples 1 and 2)
In Example 2 and Comparative Examples 1 and 2, only the composition of the hydrogen storage alloy used for the negative electrode was changed in the production of the negative electrode in Example 1 above, and the rest was the same as in Example 1 above. The alkaline storage batteries of Example 2 and Comparative Examples 1 and 2 were produced.

ここで、負極に用いる水素吸蔵合金として、実施例2においては、組成が(La0.501Pr0.233Nd0.249Zr0.004Y0.013)0.83Mg0.17Ni 3.13 Al 0.17 Co0.1になった水素吸蔵合金を、比較例1においては、組成が(La0.288Pr0.347Nd0.361Zr0.004)0.83Mg0.17Ni3.13Al0.17Co0.1になった水素吸蔵合金を、比較例2においては、組成が(La0.188Pr0.397Nd0.411Zr0.004)0.83
Mg0.17Ni3.03 Al0.17Co0.1になった水素吸蔵合金を用いた。
Here, as a hydrogen storage alloy used for the negative electrode, in Example 2, a hydrogen storage alloy having a composition of (La 0.501 Pr 0.233 Nd 0.249 Zr 0.004 Y 0.013 ) 0.83 Mg 0.17 Ni 3.13 Al 0.17 Co 0.1 was used as a comparative example. 1, the composition of (La 0.288 Pr 0.347 Nd 0.361 Zr 0.004 ) 0.83 Mg 0.17 Ni 3.13 Al 0.17 Co 0.1 was used, and in Comparative Example 2, the composition was (La 0.188 Pr 0.397 Nd 0.411 Zr 0.004 0.83
A hydrogen storage alloy with Mg 0.17 Ni 3.03 Al 0.17 Co 0.1 was used.

そして、上記の実施例1,2及び比較例1,2の各アルカリ蓄電池を、それぞれ150mAの電流で16時間充電させた後、300mAの電流で電池電圧が1.0Vになるまで放電させて、各アルカリ蓄電池を活性化させた。   And after charging each alkaline storage battery of Examples 1 and 2 and Comparative Examples 1 and 2 with a current of 150 mA for 16 hours, respectively, it was discharged until the battery voltage became 1.0 V with a current of 300 mA, Each alkaline storage battery was activated.

次いで、このように活性化させた実施例1,2及び比較例1,2の各アルカリ蓄電池を、それぞれ1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて1時間放置した後、1500mAの電流で電池電圧が1.0Vになるまで放電させて1時間放置し、これを1サイクルとして、150サイクルの充放電を繰り返して行った。   Next, each of the alkaline storage batteries of Examples 1 and 2 and Comparative Examples 1 and 2 activated in this way was charged until the battery voltage reached the maximum value at a current of 1500 mA until the battery voltage decreased by 10 mV, and then 1 hour. After being allowed to stand, the battery was discharged at a current of 1500 mA until the battery voltage reached 1.0 V and left for 1 hour. This was defined as one cycle, and 150 cycles of charge / discharge were repeated.

そして、上記のように150サイクルの充放電を行った後、実施例1,2及び比較例1,2の各アルカリ蓄電池を分解して、各負極における水素吸蔵合金粉末を取り出して、その体積平均粒径を、レーザー回折式粒度分布測定装置(島津製作所社製:SALD−2000)を用いて測定し、比較例2のアルカリ蓄電池における水素吸蔵合金粉末の体積平均粒径を100とした指数で、各アルカリ蓄電池における水素吸蔵合金粉末の体積平均粒径を求め、その結果を下記の表1に示した。   And after performing 150 cycles of charge and discharge as described above, the alkaline storage batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were disassembled, the hydrogen storage alloy powder in each negative electrode was taken out, and its volume average The particle diameter was measured using a laser diffraction particle size distribution measuring apparatus (Salazu 2000 manufactured by Shimadzu Corporation), and an index with the volume average particle diameter of the hydrogen storage alloy powder in the alkaline storage battery of Comparative Example 2 as 100, The volume average particle diameter of the hydrogen storage alloy powder in each alkaline storage battery was determined, and the results are shown in Table 1 below.

また、上記のようにして実施例1,2及び比較例1,2の各アルカリ蓄電池に対して150サイクルの充放電を行った後、各アルカリ蓄電池を完全に放電させ、その後、各アルカリ蓄電池を分解して、各負極における水素吸蔵合金粉末を取り出し、これを水洗して結着剤を取り除き、乾燥させた後、各水素吸蔵合金粉末中における酸素濃度(重量%)を、酸素分析装置(LECO社製)を用い、不活性ガス中において融解抽出法により測定し、比較例2のアルカリ蓄電池における水素吸蔵合金粉末の酸素濃度を100とした指数で、各アルカリ蓄電池における水素吸蔵合金粉末の酸素濃度を求め、その結果を下記の表1に示した。   Moreover, after performing 150 cycles of charging / discharging each alkaline storage battery of Examples 1 and 2 and Comparative Examples 1 and 2 as described above, each alkaline storage battery was completely discharged, and then each alkaline storage battery was After decomposition, the hydrogen storage alloy powder in each negative electrode is taken out, washed with water to remove the binder, and dried, and then the oxygen concentration (wt%) in each hydrogen storage alloy powder is measured with an oxygen analyzer (LECO). The oxygen concentration of the hydrogen storage alloy powder in each alkaline storage battery is an index measured by the melt extraction method in an inert gas and the oxygen concentration of the hydrogen storage alloy powder in the alkaline storage battery of Comparative Example 2 is taken as 100. The results are shown in Table 1 below.

また、上記のように活性化させた実施例1,2及び比較例1,2の各アルカリ蓄電池を、上記のように1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて1時間放置した後、1500mAの電流で電池電圧が1.0Vになるまで放電させて1時間放置し、これを1サイクルとして充放電を繰り返して行い、サイクル寿命として、それぞれ放電容量が1サイクル目の放電容量の60%になるまでのサイクル回数を求め、比較例2のアルカリ蓄電池におけるサイクル寿命を100とした指数で、各アルカリ蓄電池におけるサイクル寿命を求め、その結果を下記の表1に示した。   In addition, the alkaline storage batteries of Examples 1 and 2 and Comparative Examples 1 and 2 activated as described above were charged until the battery voltage reached the maximum value at a current of 1500 mA as described above and decreased to 10 mV. Then, the battery is discharged at a current of 1500 mA until the battery voltage reaches 1.0 V, and left for 1 hour. This is repeated as charge and discharge as one cycle. The number of cycles until 60% of the discharge capacity at the cycle was obtained, and the cycle life in each alkaline storage battery was determined by an index with the cycle life in the alkaline storage battery of Comparative Example 2 as 100. The results are shown in Table 1 below. Indicated.

Figure 0004514477
Figure 0004514477

この結果、ランタンを含む希土類元素と、マグネシウムと、ニッケルと、アルミニウムとを含み、希土類元素全体中におけるランタンの量が50原子%を超える水素吸蔵合金を用いた実施例1,2のアルカリ蓄電池においては、希土類元素全体中におけるランタンの量が50原子%以下になった水素吸蔵合金を用いた比較例1,2のアルカリ蓄電池に比べて、充放電による水素吸蔵合金粉末の粒径の低下が少なく、充放電によって水素吸蔵合金粉末が微粉化するのが抑制されると共に、水素吸蔵合金粉末中における酸素濃度の増加も少なく、充放電による水素吸蔵合金の酸化も抑制され、結果としてサイクル寿命が向上していた。   As a result, in the alkaline storage batteries of Examples 1 and 2 using the hydrogen storage alloy containing the rare earth element containing lanthanum, magnesium, nickel, and aluminum, and the amount of lanthanum in the whole rare earth element exceeds 50 atomic%. Compared to the alkaline storage batteries of Comparative Examples 1 and 2 using a hydrogen storage alloy in which the amount of lanthanum in the entire rare earth element is 50 atomic% or less, the decrease in the particle size of the hydrogen storage alloy powder due to charge and discharge is small. In addition, the hydrogen storage alloy powder is prevented from being pulverized by charging and discharging, and the increase in oxygen concentration in the hydrogen storage alloy powder is suppressed, and the oxidation of the hydrogen storage alloy due to charging and discharging is suppressed, resulting in improved cycle life. Was.

この発明の実施例1,2及び比較例1,2において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Examples 1, 2 and Comparative Examples 1, 2 of this invention.

符号の説明Explanation of symbols

負極
正極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
1 negative electrode
2 positive electrodes
DESCRIPTION OF SYMBOLS 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode lid 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring

Claims (4)

水素吸蔵合金として、一般式Ln1-xMgxNiy-aAla(式中、LnはLa,Pr,Nd,Yから選択される希土類元素とZrのみで構成され、上記の希土類元素全体中におけるランタンの量が50原子%を超えるとともに、0.05≦x<0.20、2.8≦y≦3.9、0.10≦a≦0.25の条件を満たす。)で表わされるものを用いたことを特徴とするアルカリ蓄電池用水素吸蔵合金。 As the hydrogen storage alloy of the general formula Ln 1-x Mg x Ni ya Al a ( wherein, Ln is La, Pr, Nd, consists only of a rare earth element and Zr is selected from Y, in the entire aforementioned rare earth elements The amount of lanthanum exceeds 50 atomic%, and the conditions of 0.05 ≦ x <0.20, 2.8 ≦ y ≦ 3.9, and 0.10 ≦ a ≦ 0.25 are satisfied.) A hydrogen storage alloy for alkaline storage batteries, characterized in that 請求項1に記載したアルカリ蓄電池用水素吸蔵合金において、上記のマグネシウムとニッケルとアルミニウムとの他にコバルトを含有していることを特徴とするアルカリ蓄電池用水素吸蔵合金。 2. The hydrogen storage alloy for alkaline storage batteries according to claim 1, further comprising cobalt in addition to the magnesium, nickel, and aluminum. 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極における水素吸蔵合金に、請求項1又は請求項2に記載したアルカリ蓄電池用水素吸蔵合金を用いたことを特徴とするアルカリ蓄電池。In an alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, the hydrogen storage alloy for an alkaline storage battery according to claim 1 or 2 is used as the hydrogen storage alloy in the negative electrode. An alkaline storage battery characterized by
正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極における水素吸蔵合金に、請求項1又は請求項2に記載したアルカリ蓄電池用水素吸蔵合金を用いると共に、上記アルカリ電解液の量を電池の理論容量に対して1.2g/Ah以下にしたことを特徴とするアルカリ蓄電池。
In an alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, the hydrogen storage alloy for an alkaline storage battery according to claim 1 or 2 is used as the hydrogen storage alloy in the negative electrode. And an alkaline storage battery characterized in that the amount of the alkaline electrolyte is 1.2 g / Ah or less with respect to the theoretical capacity of the battery.
JP2004060292A 2004-03-04 2004-03-04 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery Expired - Lifetime JP4514477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060292A JP4514477B2 (en) 2004-03-04 2004-03-04 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060292A JP4514477B2 (en) 2004-03-04 2004-03-04 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Publications (3)

Publication Number Publication Date
JP2005248252A JP2005248252A (en) 2005-09-15
JP2005248252A5 JP2005248252A5 (en) 2008-09-04
JP4514477B2 true JP4514477B2 (en) 2010-07-28

Family

ID=35029014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060292A Expired - Lifetime JP4514477B2 (en) 2004-03-04 2004-03-04 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4514477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery
JP2012134110A (en) * 2010-12-24 2012-07-12 Fdk Twicell Co Ltd Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2003017115A (en) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd Sealed secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2003017115A (en) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd Sealed secondary cell

Also Published As

Publication number Publication date
JP2005248252A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2009206004A (en) Anode for alkaline storage battery and alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP5178013B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP5556142B2 (en) Alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP4342186B2 (en) Alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP4514477B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
US20060177736A1 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP4342196B2 (en) Alkaline storage battery
JP4663451B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4290023B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2006277995A (en) Hydrogen storage alloy for alkaline storage battery, and nickel-hydrogen storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2007066675A (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2007063611A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
US20060078794A1 (en) Nickel-metal hydride storage battery
JP2006236692A (en) Nickel hydrogen storage battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R151 Written notification of patent or utility model registration

Ref document number: 4514477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

EXPY Cancellation because of completion of term