JP2962813B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP2962813B2
JP2962813B2 JP2317103A JP31710390A JP2962813B2 JP 2962813 B2 JP2962813 B2 JP 2962813B2 JP 2317103 A JP2317103 A JP 2317103A JP 31710390 A JP31710390 A JP 31710390A JP 2962813 B2 JP2962813 B2 JP 2962813B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
alloy electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2317103A
Other languages
Japanese (ja)
Other versions
JPH04187734A (en
Inventor
房吾 水瀧
明男 古川
育郎 米津
俊彦 齋藤
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2317103A priority Critical patent/JP2962813B2/en
Publication of JPH04187734A publication Critical patent/JPH04187734A/en
Application granted granted Critical
Publication of JP2962813B2 publication Critical patent/JP2962813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、金属水素化物アルカリ蓄電池の負極に用い
られる水素吸蔵合金電極に関するものである。
The present invention relates to a hydrogen storage alloy electrode used for a negative electrode of a metal hydride alkaline storage battery.

(ロ) 従来の技術 従来から用いられている蓄電池としては、ニッケル−
カドミウム蓄電池の様なアルカリ蓄電池、あるいは鉛蓄
電池などがある。近年、これらの電池よりも軽量かつ高
容量で高エネルギー密度になる可能性のある、水素吸蔵
合金電極を負極に用いた金属水素化物アルカリ蓄電池が
注目されている。
(B) Conventional technology Conventional storage batteries include nickel-based batteries.
There is an alkaline storage battery such as a cadmium storage battery, or a lead storage battery. In recent years, attention has been paid to a metal hydride alkaline storage battery using a hydrogen storage alloy electrode as a negative electrode, which has a lighter weight, a higher capacity, and a higher energy density than these batteries.

この種、金属水素化物蓄電池に用いられる水素吸蔵合
金の組成としては、例えば特公昭59−49671号公報に示
されているようにLaNi5やその改良である三元素系のLaN
i4Co、LaNi4Cu及びLaNi4.8Fe0.2などの合金が知られて
いる。そして、これら水素吸蔵合金粉末と導電材粉末と
の混合物を、耐アルカリ電界液性の粒子状接着剤によっ
て電極支持体に固着させて、水素吸蔵合金電極とする方
法(例えば特公昭57−30273号公報参照)などによって
負極が製造されている。上記水素吸蔵合金の他にも、La
の代わりにMm(ミッシュメタル)を用いた各種希土類系
水素吸蔵合金や、Ti−Ni系、Ca−Ni系水素吸蔵合金も開
発されている。
As a composition of this kind, a hydrogen storage alloy used for a metal hydride storage battery, for example, as shown in JP-B-59-49671, LaNi 5 or a three-element LaN
i 4 Co, an alloy such as LaNi 4 Cu and LaNi 4.8 Fe 0.2 is known. Then, a mixture of the hydrogen storage alloy powder and the conductive material powder is fixed to an electrode support with an alkaline electrolyte-resistant particulate adhesive to form a hydrogen storage alloy electrode (for example, Japanese Patent Publication No. 57-30273). A negative electrode is manufactured by the method disclosed in the official gazette. In addition to the above hydrogen storage alloy, La
Instead, various rare earth-based hydrogen storage alloys using Mm (mish metal), and Ti-Ni-based and Ca-Ni-based hydrogen storage alloys have been developed.

また、正極としては、ニッケル−カドミウム蓄電池に
用いられる、焼結式ニッケル極などが用いられている。
Further, as a positive electrode, a sintered nickel electrode used for a nickel-cadmium storage battery is used.

(ハ) 発明が解決しようとする課題 然し乍ら、上記により構成された金属水素化物蓄電池
は、初期容量が低い、サイクル寿命が短いなどの欠点が
あった。側ち、希土類系水素吸蔵合金を負極とする密閉
型金属水素化物蓄電池は、初期の放電容量が低く、安定
した容量を得るためには、化成処理として数サイクルの
充放電処理が必要である。
(C) Problems to be Solved by the Invention However, the metal hydride storage battery constituted as described above has disadvantages such as a low initial capacity and a short cycle life. On the other hand, a sealed metal hydride storage battery using a rare earth-based hydrogen storage alloy as a negative electrode has a low initial discharge capacity and requires several cycles of charge / discharge treatment as a chemical conversion treatment in order to obtain a stable capacity.

また、Ti−Ni系合金は比較的高い放電容量を有してい
るが、初期容量は低く、充放電サイクルに伴う放電容量
の低下が大きい。
Further, although the Ti-Ni-based alloy has a relatively high discharge capacity, the initial capacity is low, and the discharge capacity is greatly reduced with the charge / discharge cycle.

一方、Ca−Ni系合金は初期の放電容量は大きいが、電
界液中での耐食性に問題があるためサイクル寿命が短い
という欠点があった。
On the other hand, although the Ca-Ni-based alloy has a large initial discharge capacity, it has a problem that the cycle life is short due to a problem in corrosion resistance in an electrolytic solution.

そこで、本発明はかかる問題点に鑑みてなされたもの
であって、初期活性が高く耐食性に優れた水素吸蔵合金
を提供し、かかる合金からなる電極を備えた金属水素化
物蓄電池の初期特性及びサイクル特性の向上を図るもの
である。
Therefore, the present invention has been made in view of such problems, and provides a hydrogen storage alloy having high initial activity and excellent corrosion resistance, and has an initial characteristic and cycle of a metal hydride storage battery including an electrode made of such an alloy. The purpose is to improve the characteristics.

(ニ) 課題を解決するための手段 本発明の水素吸蔵合金電極では、組成式(Ta1-aAax
Ni(但し、0.01≦a≦0.5、0.5<x≦3.0、Aは、Nb、
V、Ti、Zr、Hf、Mg、Ca、Sr、Sc、Y、希土類元素の少
なくとも1種の元素)で表わされる水素吸蔵合金や、組
成式TaxNi1-bB′(但し、0.01≦b≦0.5、0.5<x≦
3.0、B′は、Mn、B、Al、Co、Cr、Fe、Cu、Zn、Mo、
W、C、Si、Ag、Cd、Ga、In、Ge、Sn、Sbの少なくとも
1種の元素)で表わされる水素吸蔵合金、更には組成式
(Ta1-aAaxNi1-bB′(但し、0.01≦a≦0.5、0.01
≦b≦0.5、0.5<x≦3.0、Aは、Nb、V、Ti、Zr、H
f、Mg、Ca、Sr、Sc、Y、希土類元素の少なくとも1種
の元素、B′は、Mn、B、Al、Co、Cr、Fe、Cu、Zn、M
o、W、C、Si、Ag、Cd、Ga、In、Ge、Sn、Sbの少なく
とも1種の元素)で表わされる水素吸蔵合金が用いられ
ることを特徴とする。
(D) Means for Solving the Problems In the hydrogen storage alloy electrode of the present invention, the composition formula (Ta 1-a A a ) x
Ni (however, 0.01 ≦ a ≦ 0.5, 0.5 <x ≦ 3.0, A is Nb,
A hydrogen storage alloy represented by V, Ti, Zr, Hf, Mg, Ca, Sr, Sc, Y, or at least one of rare earth elements) or a composition formula of Ta x Ni 1-b B ′ b (0.01 ≦ b ≦ 0.5, 0.5 <x ≦
3.0, B 'is Mn, B, Al, Co, Cr, Fe, Cu, Zn, Mo,
A hydrogen storage alloy represented by W, C, Si, Ag, Cd, Ga, In, Ge, Sn, or Sb), and a composition formula (Ta 1-a A a ) x Ni 1-b B ′ b (However, 0.01 ≦ a ≦ 0.5, 0.01
≦ b ≦ 0.5, 0.5 <x ≦ 3.0, A is Nb, V, Ti, Zr, H
f, Mg, Ca, Sr, Sc, Y, at least one element of rare earth elements, B 'is Mn, B, Al, Co, Cr, Fe, Cu, Zn, M
o, W, C, Si, Ag, Cd, Ga, In, Ge, Sn, or Sb).

(ホ) 作用 組成式(Ta1-aAaxNi(但し、0.01≦a≦0.5、0.5<
x≦3.0、Aは、Nb、V、Ti、Zr、Hf、Mg、Ca、Sr、S
c、Y、希土類元素の少なくとも1種の元素)で表わさ
れる水素吸蔵合金や、組成式TaxNi1-bB′(但し、0.0
1≦b≦0.5、0.5<x≦3.0、B′は、Mn、B、Al、Co、
Cr、Fe、Cu、Zn、Mo、W、C、Si、Ag、Cd、Ga、In、G
e、Sn、Sbの少なくとも1種の元素)で表わされる水素
吸蔵合金、更には組成式(Ta1-aAaxNi1-bB′(但
し、0.01≦a≦0.5、0.01≦b≦0.5、0.5<x≦3.0、A
は、Nb、V、Ti、Zr、Hf、Mg、Ca、Sr、Sc、Y、希土類
元素の少なくとも1種の元素、B′は、Mn、B、Al、C
o、Cr、Fe、Cu、Zn、Mo、W、C、Si、Ag、Cd、Ga、I
n、Ge、Sn、Sdの少なくとも1種の元素)で表される水
素吸蔵合金は、初期活性が高く、また電解液中での耐食
性にも優れている。
(E) Action Composition formula (Ta 1-a A a ) x Ni (however, 0.01 ≦ a ≦ 0.5, 0.5 <
x ≦ 3.0, A is Nb, V, Ti, Zr, Hf, Mg, Ca, Sr, S
c, Y, at least one of the rare earth elements), a hydrogen storage alloy represented by the formula: Ta x Ni 1-b B ′ b (0.0
1 ≦ b ≦ 0.5, 0.5 <x ≦ 3.0, B ′ is Mn, B, Al, Co,
Cr, Fe, Cu, Zn, Mo, W, C, Si, Ag, Cd, Ga, In, G
e, at least one element selected from the group consisting of Sn and Sb), and a composition formula (Ta 1-a A a ) x Ni 1-b B ′ b (where 0.01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.5, 0.5 <x ≦ 3.0, A
Is at least one element selected from the group consisting of Nb, V, Ti, Zr, Hf, Mg, Ca, Sr, Sc, Y and a rare earth element, and B 'is Mn, B, Al, C
o, Cr, Fe, Cu, Zn, Mo, W, C, Si, Ag, Cd, Ga, I
The hydrogen storage alloy represented by at least one element of n, Ge, Sn, and Sd) has a high initial activity and also has excellent corrosion resistance in an electrolytic solution.

そこで、これらの水素吸蔵合金からなる電極を金属水
素化物蓄電池に使用した場合、初期容量の大きな、サイ
クル寿命の長い電池を提供することが可能である。
Therefore, when electrodes made of these hydrogen storage alloys are used for metal hydride storage batteries, it is possible to provide batteries having a large initial capacity and a long cycle life.

(ヘ) 実施例 市販のV、Ni、Nb、Ta、Ti、Zr、Hf、Mg、Ca、Sc、S
r、Y、La、Mn、B、Al、Co、Cr、Fe、Cu、Zn、Mo、
W、C、Si、Ag、Cd、Ga、In、Ge、Sn、Sb等の原料(純
度3N)を各々の組成に秤量し、アルゴン雰囲気下アーク
溶解炉で溶解し、第1図に示す各種組成の水素吸蔵合金
を得た。これらの合金を機械的に50μm以下に粉砕後、
合金粉末1gに対して導電材としてのニッケル粉末0.5g
と、結着剤としてポリテトラフロロエチレン(PTFE)0.
1gを添加して混合し、ニッケルの金網に包み込み1ton/c
m2の圧力で加圧成型して、水素吸蔵合金電極を作製し
た。
(F) Example Commercially available V, Ni, Nb, Ta, Ti, Zr, Hf, Mg, Ca, Sc, S
r, Y, La, Mn, B, Al, Co, Cr, Fe, Cu, Zn, Mo,
Raw materials (purity 3N) such as W, C, Si, Ag, Cd, Ga, In, Ge, Sn, and Sb are weighed to each composition, melted in an arc melting furnace under an argon atmosphere, and various types shown in FIG. A hydrogen storage alloy having a composition was obtained. After mechanically pulverizing these alloys to 50 μm or less,
0.5g nickel powder as conductive material per 1g alloy powder
And polytetrafluoroethylene (PTFE) as a binder
Add 1g and mix, wrap in nickel wire mesh 1ton / c
Pressure molding was performed at a pressure of m 2 to produce a hydrogen storage alloy electrode.

そして、この水素吸蔵合金電極と、理論容量が600mAh
の焼結式ニッケル極とを組合せ、ポリプロピレン製ケー
スに挿入して、30重量%のKOH水溶液を電解液として注
入し、密閉することにより、金属水素化物蓄電池を作製
した。
And this hydrogen storage alloy electrode, the theoretical capacity is 600mAh
Was inserted into a polypropylene case, a 30% by weight aqueous solution of KOH was injected as an electrolytic solution, and sealed to produce a metal hydride storage battery.

このようにして作製した各電池を用い、各電池の初期
容量及び300サイクル経過後の放電容量を調べた。この
時の実験は、各電池を50mAの電流で8時間充電し、50mA
の電流で1.0Vまで放電する条件で充放電を行い、前記特
性を測定するというものである。
Using the batteries thus produced, the initial capacity of each battery and the discharge capacity after 300 cycles were examined. In this experiment, each battery was charged at a current of 50 mA for 8 hours, and then charged at 50 mA.
The charge and discharge are performed under the condition of discharging to 1.0 V with the above current, and the characteristics are measured.

この結果を、第1図に示す。第1図は、作製した水素
吸蔵合金の組成と、電池の初期容量及び300サイクル経
過後の放電容量を示している。ここで、No.1−No.3は比
較例の合金である。一方、No.4−No.29は本発明による
合金であり、合金の活性が高いために、初期から約300m
Ah/g以上の大きな放電容量が得られ、また300サイクル
経過後の容量減少も少ない。これは本発明の合金が、ア
ルカリ電解液中での耐食性に優れているので、充放電に
伴う合金の劣化が少ないためであると考えられる。
The result is shown in FIG. FIG. 1 shows the composition of the prepared hydrogen storage alloy, the initial capacity of the battery, and the discharge capacity after 300 cycles. Here, No. 1 to No. 3 are alloys of comparative examples. On the other hand, No. 4 to No. 29 are alloys according to the present invention, and since the activity of the alloy is high, about 300 m
A large discharge capacity of Ah / g or more is obtained, and the capacity decrease after 300 cycles is small. This is considered to be because the alloy of the present invention has excellent corrosion resistance in an alkaline electrolyte, and therefore, there is little deterioration of the alloy due to charge and discharge.

(ト) 発明の効果 以上、詳述した如く、組成式(Ta1-aAaxNi(但し、
0.01≦a≦0.5、0.5<x≦3.0、Aは、Nb、V、Ti、Z
r、Hf、Mg、Ca、Sr、Sc、Y、希土類元素の少なくとも
1種の元素)で表わされる水素吸蔵合金や、組成式TaxN
i1-bB′(但し、0.01≦b≦0.5、0.5<x≦3.0、B′
は、Mn、B、Al、Co、Cr、Fe、Cu、Zn、Mo、W、C、S
i、Ag、Cd、Ga、In、Ge、Sn、Sbの少なくとも1種の元
素)で表わされる水素吸蔵合金、更には組成式(Ta1-aA
axNi1-bB′(但し、0.01≦a≦0.5、0.01≦b≦0.
5、0.5<x≦3.0、Aは、Nb、V、Ti、Zr、Hf、Mg、C
a、Sr、Sc、Y、希土類元素の少なくとも1種の元素、
B′は、Mn、B、Al、Co、Cr、Fe、Cu、Zn、Mo、W、
C、Si、Ag、Cd、Ga、In、Ge、Sn、Sbの少なくとも1種
の元素)で表される水素吸蔵合金は、初期活性が高く、
耐食性に優れており、かかる合金からなる水素吸蔵合金
電極を用いた金属水素化物蓄電池は、初期特性及びサイ
クル特性に優れたものであり、その工業的価値は極めて
大きい。
(G) Effects of the Invention As described in detail above, the composition formula (Ta 1-a A a ) x Ni (however,
0.01 ≦ a ≦ 0.5, 0.5 <x ≦ 3.0, A is Nb, V, Ti, Z
r, Hf, Mg, Ca, Sr, Sc, Y, at least one of rare earth elements), a hydrogen storage alloy represented by the following formula :
i 1-b B ′ b (However, 0.01 ≦ b ≦ 0.5, 0.5 <x ≦ 3.0, B ′
Is Mn, B, Al, Co, Cr, Fe, Cu, Zn, Mo, W, C, S
a hydrogen storage alloy represented by i, Ag, Cd, Ga, In, Ge, Sn, or Sb), and a composition formula (Ta 1-a A
a) x Ni 1-b B 'b ( where, 0.01 ≦ a ≦ 0.5,0.01 ≦ b ≦ 0.
5, 0.5 <x ≦ 3.0, A is Nb, V, Ti, Zr, Hf, Mg, C
a, Sr, Sc, Y, at least one element of rare earth elements,
B ′ is Mn, B, Al, Co, Cr, Fe, Cu, Zn, Mo, W,
C, Si, Ag, Cd, Ga, In, Ge, at least one element of Sn, Sb), the hydrogen storage alloy represented by the high initial activity,
A metal hydride storage battery having excellent corrosion resistance and using a hydrogen storage alloy electrode made of such an alloy has excellent initial characteristics and cycle characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水素吸蔵合金の組成、電池の初期容量及び300
サイクル経過後の放電容量を示す図である。
FIG. 1 shows the composition of the hydrogen storage alloy, the initial capacity of the battery and the 300
FIG. 4 is a diagram showing a discharge capacity after a cycle has elapsed.

フロントページの続き (72)発明者 齋藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭61−269854(JP,A) 特開 昭60−250558(JP,A) 特開 平2−179837(JP,A) 特開 昭61−291938(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/38 C22C 19/00 - 19/03 Continued on the front page (72) Inventor Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. In-company (56) References JP-A-61-269854 (JP, A) JP-A-60-250558 (JP, A) JP-A-2-179798 (JP, A) JP-A-61-291938 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/38 C22C 19/00-19/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式(Ta1-aAaxNi(但し、0.01≦a≦
0.5、0.5<x≦3.0、Aは、Nb、V、Ti、Zr、Hf、Mg、C
a、Sr、Sc、Y、希土類元素の少なくとも1種の元素)
で表わされる水素吸蔵合金からなることを特徴とする水
素吸蔵合金電極。
A composition formula (Ta 1-a A a ) x Ni (where 0.01 ≦ a ≦
0.5, 0.5 <x ≦ 3.0, A is Nb, V, Ti, Zr, Hf, Mg, C
a, Sr, Sc, Y, at least one of rare earth elements)
A hydrogen storage alloy electrode comprising a hydrogen storage alloy represented by the formula:
【請求項2】組成式TaxNi1-bB′(但し、0.01≦b≦
0.5、0.5<x≦3.0、B′は、Mn、B、Al、Co、Cr、F
e、Cu、Zn、Mo、W、C、Si、Ag、Cd、Ga、In、Ge、S
n、Sbの少なくとも1種の元素)で表わされる水素吸蔵
合金からなることを特徴とする水素吸蔵合金電極。
2. The composition formula: Ta x Ni 1-b B ′ b (where 0.01 ≦ b ≦
0.5, 0.5 <x ≦ 3.0, B ′ is Mn, B, Al, Co, Cr, F
e, Cu, Zn, Mo, W, C, Si, Ag, Cd, Ga, In, Ge, S
a hydrogen storage alloy electrode represented by at least one element selected from n and Sb).
【請求項3】組成式(Ta1-aAaxNi1-bB′(但し、0.
01≦a≦0.5、0.01≦b≦0.5、0.5<x≦3.0、Aは、N
b、V、Ti、Zr、Hf、Mg、Ca、Sr、Sc、Y、希土類元素
の少なくとも1種の元素、B′は、Mn、B、Al、Co、C
r、Fe、Cu、Zn、Mo、W、C、Si、Ag、Cd、Ga、In、G
e、Sn、Sbの少なくとも1種の元素)で表される水素吸
蔵合金からなることを特徴とする水素吸蔵合金電極。
3. The composition formula (Ta 1-a A a ) x Ni 1-b B ′ b (where 0.
01 ≦ a ≦ 0.5, 0.01 ≦ b ≦ 0.5, 0.5 <x ≦ 3.0, A is N
b, V, Ti, Zr, Hf, Mg, Ca, Sr, Sc, Y, at least one kind of rare earth element, B 'is Mn, B, Al, Co, C
r, Fe, Cu, Zn, Mo, W, C, Si, Ag, Cd, Ga, In, G
e, at least one element selected from the group consisting of Sn and Sb).
JP2317103A 1990-11-20 1990-11-20 Hydrogen storage alloy electrode Expired - Fee Related JP2962813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317103A JP2962813B2 (en) 1990-11-20 1990-11-20 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317103A JP2962813B2 (en) 1990-11-20 1990-11-20 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH04187734A JPH04187734A (en) 1992-07-06
JP2962813B2 true JP2962813B2 (en) 1999-10-12

Family

ID=18084475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317103A Expired - Fee Related JP2962813B2 (en) 1990-11-20 1990-11-20 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2962813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69402792T2 (en) * 1993-09-14 1997-12-04 Hitachi Chemical Co Ltd Scandium-containing hydrogen absorption alloy and hydrogen absorption electrode
US6576069B1 (en) * 1998-05-22 2003-06-10 Cabot Corporation Tantalum-silicon alloys and products containing the same and processes of making the same
CN109536804B (en) * 2018-12-05 2020-07-03 湖北第二师范学院 Tantalum alloy, diamond-like carbon coating tantalum alloy bone claw for biomedical implantation and preparation method thereof

Also Published As

Publication number Publication date
JPH04187734A (en) 1992-07-06

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0756803B2 (en) Sealed alkaline storage battery
JPH0821379B2 (en) Hydrogen storage electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2595967B2 (en) Hydrogen storage electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JPS62271349A (en) Hydrogen occlusion electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JP2828680B2 (en) Hydrogen storage alloy electrode
JPS62271348A (en) Hydrogen occlusion electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2847874B2 (en) Hydrogen storage electrode
JPS62249358A (en) Hydrogen storage electrode
JP2680566B2 (en) Hydrogen storage electrode
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2962765B2 (en) Sealed alkaline storage battery
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JP3653399B2 (en) Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same
JPH06145849A (en) Hydrogen storage alloy electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JP3276677B2 (en) Hydrogen storage alloy electrode
JP2966467B2 (en) Method for producing electrode material for alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees