JP2828680B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP2828680B2
JP2828680B2 JP1227989A JP22798989A JP2828680B2 JP 2828680 B2 JP2828680 B2 JP 2828680B2 JP 1227989 A JP1227989 A JP 1227989A JP 22798989 A JP22798989 A JP 22798989A JP 2828680 B2 JP2828680 B2 JP 2828680B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
battery
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1227989A
Other languages
Japanese (ja)
Other versions
JPH0393158A (en
Inventor
修弘 古川
誠司 亀岡
光造 野上
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1227989A priority Critical patent/JP2828680B2/en
Publication of JPH0393158A publication Critical patent/JPH0393158A/en
Application granted granted Critical
Publication of JP2828680B2 publication Critical patent/JP2828680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ二次電池の負極として用いられる
水素吸蔵合金電極に関する。
Description: TECHNICAL FIELD The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline secondary battery.

従来の技術 可逆的に水素を吸蔵,放出する水素吸蔵合金を負極材
料として用いたアルカリ二次電池、例えばニッケル正極
と組み合わせたニッケル−水素二次電池が、ニッケル−
カドミウム二次電池に代わる新しいアルカリ二次電池と
して近年研究開発が盛んに行われている。上記アルカリ
二次電池に用いる水素吸蔵合金としては、希土類−ニッ
ケル系合金,マグネシウム−ニッケル系合金,チタン−
ニッケル系合金等が代表的なものとして知られている。
2. Description of the Related Art An alkaline secondary battery using a hydrogen storage alloy that reversibly stores and releases hydrogen as a negative electrode material, for example, a nickel-hydrogen secondary battery combined with a nickel positive electrode,
In recent years, research and development have been actively conducted as a new alkaline secondary battery replacing the cadmium secondary battery. Examples of the hydrogen storage alloy used for the alkaline secondary battery include rare earth-nickel alloys, magnesium-nickel alloys, and titanium-nickel alloys.
Nickel-based alloys and the like are known as typical ones.

ここで、上記合金のうち希土類−ニッケル系合金は、
アルカリ電解液中で比較的安定であり、且つ活性化が容
易であると共に、常温常圧付近で水素を吸蔵・放出する
等の特長を有しているので最も負極材料としては優れて
いる。しかし、水素吸蔵放出に伴う微粉化が激しい等の
課題がある。
Here, the rare earth-nickel alloy among the above alloys is
It is most excellent as a negative electrode material because it is relatively stable in an alkaline electrolyte, easy to activate, and has features such as storing and releasing hydrogen near normal temperature and normal pressure. However, there are problems such as severe pulverization accompanying hydrogen storage and release.

一方、前記マグネシウム−ニッケル系合金,チタン−
ニッケル系合金等は、水素吸蔵量が上記希土類−ニッケ
ル系合金よりも大きくて微粉化され難い等の特長を有し
ているが、アルカリ電解液や酸素ガスによって腐食され
易く、加えて活性化が遅い等の課題を有している。
On the other hand, the magnesium-nickel alloy, titanium-
Nickel-based alloys and the like have a feature that the hydrogen storage amount is larger than that of the rare earth-nickel-based alloys and are hardly pulverized.However, they are easily corroded by an alkaline electrolyte or oxygen gas, and additionally activated. It has problems such as slowness.

発明が解決しようとする課題 本発明はかかる現状に鑑みてなされたものであり、ア
ルカリ電解液中で安定であると共に、水素吸蔵量が大き
く且つ水素吸蔵放出に伴う微粉化の少ない水素吸蔵合金
電極を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and is a hydrogen storage alloy electrode that is stable in an alkaline electrolyte, has a large hydrogen storage amount, and has a small amount of fine powder associated with hydrogen storage and release. The purpose is to provide.

課題を解決するための手段 本発明は上記目的を達成するために、CaCu5型の結晶
構造を有する金属間化合物からなる第1の合金相中に、
CaCu5型以外の結晶構造を有する金属間化合物からなる
第2の合金相が分散した多相構造の水素吸蔵合金からな
る水素吸蔵合金から成る水素吸蔵合金電極であって、前
記CaCu5型の結晶構造を有する金属間化合物は、Sc、
Y、La、Ce、Pr、Nd及びSmから成る群より選択される少
なくとも1種の希土類元素と、Cr、Mn、Fe、Co、Ni、C
u、Al及びSiから成る群より選択される少なくとも1種
の元素とから構成され、前記CaCu5型以外の結晶構造を
有する金属間化合物は、Mg、Ti、Zr、V、Nb及びTaから
成る群より選択される少なくとも1種の元素と、Cr、M
n、Fe、Co、Ni、Cu、Al及びSiから成る群より選択され
る少なくとも1種の元素とから構成されると共に、可逆
的に水素を吸蔵放出しうるものであって、前記第2の合
金相が、前記第1の合金相よりも硬いことを特徴とする
水素吸蔵合金電極である。
Means for Solving the Problems To achieve the above object, the present invention provides a first alloy phase comprising an intermetallic compound having a CaCu 5- type crystal structure,
A hydrogen storage alloy electrode comprising a hydrogen storage alloy comprising a multiphase hydrogen storage alloy in which a second alloy phase comprising an intermetallic compound having a crystal structure other than CaCu 5 type is dispersed, wherein the CaCu 5 type crystal Intermetallic compound having a structure, Sc,
At least one rare earth element selected from the group consisting of Y, La, Ce, Pr, Nd and Sm, and Cr, Mn, Fe, Co, Ni, C
u, Al and at least one element selected from the group consisting of Si, the intermetallic compound having a crystal structure other than the CaCu 5- type, comprises Mg, Ti, Zr, V, Nb and Ta At least one element selected from the group, Cr, M
n, Fe, Co, Ni, Cu, Al and at least one element selected from the group consisting of Si and capable of reversibly storing and releasing hydrogen, wherein the second The hydrogen storage alloy electrode, wherein the alloy phase is harder than the first alloy phase.

作 用 CaCu5型金属間化合物の溶湯中に、Mg,Ti,Zn等の元素
或いはこれらの元素からなる金属間化合物を添加して鋳
造した合金では、CaCu5型の結晶構造を有する金属化合
物からなる合金相中にTi2Ni型,MgNi型,ZrMn2型等の金属
間化合物相が析出,分散した多相構造となる。
Effect In alloys cast by adding elements such as Mg, Ti, Zn or intermetallic compounds composed of these elements to the molten CaCu 5- type intermetallic compound, the metal compound having a CaCu 5- type crystal structure is An intermetallic compound phase such as Ti 2 Ni type, MgNi type, or ZrMn 2 type is precipitated and dispersed in the resulting alloy phase to form a multiphase structure.

このように、CaCu5型の結晶構造を有する金属間化合
物からなる合金相が母相となり母相よりも硬い異種の金
属間化合物相が分散すれば、合金全体が硬化して機械的
強度が増加するので、水素吸蔵放出に伴う微粉化が抑制
される。
In this way, if the alloy phase composed of the intermetallic compound having the CaCu 5- type crystal structure becomes the parent phase and the dissimilar intermetallic compound phase that is harder than the parent phase is dispersed, the entire alloy hardens and the mechanical strength increases. Therefore, pulverization accompanying hydrogen storage and release is suppressed.

加えて、Ti,Zr,Mg等をベースとした金属間化合物相は
水素吸蔵量が大きく、且つこのような化合物から成る合
金相はCaCu5型金属間化合物からなる合金相に包含され
た構造となるので、アルカリ電解液や酸素等の腐食の原
因となる雰囲気から保護される。この結果、合金全体と
して水素吸蔵量が増加して、合金電極の充放電反応が進
行し易くなるため、急速充電時の充電効率が上昇する。
In addition, the intermetallic compound phase based on Ti, Zr, Mg, etc. has a large hydrogen storage capacity, and the alloy phase composed of such a compound has a structure included in the alloy phase composed of CaCu 5 type intermetallic compound. Therefore, it is protected from an atmosphere that causes corrosion such as an alkaline electrolyte and oxygen. As a result, the hydrogen storage amount of the entire alloy increases, and the charging / discharging reaction of the alloy electrode easily proceeds, so that the charging efficiency at the time of rapid charging increases.

実 施 例 〔実施例I〕 先ず、市販のMm(ミッシュメタル)の塊状のNi,Co,A
l,Mn,Tiとを下記第1表〔(A1)合金〕に示す組成比に
秤量した後、これらをアルゴン不活性雰囲気アーク溶解
炉内に装填する。次に、公知のアーク放電処理を施して
合金を作成する。
Examples [Example I] First, a mass of commercially available Mm (Misch metal) Ni, Co, A
After weighing l, Mn, and Ti to the composition ratio shown in Table 1 [(A 1 ) alloy], they are charged into an arc melting furnace in an inert atmosphere of argon. Next, an alloy is prepared by performing a known arc discharge process.

次いで、このようにして作成した合金を機械的に粉砕
して平均粒径50μmの粉末とした後、これに結着剤とし
てポリテトラフルオロエチレン(PTFE)粉末10重量%を
添加し、これらを混合してペーストを作成する。この
後、このペーストをニッケルメッシュで包み込んで1ton
/cm2の圧力で加圧成型することによって水素吸蔵合金電
極を得た。尚、電極1個当りに含有される合金は1.0gで
ある。
Next, the alloy thus prepared was mechanically pulverized into a powder having an average particle diameter of 50 μm, and 10% by weight of polytetrafluoroethylene (PTFE) powder was added as a binder to the powder. To create a paste. After this, wrap this paste in nickel mesh and
A hydrogen storage alloy electrode was obtained by pressure molding at a pressure of / cm 2 . The amount of alloy contained per electrode is 1.0 g.

このようにして作製した電極を、以下(A1)電極と称
する。
The electrode thus fabricated is hereinafter referred to as (A 1 ) electrode.

しかる後、上記電極と電極容量が1000mAhのニッケル
正極とを組み合わせてニッケル−水素電池を作製した。
尚、この試験電池は開放系であり、且つ電解液には30wt
%KOH水溶液を用いている。
Thereafter, a nickel-hydrogen battery was manufactured by combining the above electrode and a nickel positive electrode having an electrode capacity of 1000 mAh.
This test battery is an open system and the electrolyte contains 30 wt.
% KOH aqueous solution is used.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II〜XI〕(Examples II to XI)

原料の種類(Cu,Zr,Mg,V,Nd及びTaを用いる)と組成
比とを下記第1表に示すように変えて作成する他は、上
記実施例Iと同様にして電極と、この電極を用いた電池
とを作製した。
An electrode and a material were prepared in the same manner as in Example I above, except that the raw materials (Cu, Zr, Mg, V, Nd, and Ta were used) and the composition ratio were changed as shown in Table 1 below. A battery using the electrode was manufactured.

このようにして作製した電極及び電池を、それぞれ以
下(A2)電極〜(A11)電極及び(A2)電池〜(A11)電
池と称する。
The electrodes and batteries thus manufactured are hereinafter referred to as (A 2 ) electrode to (A 11 ) electrode and (A 2 ) battery to (A 11 ) battery, respectively.

〔比較例〕(Comparative example)

原料としてTiを用いない他は、上記実施例Iと同様に
して電極と、この電極を用いた電池とを作製した。
An electrode and a battery using this electrode were produced in the same manner as in Example I except that Ti was not used as a raw material.

このようにして作製した電極及び電池を、それぞれ以
下(X)電極及び(X)電池と称する。
The electrode and the battery thus manufactured are hereinafter referred to as (X) electrode and (X) battery, respectively.

〔実験I〕 上記本発明の水素吸蔵合金電極を用いた(A1)電池〜
(A11)電池及び比較例の水素吸蔵合金電極を用いた
(X)電池の充放電サイクル試験(環境温度:20℃)を
行った。
[Experiment I] (A 1 ) battery using the above hydrogen storage alloy electrode of the present invention
(A 11) cells and using a hydrogen storage alloy electrode of Comparative Example (X) Battery charge-discharge cycle test (environmental temperature: 20 ° C.) was carried out.

尚、試験条件は10サイクルまでと、11サイクル以降と
で条件を変えている。即ち、最初の10サイクルは水素吸
蔵合金の電極容量を測定するため、充電電流50mAで6時
間充電し、放電電流50mAで電池電圧が1.0Vに達するまで
放電するという条件で行った。一方、11サイクル目以降
は、合金の耐蝕性加速試験のため、充電電流50mAで2時
間充電し、放電電流50mAで電池電圧が−0.2Vに達するま
で放電するという条件で行った。
The test conditions were changed between 10 cycles and after 11 cycles. That is, in order to measure the electrode capacity of the hydrogen storage alloy, the first 10 cycles were performed under the conditions that the battery was charged at a charging current of 50 mA for 6 hours and then discharged at a discharging current of 50 mA until the battery voltage reached 1.0 V. On the other hand, after the eleventh cycle, the alloy was charged at a charging current of 50 mA for 2 hours and discharged at a discharging current of 50 mA until the battery voltage reached -0.2 V for the corrosion resistance acceleration test of the alloy.

ここで、10サイクル目における本発明の合金と比較例
の合金との単位重量当りの電極容量を、下記第2表に示
す。
Here, the electrode capacity per unit weight of the alloy of the present invention and the alloy of the comparative example in the tenth cycle is shown in Table 2 below.

上記第2表に示すように、本発明合金の単位重量当り
の電極容量は、比較合金に比べて約20%から約33%増加
していることが認められる。
As shown in Table 2 above, it is recognized that the electrode capacity per unit weight of the alloy of the present invention is increased by about 20% to about 33% as compared with the comparative alloy.

次に11サイクル目以降の充放電サイクル試験のサイク
ル数と電極容量(10サイクル目の容量を100%とする)
との関係を第1図に示す。
Next, the number of cycles and electrode capacity of the charge / discharge cycle test after the 11th cycle (capacity at the 10th cycle is 100%)
Is shown in FIG.

第1図に示すように、比較例の合金を用いた(X)電
池では約30サイクル目から電極容量の低下が顕著とな
り、約50サイクル目での電極容量は10サイクル目での電
極容量の約50%まで低下することが認められる。これに
対して、本発明の合金を用いた(A1)電池〜(A11)電
池では100サイクルを経過しても10サイクル目の容量の
約75%から約85%の容量を維持していることが認められ
る。
As shown in FIG. 1, in the battery (X) using the alloy of the comparative example, the decrease in the electrode capacity became remarkable from about the 30th cycle, and the electrode capacity at the 50th cycle became smaller than the electrode capacity at the 10th cycle. It is observed to drop to about 50%. On the other hand, the batteries (A 1 ) to (A 11 ) using the alloy of the present invention maintain a capacity of about 75% to about 85% of the capacity at the 10th cycle even after 100 cycles. Is admitted.

これらのことから、本発明の合金を用いた電池は比較
例の合金を用いた電池に比べて、電極容量が大きく、且
つ充放電サイクル寿命も長くなることが伺える。
These results indicate that the battery using the alloy of the present invention has a larger electrode capacity and a longer charge / discharge cycle life than the battery using the alloy of the comparative example.

〔観察I〕[Observation I]

100サイクルを経過後に、(A1)電池〜(A11)電池と
(X)電池との電極を観察した。その結果、(X)電池
の電極は微粉化により合金粒子が脱落していることが認
められた。これに対して、(A1)電池〜(A11)電池の
電極では合金粒子の脱落は全く認められず、電極のSEM
像からも合金粒子の顕著な微粉化は観察されなかった。
After 100 cycles, the electrodes of the batteries (A 1 ) to (A 11 ) and the battery (X) were observed. As a result, it was recognized that the alloy particles of the (X) battery electrode were dropped due to pulverization. On the other hand, in the electrodes of the (A 1 ) battery to the (A 11 ) battery, no alloy particles fell off at all, and the SEM
No significant pulverization of the alloy particles was observed from the images.

〔観察II〕(Observation II)

EPMAによって、本発明の(A1)合金〜(A11)合金の
表面の組織観察を行った。その結果、本発明の合金では
CaCu5型金属間化合物を主体とする希土類−Ni系合金相
中にTi−Ni系合金相や、Mg−Ni系合金相等が分散し、相
分離している様子が認められた。
By EPMA, it was (A 1) Alloy ~ (A 11) structural observation of the surface of the alloy of the present invention. As a result, in the alloy of the present invention,
It was observed that the Ti-Ni-based alloy phase, the Mg-Ni-based alloy phase, and the like were dispersed in the rare earth-Ni-based alloy phase mainly composed of the CaCu type 5 intermetallic compound and were separated.

ここで、Ti−Ni系合金やMg−Ni系合金は本来大きな水
素吸蔵放出能力を示すが、アルカリ電解液中で電極とし
て用いた場合には、表面にTiやMg等の不導体酸化物や水
酸化物が形成されて電極反応が疎害される。ところが、
本発明の合金では、このような水素吸蔵量は大きいが耐
蝕性に劣る金属相が、耐蝕性の比較的良好な希土類−Ni
系合金相中に分散しているので、外部雰囲気から保護さ
れる。したがって、前記実験Iに示すように、本発明の
合金は比較例の合金より大きな電極容量が得られたもの
と考えられる。
Here, Ti-Ni-based alloys and Mg-Ni-based alloys inherently exhibit large hydrogen storage / release capabilities, but when used as electrodes in alkaline electrolytes, non-conductive oxides such as Ti and Mg on the surface Hydroxides are formed and the electrode reaction is harmed. However,
In the alloy of the present invention, such a metal phase having a large hydrogen storage amount but poor corrosion resistance is a rare earth-Ni alloy having relatively good corrosion resistance.
Since it is dispersed in the system alloy phase, it is protected from the external atmosphere. Therefore, as shown in Experiment I above, it is considered that the alloy of the present invention obtained a larger electrode capacity than the alloy of the comparative example.

加えて、本発明の合金は多相構造の合金であり、前述
の析出分散硬化により合金の機械強度が増すので、水素
吸蔵放出に伴う微粉化が抑制される。したがって、前記
実験Iに示すように、本発明の合金は単一相構造の比較
例の合金よりも充放電サイクル特性が向上したと考えら
れる。
In addition, the alloy of the present invention is an alloy having a multi-phase structure, and the above-mentioned precipitation dispersion hardening increases the mechanical strength of the alloy, so that pulverization accompanying hydrogen storage and release is suppressed. Therefore, as shown in Experiment I above, it is considered that the alloy of the present invention had improved charge / discharge cycle characteristics as compared with the alloy of the comparative example having a single-phase structure.

〔実験II〕(Experiment II)

本発明の合金を用いた(A1)電池〜(A11)電池と比
較例の合金を用いた(X)電池との急速充電試験(環境
温度:20℃)を行ったので、その結果を下記第3表に示
す。尚、試験条件は充電電流50mAで6時間充電し、放電
電流50mAで電池電圧が1.0Vまで放電する充放電試験を10
サイクル行った後、充電電流200mAで1.2時間充電し、放
電電流50mAで電池電圧が1.0Vに達するまで放電するとい
う条件である。また、第3表は充電電流50mAの場合の容
量を100%とした場合に、充電電流200mAにおける電極容
量の割合を示している。
A battery (A 1 ) using the alloy of the present invention to a battery (A 11 ) and a battery (X) using the alloy of the comparative example were subjected to a quick charge test (environmental temperature: 20 ° C.). The results are shown in Table 3 below. The test conditions were as follows: a charge / discharge test was conducted in which the battery was charged for 6 hours at a charge current of 50 mA and the battery voltage was discharged to 1.0 V at a discharge current of 50 mA.
After the cycle, the battery is charged at a charging current of 200 mA for 1.2 hours, and discharged at a discharging current of 50 mA until the battery voltage reaches 1.0 V. Table 3 shows the ratio of the electrode capacity at a charging current of 200 mA when the capacity at a charging current of 50 mA is 100%.

上記第3表より、(X)合金では放電容量が18%も減
少するのに対して、(A1)合金〜(A11)合金では高々
数%しか減少しないことが認められる。これは、(A1
合金〜(A11)合金では比較例の(X)合金に比べて充
放電反応が円滑に進行するため、急速充電時の充電効率
が向上することによるものと考えられる。
From the Table 3, whereas also reduced by 18% discharge capacity in (X) alloy, it is recognized that (A 1) only decreased by only several percent in the alloy ~ (A 11) alloy. This is (A 1 )
Since the alloy ~ (A 11) alloy proceeds smoothly charging and discharging reactions compared to (X) alloy of the comparative example, charging efficiency during fast charge is considered to be due to improved.

尚、本発明にかかる合金は、CaCu5型金属間化合物か
らなる合金相中にCaCu5型以外の結晶構造をもち、かつ
水素吸蔵,放出能力をもつ金属間化合物相が分散した多
相構造を有する合金全般に関するものであり、実施例に
示した合金に限定されるものではない。具体的には、Ca
Cu5型金属間化合物からなる合金相は、Sc,Y,La,Ce,Pr,N
d及びSmから成る群より選択される少なくとも1種の希
土類元素とCr,Mn,Fe,Co,Ni,Cu,Al及びSiから成る群より
選択される少なくとも1種の元素から構成されていれば
よく、CaCu5型以外の結晶構造を有する金属間化合物か
らなる合金相はMg,Ti,Zr,V,Nd及びTaから成る群より選
択される少なくとも1種の元素とCr,Mn,Fe,Co,Ni,Cu,Al
及びSiから成る群より選択される少なくとも1種の元素
から構成されていればよい。
Incidentally, the alloy according to the present invention has a crystal structure other than CaCu 5 type alloy phase composed of CaCu 5 type intermetallic compound, and hydrogen occlusion, the multi-phase structure intermetallic compound phase is dispersed with release capability The present invention relates to the alloys in general and is not limited to the alloys shown in the examples. Specifically, Ca
The alloy phase composed of Cu 5 type intermetallic compound is Sc, Y, La, Ce, Pr, N
If it is composed of at least one rare earth element selected from the group consisting of d and Sm and at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Al and Si Well, the alloy phase composed of an intermetallic compound having a crystal structure other than CaCu 5 type is at least one element selected from the group consisting of Mg, Ti, Zr, V, Nd and Ta and Cr, Mn, Fe, Co , Ni, Cu, Al
And at least one element selected from the group consisting of Si and Si.

また、本発明の合金は複数の金属間化合物から構成さ
れる多相構造である場合にのみその効果が認められるの
であって、各々の金属間化合物の単一相からなる合金粉
体を混合した場合には上記の効果を得ることはできな
い。
Further, the effect of the alloy of the present invention is recognized only when the alloy has a multi-phase structure composed of a plurality of intermetallic compounds, and alloy powder composed of a single phase of each intermetallic compound is mixed. In such a case, the above effects cannot be obtained.

更に、上記実施例においては合金作成にアーク溶解炉
を用いたが、高周波溶解炉等を用いることも可能であ
る。
Furthermore, in the above embodiment, an arc melting furnace was used for alloy preparation, but a high-frequency melting furnace or the like may be used.

加えて、上記実施例においては合金の原料として塊状
のものを用いたが粒状のものを用いることも可能であ
る。但しこの場合には、アーク溶解炉内で原料粉が飛散
するのを防止すべく、プレス成形しておくのが望まし
い。
In addition, in the above embodiment, a lump material is used as a raw material of the alloy, but a granular material may be used. However, in this case, it is desirable to press-mold the raw material powder in order to prevent scattering of the raw material powder in the arc melting furnace.

発明の効果 以上説明したように、本発明の合金は水素吸蔵量が大
きく、アルカリ電解液中で安定で、且つ水素吸蔵放出に
伴う微粉化が少ない。したがって、本発明の合金を用い
た電池ではサイクル特性や急速充電特性を飛散的に向上
させることができ、その工業的価値は極めて大きい。
Effect of the Invention As described above, the alloy of the present invention has a large hydrogen storage amount, is stable in an alkaline electrolyte, and has little pulverization due to hydrogen storage and release. Therefore, in the battery using the alloy of the present invention, the cycle characteristics and the rapid charging characteristics can be spattered, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の(A1)電池〜(A11)電池と比較例の
(X)電池との充放電サイクル数と電極容量との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles and the electrode capacity of the batteries (A 1 ) to (A 11 ) of the present invention and the battery (X) of the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田所 幹朗 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平2−12765(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 H01M 4/26 H01M 4/38──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Mikiro Tadokoro 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-2-12765 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/24 H01M 4/26 H01M 4/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CaCu5型の結晶構造を有する金属間化合物
からなる第1の合金相中に、CaCu5型以外の結晶構造を
有する金属間化合物からなる第2の合金相が分散した多
相構造の水素吸蔵合金からなる水素吸蔵合金から成る水
素吸蔵合金電極であって、 前記CaCu5型の結晶構造を有する金属間化合物は、 Sc、Y、La、Ce、Pr、Nd及びSmから成る群より選択され
る少なくとも1種の希土類元素と、Cr、Mn、Fe、Co、N
i、Cu、Al及びSiから成る群より選択される少なくとも
1種の元素とから構成され、 前記CaCu5型以外の結晶構造を有する金属間化合物は、 Mg、Ti、Zr、V、Nb及びTaから成る群より選択される少
なくとも1種の元素と、Cr、Mn、Fe、Co、Ni、Cu、Al及
びSiから成る群より選択される少なくとも1種の元素と
から構成されると共に、可逆的に水素を吸蔵放出しうる
ものであって、 前記第2の合金相が、前記第1の合金相よりも硬いこと
を特徴とする水素吸蔵合金電極。
To 1. A first alloy phase consisting of an intermetallic compound having a crystal structure of CaCu 5 type, the second alloy phase consisting of an intermetallic compound having a crystal structure other than CaCu 5 type are dispersed multiphase A hydrogen storage alloy electrode comprising a hydrogen storage alloy comprising a hydrogen storage alloy having a structure, wherein the intermetallic compound having a CaCu 5- type crystal structure is a group consisting of Sc, Y, La, Ce, Pr, Nd and Sm. At least one rare earth element selected from the group consisting of Cr, Mn, Fe, Co, N
i, Cu, Al and at least one element selected from the group consisting of Si, the intermetallic compound having a crystal structure other than the CaCu 5- type, Mg, Ti, Zr, V, Nb and Ta And at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Al and Si, and reversible. A hydrogen storage alloy electrode, wherein the second alloy phase is harder than the first alloy phase.
JP1227989A 1989-09-01 1989-09-01 Hydrogen storage alloy electrode Expired - Lifetime JP2828680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227989A JP2828680B2 (en) 1989-09-01 1989-09-01 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227989A JP2828680B2 (en) 1989-09-01 1989-09-01 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH0393158A JPH0393158A (en) 1991-04-18
JP2828680B2 true JP2828680B2 (en) 1998-11-25

Family

ID=16869423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227989A Expired - Lifetime JP2828680B2 (en) 1989-09-01 1989-09-01 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2828680B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393159A (en) * 1989-09-05 1991-04-18 Sanyo Electric Co Ltd Hydrogen storage alloy
US5376474A (en) * 1993-02-05 1994-12-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy for a negative electrode and manufacturing method therefor
US6660431B1 (en) 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212765A (en) * 1988-06-29 1990-01-17 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage electrode

Also Published As

Publication number Publication date
JPH0393158A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0514017B2 (en)
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3123049B2 (en) Hydrogen storage alloy electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP2828680B2 (en) Hydrogen storage alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPS5944748B2 (en) Chikudenchi
JPH0685323B2 (en) Hydrogen storage electrode
JPS62271349A (en) Hydrogen occlusion electrode
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2962814B2 (en) Hydrogen storage alloy electrode
JPS6119063A (en) Hydrogen occlusion electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPS62271348A (en) Hydrogen occlusion electrode
JP2680566B2 (en) Hydrogen storage electrode
JP3533766B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH04187733A (en) Hydrogen storage alloy electrode
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0675398B2 (en) Sealed alkaline storage battery
JP2715434B2 (en) Hydrogen storage alloy electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JP2680620B2 (en) Method of manufacturing alkaline storage battery and hydrogen storage alloy for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

EXPY Cancellation because of completion of term