JPH0794176A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH0794176A
JPH0794176A JP5236189A JP23618993A JPH0794176A JP H0794176 A JPH0794176 A JP H0794176A JP 5236189 A JP5236189 A JP 5236189A JP 23618993 A JP23618993 A JP 23618993A JP H0794176 A JPH0794176 A JP H0794176A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode
powder
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5236189A
Other languages
Japanese (ja)
Inventor
Gohei Suzuki
剛平 鈴木
Katsunori Komori
克典 児守
Seiji Yamaguchi
誠二 山口
Toru Yamamoto
徹 山本
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5236189A priority Critical patent/JPH0794176A/en
Publication of JPH0794176A publication Critical patent/JPH0794176A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a metal oxide-hydrogen storage battery having lower cost than a conventional battery and yet having equivalent function by restraining an extent of refining alloy powder for the improvement of a hydrogen storage electrode through the use of a hydrogen storage alloy containing a less cobalt amount in an alloy composition than the conventional case. CONSTITUTION:The predetermined amount of one or more types of powder of iron oxide Fe2O3 and FeOO is added to hydrogen storage alloy powder. As a result, the aforementioned iron oxide powder enters the crack of the allay powder generated due to repeated charging and discharging processes. An extent of refining the alloy power is thereby restrained, and the lifetime of a hydrogen storage electrode can be extended to such level as similar to the conventional case. An amount of the iron oxide to be added is preferably between 0.1 pts.wt, and 10 pts.wt. in consideration of a balance between electrode lifetime characteristics and initial capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属酸化物−水素蓄電池
の負極に用いる水素吸蔵電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode used as a negative electrode of a metal oxide-hydrogen storage battery.

【0002】[0002]

【従来の技術】可逆的に水素を吸蔵・放出する水素吸蔵
合金粉末と、パンチングメタルのような2次元多孔構造
あるいは発泡状金属多孔体のような3次元多孔構造を有
する集電体で構成される水素吸蔵電極は、一般的に次の
方法によって製造されていた。即ち、合金組成に合うよ
うに各種金属を秤量し、アーク溶解炉あるいは高周波溶
解炉などを用いて各種金属の混合物を溶解させ、所期の
組成を有する合金を製造し、この合金をさらに粉砕して
300メッシュ以下の粒径を有する粉末とする。この粉
末を水やカルボキシメチルセルロース(CMC)などの
結着剤・増粘剤とともに混練してペースト化し、例えば
パンチングメタルなどの電極支持体内に充填した後加圧
し、水素吸蔵電極としていた。
2. Description of the Related Art A hydrogen storage alloy powder that reversibly stores and releases hydrogen, and a current collector having a two-dimensional porous structure such as punching metal or a three-dimensional porous structure such as a foamed metal porous body. The hydrogen storage electrode according to the present invention is generally manufactured by the following method. That is, various metals are weighed so as to match the alloy composition, a mixture of various metals is melted by using an arc melting furnace or a high frequency melting furnace, an alloy having a desired composition is manufactured, and this alloy is further crushed. To obtain a powder having a particle size of 300 mesh or less. This powder was kneaded with water and a binder / thickener such as carboxymethyl cellulose (CMC) to form a paste, which was filled in an electrode support such as punching metal and then pressed to form a hydrogen storage electrode.

【0003】上記電極に用いられる水素吸蔵合金粉末
は、水素の吸蔵・放出(電極反応としては充放電)の繰
り返しに伴い、結晶格子の変化による応力割れを起こし
て微細化し、水素との反応サイトが増加して、初期の電
極特性(放電容量、高率放電特性)は向上する。しかし
合金組成によって異なるが、過度に微細化が起こった場
合、充放電の繰り返しにより合金粉末間、あるいは合金
粉末と集電体との間の接触が悪くなり、電極の導電性が
低下して放電容量が減少する傾向がある。
The hydrogen-absorbing alloy powder used in the above-mentioned electrode is refined by stress cracking due to a change in crystal lattice due to changes in crystal lattice due to repeated storage and release of hydrogen (charge / discharge as an electrode reaction), and a reaction site with hydrogen. , And the initial electrode characteristics (discharge capacity, high rate discharge characteristics) are improved. However, depending on the alloy composition, if excessive miniaturization occurs, the contact between alloy powders or between the alloy powder and the current collector will deteriorate due to repeated charging and discharging, and the conductivity of the electrode will decrease, resulting in discharge. Capacity tends to decrease.

【0004】従来、この問題を解決する手段として、合
金組成の一部を、例えばNiに対し0.5〜1.0原子
のCo間で置換することにより微細化を抑える方法がと
られてきた。但しCoは高価で、埋蔵量も少ないため、
Co置換量の少ない合金組成が望まれてきた。
Conventionally, as a means for solving this problem, a method has been adopted in which a part of the alloy composition is replaced by, for example, Co of 0.5 to 1.0 atom with respect to Ni to suppress the refinement. . However, since Co is expensive and has a small reserve,
An alloy composition with a small amount of Co substitution has been desired.

【0005】しかし、Co置換量を従来より単に減少さ
せた場合、合金粉末の微細化により寿命特性は大幅に低
下する。また、Coを他の元素に置換した場合、初期容
量・寿命特性等の電極特性をバランス良く満足する合金
組成を見つけることが非常に困難である。即ち、Co置
換量を減らすという合金組成面からのアプローチだけ
で、従来と同等の特性を有する水素吸蔵電極を得ること
は困難である。
However, if the amount of Co substitution is simply reduced from the conventional value, the life characteristics are greatly reduced due to the refinement of the alloy powder. Further, when Co is replaced with another element, it is very difficult to find an alloy composition that satisfies the electrode characteristics such as initial capacity and life characteristics in a well-balanced manner. That is, it is difficult to obtain a hydrogen storage electrode having the same characteristics as conventional ones only by taking an alloy composition approach of reducing the Co substitution amount.

【0006】一方、電池特性の改善を目的として、C
o、Cu、Bi酸化物を添加する試みもなされてきた。
(例えば特公平1−283767、特公平2−2395
66、特公平2−306539など)。しかし、従来よ
りCo量の少ない合金に関しては、これらの添加物を添
加しても寿命特性の向上は不可能であった。
On the other hand, in order to improve the battery characteristics, C
Attempts have also been made to add o, Cu, Bi oxides.
(For example, Japanese Patent Publication No. 1-283767, Japanese Patent Publication No. 2-2395)
66, Japanese Patent Publication No. 306539, etc.). However, it has been impossible to improve the life characteristics of alloys having a smaller amount of Co than in the past even if these additives are added.

【0007】[0007]

【発明が解決しようとする課題】以上のように、コスト
の高いCoの置換量が少ない合金を用いた水素吸蔵電極
は、寿命特性が大幅に低下するという課題があった。本
発明はCo置換量の少ない合金を用い、かつ他の電極特
性が従来と同等以上である水素吸蔵電極を備えた、低コ
ストな金属酸化物−水素蓄電池を実現しようとするもの
である。
As described above, the hydrogen storage electrode using an alloy, which is expensive and has a small amount of Co substitution, has a problem that the life characteristics are significantly reduced. The present invention intends to realize a low-cost metal oxide-hydrogen storage battery using an alloy having a small amount of Co substitution and having a hydrogen storage electrode having other electrode characteristics equal to or higher than those of the conventional one.

【0008】[0008]

【課題を解決するための手段】本発明は前記の課題を解
決するために、電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末に、酸化鉄Fe2 3 及びFeOOHの粉
末の内少なくとも1種を添加して水素吸蔵電極としたも
のである。また、前記酸化鉄の添加量は、寿命特性と初
期容量のバランスから、水素吸蔵合金粉末に対して0.
1〜10重量%が好ましい。
In order to solve the above-mentioned problems, the present invention provides a hydrogen storage alloy powder that electrochemically stores and releases hydrogen, at least iron oxide Fe 2 O 3 and FeOOH powder. One is added to form a hydrogen storage electrode. Further, the addition amount of the iron oxide is 0. 0 with respect to the hydrogen storage alloy powder from the balance of life characteristics and initial capacity.
1 to 10% by weight is preferable.

【0009】[0009]

【作用】本発明は前記するように、水素吸蔵合金粉末に
酸化鉄を添加した水素吸蔵電極であり、酸化鉄Fe2
3 及びFeOOHの粉末の内少なくとも1種の添加によ
り水素吸蔵合金粉末の微細化が抑制される。その機構に
ついては詳細に解析されていないが、充放電の繰り返し
による応力に伴って合金に生じたクラックに酸化鉄粉末
が入り込むことによって、合金粉末の微細化を防止し電
極の電子導電性を保持しているものと考えられる。この
作用は、合金組成中に鉄を有する合金を用いた電極、若
しくは他の酸化物を添加した電極では見られず、酸化鉄
Fe2 3,FeOOH粉末の添加独特の効果である。
このような水素吸蔵電極を備えた金属酸化物−水素蓄電
池は、電池特性は従来と同等で、しかも酸化鉄Fe2
3 ,FeOOHの添加により、Co置換量が少ない安価
な合金を用いることができ、従来の金属酸化物−水素蓄
電池に比べて低コスト化が可能となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention as above, a hydrogen absorbing electrode was added to the iron oxide to the hydrogen absorbing alloy powder, iron oxide Fe 2 O
The addition of at least one of the powders of 3 and FeOOH suppresses the refinement of the hydrogen storage alloy powder. The mechanism has not been analyzed in detail, but iron oxide powder enters the cracks generated in the alloy due to the stress caused by repeated charging and discharging, preventing the alloy powder from becoming finer and maintaining the electronic conductivity of the electrode. It is thought that it is doing. This action is not seen in an electrode using an alloy having iron in the alloy composition or an electrode added with another oxide, and is a unique effect of the addition of iron oxide Fe 2 O 3 and FeOOH powder.
The metal oxide-hydrogen storage battery provided with such a hydrogen storage electrode has the same battery characteristics as conventional ones, and further, iron oxide Fe 2 O
By adding 3 , FeOOH, an inexpensive alloy with a small amount of Co substitution can be used, and the cost can be reduced as compared with the conventional metal oxide-hydrogen storage battery.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】(実施例1)純度99.5%以上のランタ
ン(La)を20重量%含むミッシュメタル(Mm:軽
希土類元素の混合物)、ニッケル(Ni)、マンガン
(Mn)、アルミニウム(Al)、コバルト(Co)を
所定の割合で混合し、アーク溶解法にてMmNi3.9
0.4 Al0.3 Co0.4 合金を製造した。この合金を不
活性雰囲気中で粉砕し、粒度300メッシュ以下の粉末
とした。この合金粉末3g(1Ah相当)に対して0.
15g(5重量%)の酸化鉄(Fe3 4 、Fe2 3
及びFeOOH、何れも粒径0.5〜5μm)粉末を添
加し、水溶性の結着剤であるCMC0.1重量%及び水
と混練してペースト化し、このペーストを発泡状ニッケ
ル多孔体内に充填して乾燥・加圧を行い、水素吸蔵電極
を作製した。
Example 1 Misch metal (Mm: a mixture of light rare earth elements) containing 20% by weight of lanthanum (La) having a purity of 99.5% or more, nickel (Ni), manganese (Mn), aluminum (Al). , Cobalt (Co) are mixed in a predetermined ratio, and MmNi 3.9 M is prepared by the arc melting method.
An n 0.4 Al 0.3 Co 0.4 alloy was produced. This alloy was crushed in an inert atmosphere to obtain a powder having a particle size of 300 mesh or less. For 3 g of this alloy powder (equivalent to 1 Ah), 0.
15 g (5% by weight) of iron oxide (Fe 3 O 4 , Fe 2 O 3
And FeOOH, both of which have a particle size of 0.5 to 5 μm), are mixed and kneaded with 0.1% by weight of water-soluble binder CMC and water to form a paste, and the paste is filled into a foamed nickel porous body. Then, it was dried and pressed to produce a hydrogen storage electrode.

【0012】以上の水素吸蔵電極1枚を袋状にしたセパ
レータの中に挿入し、公知のニッケル正極2枚(2Ah
相当)と組み合わせて、比重1.25の水酸化カリウム
水溶液200mlを電解液として、負極容量規制のニッ
ケル−水素蓄電池を組み立てた。
One of the above hydrogen storage electrodes was inserted into a bag-shaped separator, and two known nickel positive electrodes (2 Ah
(Corresponding), and using 200 ml of an aqueous potassium hydroxide solution having a specific gravity of 1.25 as an electrolytic solution, a nickel-hydrogen storage battery having a negative electrode capacity regulation was assembled.

【0013】これら各電池について0.5Aの定電流で
充放電を行った。充電時間は2.4時間とし、放電終止
電圧は1Vとして200サイクルの寿命試験を行った。
合金g当たりの放電容量のサイクル変化を、従来のCo
置換量の多い合金を用い酸化鉄を添加せずに作製した電
極1(合金組成:MmNi3.7 Mn0.4 Al0.3 Co
0.6 )、及び同一の合金組成を用い酸化鉄を添加せずに
作製した電極2の試験結果と併せて図1に示す。
For each of these batteries, at a constant current of 0.5 A
It was charged and discharged. Charging time is 2.4 hours and discharging is finished
The voltage was set to 1 V and a 200-cycle life test was performed.
Cycle change of discharge capacity per alloy g
Electrodes prepared by using an alloy with a large amount of substitution without adding iron oxide
Pole 1 (alloy composition: MmNi3.7Mn0.4Al0.3Co
0.6), And using the same alloy composition but without adding iron oxide
It is shown in FIG. 1 together with the test results of the manufactured electrode 2.

【0014】電極2は、従来例の電極1に比べて寿命特
性が大きく低下した。この原因は、走査型電子線(SE
M)観察の結果より明らかである。即ち、電極1では2
00サイクル後、合金粉末に僅かなクラックが生じてい
るが、ほとんど微細化が進んでいないのに対し、電極1
よりもCo置換量の少ない合金を用いた電極2では、1
サイクルの充放電で直径20μm程度の合金粉末に幅2
〜3ミクロン程度のクラックが発生し、50サイクル後
では合金粉末が数μm程度にまで微細化していることが
わかった。電極2の容量低下は、合金の微細化が充放電
の繰り返しにより著しく進行し、電極の導電性が低下し
て起こったものと考えられる。
The life characteristics of the electrode 2 are much lower than those of the conventional electrode 1. This is due to the scanning electron beam (SE
M) It is clear from the result of observation. That is, 2 for electrode 1
After the 00 cycle, the alloy powder has a slight crack, but the refinement has hardly progressed, while the electrode 1
1 for the electrode 2 using an alloy having a smaller Co substitution amount than
The width of the alloy powder with a diameter of about 20 μm is 2 by the cycle charge and discharge.
It was found that cracks of about 3 μm were generated, and the alloy powder was refined to about several μm after 50 cycles. It is considered that the decrease in the capacity of the electrode 2 occurred because the refinement of the alloy significantly progressed due to repeated charging and discharging, and the conductivity of the electrode decreased.

【0015】一方、電極2にFe3 4 を添加した電極
3は、1サイクル目の容量が電極Bに比べて20mAh
/合金g程度増大した。これはFe3 4 自身が導電性
を有しており、電極の導電性が向上したためである。し
かし、寿命特性は電極2と同程度で、SEM像も電極2
と同様微細化が進んだものであった。
On the other hand, in the electrode 3 in which Fe 3 O 4 is added to the electrode 2, the capacity in the first cycle is 20 mAh compared with the electrode B.
/ Alloy g increased. This is because Fe 3 O 4 itself has conductivity and the conductivity of the electrode is improved. However, the life characteristics are similar to those of electrode 2, and the SEM image also shows that of electrode 2.
It was the one that was miniaturized similarly to.

【0016】これに対し、電極2にFe2 3 を添加し
た電極4及びFeOOHを添加した電極5は、1サイク
ル目の容量は電極2と同等であるが、寿命特性が電極2
に比べて著しく向上し、従来例である電極1とほぼ同等
の寿命特性を示した。SEM像を観察した結果、1サイ
クル目の充放電後に合金粉末にクラックが生じているも
のの、Fe2 3 あるいはFeOOH粉末がクラックに
侵入し、合金粉末の微細化を防止していることが確認で
きた。この効果は、200サイクル後でも維持されてお
り、電極4及び5は寿命特性を従来と同程度に向上する
ということがわかった。
On the other hand, the electrode 4 in which Fe 2 O 3 is added to the electrode 2 and the electrode 5 in which FeOOH is added have the same capacity as that of the electrode 2 in the first cycle, but have the life characteristics of the electrode 2.
It was significantly improved as compared with No. 1 and showed a life characteristic almost equal to that of the conventional electrode 1. As a result of observing the SEM image, it was confirmed that although the alloy powder had cracks after the first cycle of charging and discharging, Fe 2 O 3 or FeOOH powder penetrated into the cracks and prevented the alloy powder from becoming fine. did it. It was found that this effect was maintained even after 200 cycles, and the electrodes 4 and 5 had the life characteristics improved to the same extent as in the conventional case.

【0017】なお、本実施例では粒径0.5〜5μmの
酸化鉄粉末を用いたが、特にFe23 及びFeOOH
は絶縁物であるため、合金粉末間で導電性が保てる範
囲、具体的には合金粉末の平均粒径を上回らない範囲で
あることが望ましい。
Although iron oxide powder having a particle size of 0.5 to 5 μm was used in this embodiment, Fe 2 O 3 and FeOOH are particularly used.
Since is an insulator, it is desirable that the range is such that conductivity can be maintained between the alloy powders, specifically, a range that does not exceed the average particle size of the alloy powders.

【0018】また、本実施例では発泡状ニッケル多孔体
内に合金ペーストを充填してなる水素吸蔵電極を一例と
して用いたが、合金ペーストをパンチングメタル等の2
次元多孔体上に塗着してなる電極を用いても、同様の結
果が得られた。
Further, in this embodiment, the hydrogen storage electrode formed by filling the alloy paste into the foamed nickel porous body is used as an example, but the alloy paste is used as a punching metal or the like.
Similar results were obtained by using an electrode coated on a three-dimensional porous body.

【0019】(実施例2)MmNi4.3-Y Mn0.4 Al
0.3 CoY ( Y=0〜0.6)で表される水素吸蔵合金
を用い、Fe2 3 粉末を合金に対して5重量%添加
し、更に比較のためにFe2 3 粉末を添加しないで、
実施例1と同様の水素吸蔵電極を作製した。これらの電
極を用いて実施例1と同様の電池を組立て、各電池につ
いて0.5Aの定電流で充放電を行った。充電時間は
2.4時間とし、放電終止電圧は1Vとして200サイ
クルの充放電試験を行った。この試験における、合金組
成及びFe2 3 添加の有無と200サイクル目の放電
容量との関係を図2に示す。なお、図中曲線AはFe2
3 添加有り、曲線BはFe2 3 添加無しの場合を示
す。
(Example 2) MmNi 4.3-Y Mn 0.4 Al
Using a hydrogen storage alloy represented by 0.3 Co Y (Y = 0~0.6) , the Fe 2 O 3 powder was added 5 wt% of the alloy, further addition of Fe 2 O 3 powder for comparison Don't
A hydrogen storage electrode similar to that in Example 1 was produced. A battery similar to that of Example 1 was assembled using these electrodes, and each battery was charged and discharged at a constant current of 0.5 A. The charging time was set to 2.4 hours, the discharge end voltage was set to 1 V, and a 200-cycle charge / discharge test was performed. The relationship between the alloy composition, the presence or absence of Fe 2 O 3 addition, and the discharge capacity at the 200th cycle in this test is shown in FIG. The curve A in the figure is Fe 2
O 3 there is added, the curve B shows the case of Fe 2 O 3 without addition.

【0020】Y(Co置換量)が0.4以下の場合、F
2 3 粉末を添加することにより、実施例1に示した
メカニズムに沿って200サイクル目の容量の増大、即
ち寿命特性の向上が見られる。またこの傾向はYが小さ
いほど顕著である。これに対しYが0.4を越える場
合、Fe2 3 粉末を添加することにより逆に200サ
イクル目の容量は若干減少する。この理由としては、合
金組成だけで微細化を抑制する効果があるため、絶縁物
であるFe2 3 が水素吸蔵合金と共存して電極の導電
性を低下させるというデメリットが特性上に影響するか
たちとなったことが考えられる。即ち本発明により電極
特性が向上する範囲として、合金中のCo置換量は0〜
0.4原子であることが好ましい。
When Y (Co substitution amount) is 0.4 or less, F
By adding the e 2 O 3 powder, it is possible to increase the capacity at the 200th cycle, that is, improve the life characteristics, in accordance with the mechanism shown in Example 1. This tendency is more remarkable as Y is smaller. On the other hand, when Y exceeds 0.4, the capacity at the 200th cycle is slightly decreased by adding the Fe 2 O 3 powder. The reason for this is that the alloy composition alone has the effect of suppressing miniaturization, and the demerit that Fe 2 O 3, which is an insulator, coexists with a hydrogen storage alloy and reduces the conductivity of the electrode affects the characteristics. It is possible that it has become a form. That is, as a range in which the electrode characteristics are improved by the present invention, the Co substitution amount in the alloy is 0 to
It is preferably 0.4 atoms.

【0021】なお本実施例では、一例としてMmNi
4.3-Y Mn0.4 Al0.3 CoY で表される、化学量論比
組成を有する水素吸蔵合金を用いたが、Mn及びAl置
換量をも変化させ、かつ非化学量論組成をも含む、Mm
(Ni5-X-Y X CoY Z (A:Al・Mnの少なく
とも1種、0.5≦X≦0.9、0≦Y≦0.4、0.
9≦Z≦1.1)で表される組成を有する何れの合金を
用いても、本実施例と同様に電極の寿命特性が向上し
た。
In this embodiment, as an example, MmNi
A hydrogen storage alloy having a stoichiometric composition represented by 4.3-Y Mn 0.4 Al 0.3 Co Y was used, but Mm and Al including the non-stoichiometric composition were also changed, and the Mm
(Ni 5-XY A X Co Y ) Z (A: at least one of Al · Mn, 0.5 ≦ X ≦ 0.9, 0 ≦ Y ≦ 0.4, 0.
The life characteristics of the electrode were improved as in the case of any of the alloys having the composition represented by 9 ≦ Z ≦ 1.1).

【0022】(実施例3)実施例1と同じ合金粉末3g
(1Ah相当)に対して、0〜0.36g(0〜12重
量%)の7種類のFe2 3 粉末を添加し、実施例1と
同様の水素吸蔵電極を作製した。これらの電極を用いて
実施例1と同様の電池を組立て、各電池について0.5
Aの定電流で充放電を行った。充電時間は2.4時間と
し、放電終止電圧は1Vとして200サイクルの充放電
試験を行った。この試験における、Fe2 3 粉末の添
加量と1サイクル目及び200サイクル目の放電容量と
の関係を図3に示す。なお、図中曲線イは1サイクル
目、曲線ロは200サイクル目の場合を示す。
(Example 3) 3 g of the same alloy powder as in Example 1
Seven kinds of Fe 2 O 3 powders of 0 to 0.36 g (0 to 12% by weight) were added to (corresponding to 1 Ah), and a hydrogen storage electrode similar to that of Example 1 was produced. A battery similar to that of Example 1 was assembled using these electrodes, and 0.5% was obtained for each battery.
Charging / discharging was performed with the constant current of A. The charging time was set to 2.4 hours, the discharge end voltage was set to 1 V, and a 200-cycle charge / discharge test was performed. FIG. 3 shows the relationship between the added amount of Fe 2 O 3 powder and the discharge capacities at the first cycle and the 200th cycle in this test. Curve A in the figure shows the case of the first cycle, and curve B shows the case of the 200th cycle.

【0023】Fe2 3 粉末の添加量としては、0.1
〜10重量%の範囲内では寿命特性に対して効果が見ら
れるが、12重量%になると初期容量が無添加のものに
比べて著しく減少する。これはFe2 3 自身が絶縁物
であり、この酸化物が水素吸蔵合金表面を覆うため、添
加量が増加するにつれ合金粉末間の導電性が低下するこ
とに起因する。したがって、酸化鉄(とくにFe
2 3 )粉末の添加量は0.1〜10重量%の範囲が好
ましい。
The amount of Fe 2 O 3 powder added is 0.1
Within the range of 10 to 10% by weight, the effect on the life characteristics is observed, but when it is 12% by weight, the initial capacity is remarkably reduced as compared with the case of no addition. This is because Fe 2 O 3 itself is an insulator, and this oxide covers the surface of the hydrogen storage alloy, so that the conductivity between the alloy powders decreases as the addition amount increases. Therefore, iron oxide (especially Fe
The addition amount of 2 O 3 ) powder is preferably in the range of 0.1 to 10% by weight.

【0024】[0024]

【発明の効果】以上のように本発明によれば、Co置換
量の少ない安価な水素吸蔵合金を用いても、従来と比べ
てサイクル寿命が同等でかつ安価な水素吸蔵電極を提供
することができる。
As described above, according to the present invention, even if an inexpensive hydrogen storage alloy having a small amount of Co substitution is used, it is possible to provide an inexpensive hydrogen storage electrode having a cycle life equivalent to that of the conventional one. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化鉄添加の寿命特性に対する効果を示す特性
FIG. 1 is a characteristic diagram showing the effect of iron oxide addition on life characteristics.

【図2】合金組成及びFe2 3 添加の有無と200サ
イクル目の放電容量との関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the alloy composition and the presence or absence of Fe 2 O 3 addition, and the discharge capacity at the 200th cycle.

【図3】Fe2 3 粉末添加量の寿命特性に対する効果
を示す特性図
FIG. 3 is a characteristic diagram showing the effect of the amount of Fe 2 O 3 powder added on the life characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 徹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Yamamoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末と、酸化鉄Fe2 3 及びFeOOHの粉
末の内少なくとも1種から成る水素吸蔵電極。
1. A hydrogen storage electrode comprising a hydrogen storage alloy powder that electrochemically stores and releases hydrogen, and at least one of iron oxide Fe 2 O 3 and FeOOH powder.
【請求項2】 前記酸化鉄粉末の添加量が水素吸蔵合金
粉末に対して0.1〜10重量%である請求項1記載の
水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein the amount of the iron oxide powder added is 0.1 to 10% by weight based on the hydrogen storage alloy powder.
JP5236189A 1993-09-22 1993-09-22 Hydrogen storage electrode Pending JPH0794176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5236189A JPH0794176A (en) 1993-09-22 1993-09-22 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5236189A JPH0794176A (en) 1993-09-22 1993-09-22 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH0794176A true JPH0794176A (en) 1995-04-07

Family

ID=16997098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5236189A Pending JPH0794176A (en) 1993-09-22 1993-09-22 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0794176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same
CN107790131A (en) * 2017-09-30 2018-03-13 华南理工大学 A kind of Zr Fe2O3/ FeOOH complex light electrodes and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same
CN107790131A (en) * 2017-09-30 2018-03-13 华南理工大学 A kind of Zr Fe2O3/ FeOOH complex light electrodes and preparation method thereof
CN107790131B (en) * 2017-09-30 2020-02-18 华南理工大学 Zr-Fe2O3/FeOOH composite photoelectrode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0756803B2 (en) Sealed alkaline storage battery
JPH0719599B2 (en) Storage battery electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH0794176A (en) Hydrogen storage electrode
JP2000182607A (en) Hydrogen storage alloy electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JP2828680B2 (en) Hydrogen storage alloy electrode
JP3191270B2 (en) Method for producing hydrogen storage electrode
JP2680566B2 (en) Hydrogen storage electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH0642367B2 (en) Alkaline storage battery
JP3322452B2 (en) Rare earth hydrogen storage alloy for alkaline storage batteries
JPH0441471B2 (en)
JP3301879B2 (en) Hydrogen storage alloy electrode for sealed metal-hydride alkaline storage batteries
JPH0586622B2 (en)
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP2962765B2 (en) Sealed alkaline storage battery
JPH061695B2 (en) Hydrogen storage electrode
JP2000100435A (en) Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using it