JPH0586622B2 - - Google Patents

Info

Publication number
JPH0586622B2
JPH0586622B2 JP60007741A JP774185A JPH0586622B2 JP H0586622 B2 JPH0586622 B2 JP H0586622B2 JP 60007741 A JP60007741 A JP 60007741A JP 774185 A JP774185 A JP 774185A JP H0586622 B2 JPH0586622 B2 JP H0586622B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode
mmni
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007741A
Other languages
Japanese (ja)
Other versions
JPS61168871A (en
Inventor
Sanehiro Furukawa
Shuzo Murakami
Takanao Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60007741A priority Critical patent/JPS61168871A/en
Publication of JPS61168871A publication Critical patent/JPS61168871A/en
Publication of JPH0586622B2 publication Critical patent/JPH0586622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明はアルカリ蓄電池の負極として用いられ
る水素吸蔵電極に関し、特に高容量を長期にわた
つて維持するよう改良された水素吸蔵電極に関す
る。 (ロ) 従来の技術 従来からよく用いられる蓄電池としては鉛電池
及びニツケル−カドミウム電池があるが、近年こ
れら電池より軽量で且つ高容量となる可能性があ
るということで、特に低圧に於いて負極活物質で
ある水素を可逆的に吸蔵及び放出することのでき
る水素吸蔵合金を備えた電極を負極に用い、水酸
化ニツケルなどの金属酸化物を正極活物質とする
電極を正極に用いた金属−水素アルカリ蓄電池が
注目されている。 一般にこの種蓄電池に用いられる水素吸蔵合金
を備えた水素吸蔵電極は特公昭58−46827号公報
に於いて提案されているように水素を吸蔵する合
金粉末と水素を吸蔵しない合金粉末との混合物を
焼結して焼結多孔体を作製し、これを水素吸蔵電
極とする方法、あるいは特開昭53−103541号公報
に於いて提案されているように水素を吸蔵する合
金粉末とアセチレンブラツク及び電極支持体とを
耐電解液性の粒子状結着剤により相互に結合させ
て水素吸蔵電極とする方法によつて作製されてお
り、これら電極に用いる水素吸蔵合金の1つに
MmNi5(Mmはミツシユメタル)がある。しかし
ながら、このMmNi5を備えた水素吸蔵電極は、
電極容量を規定するMmNi5の水素吸蔵量が少な
く、また充放電によるサイクル寿命が短く、充分
満足できるものとは言えなかつた。 (ハ) 発明が解決しようとする問題点 本発明はMmNi5をベースとして他の元素を含
有させてなる合金を負極に用いることにより、負
極の水素吸蔵量の増加やサイクル寿命の向上をは
かろうとするものである。 (ニ) 問題点を解決するための手段 本発明の水素吸蔵電極はMmNi5をベースとし、
該合金にSi,Ti,V,Fe,Co,Zn,Y,Zr,
Nb,Mo,Hf,Ta及びアルカリ土類金属から選
ばれる少なくとも一種の元素を含有させたCaCu5
構造の結晶構造を有する合金を備えたものであ
る。 (ホ) 作用 負極の水素吸蔵合金としてMmNi5をベースと
し、これに前記元素の少なくとも一種を含有させ
たCaCu5構造の結晶構造を有する合金を用いる
と、負極である水素吸蔵電極の寿命が伸び容量が
向上する。 (ヘ) 実施例 市販のミツシユメタル及びニツケルを組成比で
Mm:Ni:=1:5になるように混合し、アー
ク溶解炉に入れて加熱、溶解して合金化した後粉
砕してMmNi5粉末を得た。 また、ミツシユメタル、チタン、ニツケルを組
成比でMm:Ti:Ni:=0.9:0.1:5になるよう
混合し、同様にして加熱、溶解によつて合金化し
た後粉砕を行ない、結晶構造がCaCu5構造をとる
Mm0,9Ti0.1Ni5粉末を得ると共に、前記混合、合
金化及び粉砕という操作を行なつて第1表に示す
ような各種水素吸蔵合金を得た。 こうして得られた各種水素吸蔵合金粉末80重量
%、導電材としてのアセチレンブラツク10重量%
及び結着剤としてのフツ素樹脂粉末10重量%を混
合機で均一に混合すると共にフツ素樹脂を繊維化
する。そして得られた混練物をニツケル金網で包
み込み3ton/cm2で加圧成型することにより、外面
がニツケル金網で覆われた直径2cm、厚み1.2mm
の円形の水素吸蔵電極を種々作製した。上記外面
がニツケル金網で覆われた構造の水素吸蔵電極
は、充電時に電極中の水素吸蔵合金が水素を吸蔵
すると共に水素ガスを発生して生じる電極の膨張
を前記ニツケル金網によつて機械的に抑え、この
電極の膨張による電極の機械的強度の劣化及びそ
れに伴う水素吸蔵合金の脱落が抑えられて、充放
電サイクルによる性能の早期低下を防止する。
尚、これら水素吸蔵電極に用いた合金粉末は約
1.5gである。 次いで、上記水素吸蔵電極を理論容量が
600mAHの焼結式ニツケル正極と組み合わせ電
解液に水酸化カリウム水溶液を用いて密閉型ニツ
ケル−水素アルカリ蓄電池を作製した。これら電
池を0.1C電流で16時間充電し、0.2C電流で放電し
て電池電圧が1.0Vになつた時点で放電停止する
サイクル条件で充放電を繰り返し行ない、10サイ
クル各に容量測定を行なつて放電容量が初期容量
の50%を切つた時点でサイクルを終了することに
よつてサイクル寿命を測定した。この結果を負極
に用いた水素吸蔵合金に対応させて第1表に同時
に示す。
(a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of an alkaline storage battery, and particularly to a hydrogen storage electrode that has been improved to maintain high capacity over a long period of time. (b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years they have become lighter and have the potential to have higher capacity than these batteries. A metal-based metal in which the negative electrode is an electrode equipped with a hydrogen storage alloy that can reversibly absorb and release hydrogen as an active material, and the positive electrode is an electrode with a metal oxide such as nickel hydroxide as the positive active material. Hydrogen-alkaline storage batteries are attracting attention. Hydrogen storage electrodes equipped with hydrogen storage alloys that are generally used in this type of storage battery are made using a mixture of alloy powders that store hydrogen and alloy powders that do not store hydrogen, as proposed in Japanese Patent Publication No. 58-46827. A method of producing a sintered porous body by sintering and using it as a hydrogen storage electrode, or a method of using an alloy powder that stores hydrogen, an acetylene black, and an electrode as proposed in JP-A-53-103541. Hydrogen storage electrodes are produced by bonding the support and the support using a particulate binder that is resistant to electrolyte, and one of the hydrogen storage alloys used for these electrodes.
There is MmNi 5 (Mm is Mitsushi Metal). However, this hydrogen storage electrode with MmNi 5
The hydrogen storage capacity of MmNi 5 , which determines the electrode capacity, was small, and the cycle life due to charging and discharging was short, so it could not be said to be fully satisfactory. (c) Problems to be Solved by the Invention The present invention aims to increase the hydrogen storage capacity and cycle life of the negative electrode by using an alloy made of MmNi 5 as a base and containing other elements for the negative electrode. It is something that we try to do. (d) Means for solving the problems The hydrogen storage electrode of the present invention is based on MmNi 5 ,
The alloy contains Si, Ti, V, Fe, Co, Zn, Y, Zr,
CaCu 5 containing at least one element selected from Nb, Mo, Hf, Ta and alkaline earth metals
It is equipped with an alloy having a crystalline structure. (e) Effect If an alloy having a CaCu 5 crystal structure based on MmNi 5 and containing at least one of the above elements is used as the hydrogen storage alloy for the negative electrode, the life of the hydrogen storage electrode, which is the negative electrode, will be extended. Capacity is improved. (F) Example Composition ratio of commercially available Mitsushi Metal and Nickel
The mixture was mixed in a ratio of Mm:Ni=1:5, put into an arc melting furnace, heated and melted to form an alloy, and then crushed to obtain MmNi 5 powder. In addition, Mitsushi Metal, titanium, and nickel were mixed at a composition ratio of Mm:Ti:Ni: = 0.9:0.1:5, and after being alloyed by heating and melting in the same manner, the crystal structure was changed to CaCu. 5 structure
Mm 0,9 Ti 0.1 Ni 5 powder was obtained, and various hydrogen storage alloys as shown in Table 1 were obtained by performing the above mixing, alloying and pulverizing operations. 80% by weight of various hydrogen storage alloy powders obtained in this way, 10% by weight of acetylene black as a conductive material
and 10% by weight of fluororesin powder as a binder are uniformly mixed in a mixer and the fluororesin is made into fibers. Then, the obtained kneaded material is wrapped in a nickel wire mesh and pressure-molded at 3 tons/cm 2 , so that the outer surface is covered with a nickel wire mesh and has a diameter of 2 cm and a thickness of 1.2 mm.
We fabricated various circular hydrogen storage electrodes. In the hydrogen storage electrode whose outer surface is covered with a nickel wire mesh, the hydrogen storage alloy in the electrode absorbs hydrogen and generates hydrogen gas during charging, which mechanically reduces the expansion of the electrode. This suppresses the deterioration of the mechanical strength of the electrode due to the expansion of the electrode and the resulting drop-off of the hydrogen storage alloy, thereby preventing early deterioration of performance due to charge/discharge cycles.
The alloy powder used for these hydrogen storage electrodes is approximately
It is 1.5g. Next, the above hydrogen storage electrode is adjusted to have a theoretical capacity of
A sealed nickel-hydrogen alkaline storage battery was fabricated using a 600 mAH sintered nickel positive electrode and an aqueous potassium hydroxide solution as the electrolyte. These batteries were charged with a 0.1C current for 16 hours, discharged with a 0.2C current, and charged and discharged repeatedly under cycle conditions in which discharging was stopped when the battery voltage reached 1.0V, and the capacity was measured after each 10 cycles. The cycle life was measured by terminating the cycle when the discharge capacity fell below 50% of the initial capacity. The results are also shown in Table 1 in correspondence with the hydrogen storage alloy used for the negative electrode.

【表】 第1表からMmNi5をベースとして、Ti,V,
Zr,Nb,Mo,Hf,Taを含有させた合金を備え
た水素吸蔵電極はMmNi5を水素吸蔵材として備
えた水素吸蔵電極に比べサイクル寿命が大幅に向
上することがわかる。 また、同様にしてMmNi5をベースとし含有す
る元素を種々変化させた合金を負極に用いた電池
を作製し、その電池の放電容量を測定した。この
結果を第2表に示す。
[Table] From Table 1, based on MmNi 5 , Ti, V,
It can be seen that the hydrogen storage electrode equipped with an alloy containing Zr, Nb, Mo, Hf, and Ta has a significantly improved cycle life compared to the hydrogen storage electrode equipped with MmNi 5 as the hydrogen storage material. Similarly, batteries using MmNi 5 -based alloys containing various elements as negative electrodes were fabricated, and the discharge capacity of the batteries was measured. The results are shown in Table 2.

【表】 第2表からMmNi5をベースとしてSi,V,
Fe,Co,Zn及び、Mg,Ca,Sr,Baなどのアル
カリ土類金属を含有させた合金を備えた水素吸蔵
電極は、MmNi5を水素吸蔵材として備えた水素
吸蔵電極に比べ放電容量が増大することがわか
る。 また以下に示すようにMmNi5をベースとして
2種類以上の元素を含有させた合金を用いた場合
にもサイクル寿命及び放電容量が向上する。した
がつて、目的に応じて2種以上の元素を適宜含有
させることが可能である。 前述と同様にしてMm0.8Ti0.1Zr0,1Ni4,8Si0.2から
なる合金粉末を作製し、この合金を負極に使用し
て電池を組み立て、サイクル寿命及び放電容量を
測定した。この結果を第3表に示す。
[Table] From Table 2, based on MmNi 5 , Si, V,
Hydrogen storage electrodes equipped with alloys containing Fe, Co, Zn, and alkaline earth metals such as Mg, Ca, Sr, and Ba have a lower discharge capacity than hydrogen storage electrodes equipped with MmNi 5 as the hydrogen storage material. It can be seen that it increases. Further, as shown below, when an alloy containing two or more types of elements based on MmNi 5 is used, the cycle life and discharge capacity are also improved. Therefore, it is possible to contain two or more elements as appropriate depending on the purpose. An alloy powder consisting of Mm 0.8 Ti 0.1 Zr 0,1 Ni 4,8 Si 0.2 was produced in the same manner as described above, a battery was assembled using this alloy as a negative electrode, and the cycle life and discharge capacity were measured. The results are shown in Table 3.

【表】 (ト) 発明の効果 本発明の水素吸蔵電極はミツシユメタル−ニツ
ケル合金にSi,Ti,V,Fe,Co,Zn,Y,Zr,
Nb,Mo,Hf,Ta及びアルカリ土類金属から選
ばれる少なくとも一種の元素を含有させたCaCu5
構造の結晶構造を有する合金を備えたものであ
り、サイクル特性の向上や水素吸蔵量の増大によ
る放電容量の増加により優れた性能の蓄電池を提
供することができ、その工業的価値は極めて大で
ある。
[Table] (g) Effects of the invention The hydrogen storage electrode of the present invention is made of Mitsushi metal-nickel alloy with Si, Ti, V, Fe, Co, Zn, Y, Zr,
CaCu 5 containing at least one element selected from Nb, Mo, Hf, Ta and alkaline earth metals
It is equipped with an alloy that has a crystalline structure, and can provide storage batteries with excellent performance due to improved cycle characteristics and increased discharge capacity due to increased hydrogen storage capacity, and its industrial value is extremely large. be.

Claims (1)

【特許請求の範囲】[Claims] 1 ミツシユメタル−ニツケル合金にSi,Ti,
V,Fe,Co,Zn,Y,Zr,Nb,Mo,Hf,Ta
及びアルカリ土類金属から選ばれる少なくとも一
種の元素を含有させたCaCu5構造の結晶構造を有
する合金を備えたことを特徴とする水素吸蔵電
極。
1 Mitsushi Metal - Nickel alloy with Si, Ti,
V, Fe, Co, Zn, Y, Zr, Nb, Mo, Hf, Ta
1. A hydrogen storage electrode comprising an alloy having a crystal structure of CaCu 5 structure and containing at least one element selected from alkaline earth metals.
JP60007741A 1985-01-19 1985-01-19 Hydrogen occlusion electrode Granted JPS61168871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007741A JPS61168871A (en) 1985-01-19 1985-01-19 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007741A JPS61168871A (en) 1985-01-19 1985-01-19 Hydrogen occlusion electrode

Publications (2)

Publication Number Publication Date
JPS61168871A JPS61168871A (en) 1986-07-30
JPH0586622B2 true JPH0586622B2 (en) 1993-12-13

Family

ID=11674125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007741A Granted JPS61168871A (en) 1985-01-19 1985-01-19 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS61168871A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642368B2 (en) * 1985-10-01 1994-06-01 松下電器産業株式会社 Alkaline storage battery
JP2926734B2 (en) * 1989-02-23 1999-07-28 松下電器産業株式会社 Alkaline storage battery using hydrogen storage alloy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5942233A (en) * 1982-05-05 1984-03-08 レスリ−・ハ−トリツジ・リミテツド Machine tool
JPS59181459A (en) * 1983-03-31 1984-10-15 Toshiba Corp Metal oxide hydrogen battery
US4487817A (en) * 1983-10-21 1984-12-11 Willems Johannes J G S A Electrochemical cell comprising stable hydride-forming material
JPS60250558A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS6116471A (en) * 1984-07-02 1986-01-24 Sanyo Electric Co Ltd Hydrogen occluding electrode
JPS6119062A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6191863A (en) * 1984-10-11 1986-05-09 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPS6193556A (en) * 1984-10-12 1986-05-12 Asahi Glass Co Ltd Electrode for battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5942233A (en) * 1982-05-05 1984-03-08 レスリ−・ハ−トリツジ・リミテツド Machine tool
JPS59181459A (en) * 1983-03-31 1984-10-15 Toshiba Corp Metal oxide hydrogen battery
US4487817A (en) * 1983-10-21 1984-12-11 Willems Johannes J G S A Electrochemical cell comprising stable hydride-forming material
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell
JPS60250558A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS6116471A (en) * 1984-07-02 1986-01-24 Sanyo Electric Co Ltd Hydrogen occluding electrode
JPS6119062A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6191863A (en) * 1984-10-11 1986-05-09 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPS6193556A (en) * 1984-10-12 1986-05-12 Asahi Glass Co Ltd Electrode for battery

Also Published As

Publication number Publication date
JPS61168871A (en) 1986-07-30

Similar Documents

Publication Publication Date Title
JPH02277737A (en) Electrode made of hydrogen storage alloy
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPH0586622B2 (en)
JPH0650634B2 (en) Hydrogen storage electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPH0584025B2 (en)
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP2962813B2 (en) Hydrogen storage alloy electrode
JPH061695B2 (en) Hydrogen storage electrode
JP2680566B2 (en) Hydrogen storage electrode
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS6276255A (en) Hydrogen occlusion electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPS6276254A (en) Hydrogen occlusion electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH063733B2 (en) Hydrogen storage electrode
JPS61176065A (en) Hydrogen occlusion electrode
JPH05144433A (en) Electrode with hydrogen storage alloy
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0586621B2 (en)
JPH0648623B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term