JPH061695B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH061695B2
JPH061695B2 JP13128285A JP13128285A JPH061695B2 JP H061695 B2 JPH061695 B2 JP H061695B2 JP 13128285 A JP13128285 A JP 13128285A JP 13128285 A JP13128285 A JP 13128285A JP H061695 B2 JPH061695 B2 JP H061695B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13128285A
Other languages
Japanese (ja)
Other versions
JPS61288372A (en )
Inventor
修弘 古川
修三 村上
孝直 松本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はアルカリ蓄電池の負極として用いられる水素吸蔵電極に関し、特に高容量を長期にわたつて維持するよう改良された水素吸蔵電極に関する。 DETAILED DESCRIPTION OF THE INVENTION (a) INDUSTRIAL APPLICABILITY The present invention relates to hydrogen storage electrode used as a negative electrode of an alkaline storage battery, relates to a hydrogen absorbing electrode which is improved so as to particularly long term cotton connexion maintain a high capacity.

(ロ) 従来の技術 従来からよく用いられる蓄電池としては鉛電池及びニッケル−カドミウム電池があるが、近年これら電池より軽量で且つ高容量となる可能性があるということで、特に低圧に於いて負極活物質である水素を可逆的に吸蔵及び放出することのできる水素吸蔵合金を備えた電極を負極に用い、水酸化ニッケルになどの金属酸化物からなる正極活物質を備えた電極を正極に用いた金属−水素アルカリ蓄電池が注目されている。 (B) A common battery used from the prior art conventional lead battery and nickel - There are cadmium battery, in recent years that there are likely to be and high capacity lighter than the batteries, the negative electrode, especially at the low pressure using an electrode having a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as the active material for the negative electrode, use the electrode having a positive electrode active material made of a metal oxide such as nickel hydroxide in the positive electrode There were metal - hydrogen alkaline storage battery has been attracting attention.

一般にこの種蓄電池に用いられる水素吸蔵合金を備えた水素吸蔵電極は特公昭58−46827号公報に於いて提案されているように水素を吸蔵する合金粉末と水素を吸蔵しない合金粉末との混合物を焼結して焼結多孔体を作製し、これを水素吸蔵電極とする方法、あるいは特開昭53−103541号公報に於いて提案されているように水素を吸蔵する合金粉末とアセチレンブラック及び電極支持体とを耐電解液性の粒子状結着剤により相互に結合させて水素吸蔵電極とする方法によつて作製されており、これら電極に用いる水素吸蔵合金の1つに特公昭56−36786号公報及び特公昭56−48561号公報に於いて示されるようなチタン−ニッケル二元系合金がある。 Generally a mixture of alloy powder of hydrogen absorbing electrode comprising a hydrogen storage alloy that does not occlude alloy powder and hydrogen storing hydrogen as proposed In JP-B 58-46827 used for this type accumulator and sintering to produce a sintered porous body, which a hydrogen storage electrode and to a method or alloy powder and acetylene black and electrode storing hydrogen as proposed in JP 53-103541, JP- and a support are mutually be bonded by connexion produced in a method of the hydrogen storage electrode by electrolytic solution resistance of a particulate binder, JP-B in one of the hydrogen storage alloy used in electrodes 56-36786 titanium as shown in JP and Sho 56-48561 JP - there nickel binary alloy. しかしながらTiNi合金を備えた水素吸蔵電極は、水素吸蔵材えあるTiNiの水素吸蔵量が少ないため充分な容量を得ることができず、またサイクル寿命が短く満足できるものではなかつた。 However the hydrogen storage electrode having a TiNi alloy can not obtain a sufficient capacity for hydrogen storage capacity is small of TiNi in example hydrogen absorption material, also has failed intended to cycle life satisfactory short.

(ハ) 発明が解決しようとする問題点 本発明はTiNiをベースとして他の元素を含有させてなる合金を負極に用いることにより、負極の水素吸蔵量の増加やサイクル寿命の向上をはかろうとするものである。 (C) the invention is a problem the present invention to be solved by the use of an alloy formed by incorporating another element as a base a TiNi the negative electrode, and attempt is made to improve the growth and cycle life of the hydrogen storage capacity of the negative electrode it is intended to.

(ニ) 問題点を解決するための手段 本発明の水素吸蔵電極はTiNi合金をベースとして該合金中のニッケルを部分的にAl、Si、V、Mn、Zn、Nb、Mo、 (D) the hydrogen storage electrodes of the nickel 該合 in gold partially as a base a TiNi alloy Al means the present invention to solve the problems, Si, V, Mn, Zn, Nb, Mo,
から選ばれる少なくとも一種の元素と置き換えてなる合金を備えたものである。 Those having an alloy comprising replacing at least one element selected from the.

(ホ) 作 用 負極の水素吸蔵合金としてTiNiをベースとし合金中のニッケルを部分的に前記元素の少なくとも一種と置き換えてなる合金を用いると、負極である水素吸蔵電極の寿命が伸び容量が増大する。 With made by replacing the base of TiNi as the negative electrode of a hydrogen storage alloy for (e) work as at least one of the elements nickel in the alloy partially alloy, capacity elongation life of the hydrogen absorbing electrode as a negative electrode increases to.

(ヘ) 実施例 市販のチタン及びニッケルを組成比でTi:Ni=1:1になるように混合し、アーク溶解炉に入れて加熱、溶解して合金化した後粉砕してTiNi粉末を得た。 (F) Ti in Example commercial titanium and nickel composition ratio: Ni = 1: obtained by mixing at 1, an arc melting furnace to put the heating, the TiNi powder was pulverized alloyed dissolved to It was.

またチタン、ニッケル及びアルミニウムを組成比で1: The titanium, nickel and aluminum with a composition ratio of 1:
0.8:0.2になるよう混合し、同様にして加熱、溶解によつて合金化した後粉砕を行ない、TiNi0.8Al0.2粉末を得ると共に、前記混合、合金及び粉砕という操作を行なつて各種水素吸蔵合金粉末を得た。 0.8 were mixed so as to be 0.2, the same way heated, subjected to pulverizing have been conducted under the alloying dissolved, along with obtaining TiNi0.8Al0.2 powder, the mixed alloy and rows that connexion various hydrogen an operation of grinding It was obtained absorbing alloy powder.

こうして得られた各種水素吸蔵合金粉末80重量%、導電材としてのアセチレンブラック10重量%及び結着剤としてのフッ素樹脂粉末10重量%を混合機で均一に混合すると共にフッ素樹脂を繊維化する。 Thus obtained various hydrogen-absorbing alloy powder 80 wt%, fiberizing a fluororesin with uniformly mixed in a mixer acetylene black 10 wt% and 10 wt% of fluorine resin powders, as a binder as a conductive material. そして得られた混練物をニッケル金網で包み込み3ton/cm 2で加圧成型することにより、外面がニッケル金網で覆われた直径2 And by the resulting kneaded product to compression molding at 3 ton / cm 2 wrapped in a nickel wire net, the outer surface is covered with a nickel metal mesh diameter 2
cm、厚み1.2mmの円形の水素吸蔵電極を種々作製した。 cm, and a circular hydrogen storage electrode having a thickness of 1.2mm and various fabricated.
上記外面がニッケル金網で覆われた構造の水素吸蔵電極は、充電時に電極中の水素吸蔵合金が水素を吸蔵すると共に水素ガスを発生して生じる電極の膨張を前記ニッケル金網によつて機械的に抑え、この電極の膨張による電極の機械的強度の劣化及びそれに伴う水素吸蔵合金の脱落が抑えられて、充放電サイクルによる性能の早期低下を抑制する。 Hydrogen storage electrode of said face is covered with the nickel wire mesh structure, when the expansion occurs by generating electrode and hydrogen gas together with hydrogen storage alloy in the electrode storing hydrogen by connexion mechanically to the nickel wire mesh charge suppress shedding is suppressed degradation and hydrogen storage alloy accompanying mechanical strength of the electrode due to expansion of the electrode, suppress premature deterioration in performance due to charging and discharging cycles. 尚、これら水素吸蔵電極に用いた合金粉末は夫々約1.5gである。 Incidentally, the alloy powder used in these hydrogen storage electrodes are each about 1.5 g.

次いで、上記水素吸蔵電極を理論容量が600mAHの焼結式ニッケル正極と組み合わせ電解液に水酸化カリウム水溶液を用いて密閉型ニッケル−水素アルカリ蓄電池を作製し、負極に水素吸蔵材として用いた合金粉末の種類によつて、これら電池を第1表に示すように電池A乃至Hとする。 Then, sealed nickel theoretical capacity the hydrogen absorbing electrode using aqueous potassium hydroxide in sintered nickel positive electrode in combination electrolyte 600 mAh - to produce hydrogen alkaline storage battery, the alloy powder used as hydrogen storage materials for the negative electrode Yotsute the type, referred to as battery a to H to indicate the batteries in table 1. また、これら電池を0.1C電流で116時間充電し、0.2C電流で放電して電池電圧が1.0Vになつた時点で放電停止するサイクル条件で充放電を繰り返し行なつたときの放電容量を第1表に併せて示すと共にそのサイクル特性を初期容量を100として示す。 Also, these batteries were charged 116 hours at 0.1C current, the discharge capacity when charge and discharge were repeated line summer cycle conditions the battery voltage and discharged at 0.2C current discharges stopped at Natsuta time to 1.0V first together are also shown in table 1 shows the cycle characteristics an initial capacity of 100.

第1表からTiNiをベースとして該合金中のニッケルを部分的に他の元素で置き換えて作製した三元系合金を備えた負極を有する電池B乃至Hは、何れもTiNiを備えた負極を有する電池Aより放電容量が増大しており、特に電池B及びEに於ける効果が顕著であり、放電容量が著しく向上していることがわかる。 Battery B through H has a negative electrode comprising a ternary alloy produced by replacing with other elements to nickel 該合 in gold partially as a base the TiNi from Table 1, both having a negative electrode having a TiNi discharge capacity than the battery a is increasing, especially in the effect on battery B and E is remarkable, it can be seen that the discharge capacity is remarkably improved. サイクル特性についても第1図から明らかなように電池B乃至Hは電池Aより向上しており、特に電池C、F及びGのサイクル特性が著しく向上している。 Also cycle characteristics battery B through H as is clear from FIG. 1 has improved from cell A, in particular improved significantly the cycle characteristics of the battery C, F and G.

上述したようにTiNiをベースとして第1表で示す各種元素を含有する合金を負極の水素吸蔵材として用いると放電容量及びサイクル特性が向上する。 Discharge capacity and cycle characteristics and an alloy containing various elements shown in Table 1 the TiNi as the base as a negative electrode hydrogen storage material as described above is improved. またTiNiをベースとして2種以上の元素を含有させた四元以上の合金を用いた場合にも放電容量及びサイクル特性が向上するため、目的に応じて2種以上の元素を適宜含有させることが可能である。 The order is improved discharge capacity and cycle properties when using two or more elements quaternary or more alloy is contained as a base a TiNi, be appropriately contained two or more elements in accordance with the intended possible it is. 以下にTiNiをベースとする四元合金を負極の水素吸蔵材として用いた実施例を示す。 The following shows an example of using the quaternary alloy based on TiNi as a hydrogen storage material of the negative electrode.

前述と同様にしてTiNi0.8Al0.1Mn0.1、TiNi0.7Al0.2Zn And similar to the previous description TiNi0.8Al0.1Mn0.1, TiNi0.7Al0.2Zn
0.1及びTiNi0.8Mn0.1Nb0.1からなる合金粉末を作製し、 To produce an alloy powder consisting of 0.1 and TiNi0.8Mn0.1Nb0.1,
これら合金を負極に使用して電池を組み立て放電容量及びサイクル特性を測定した。 Using these alloys in the negative electrode to measure the discharge capacity and cycle characteristics assembled battery. こうして作製された電池を第2表に示すように電池I乃至Kとすると共に、その放電容量を第2表に、サイクル特性を第2図に夫々示す。 The thus fabricated battery with a battery I to K as shown in Table 2, the discharge capacity in Table 2 respectively show the cycle characteristics in Figure 2.

(ヘ) 発明の効果 本発明の水素吸蔵電極はTiNiで表わされる合金のニッケルを部分的にAl、Si、V、Mn、Zn、Nb、Moから選ばれる少なくとも一種の元素と置き換えてなる合金を水素吸蔵材として用いたものであり、放電容量及びサイクル特性の向上をもたらすものであるから、優れた性能の蓄電池を提供することができ、その工業的価値は極めて大きい。 (F) the hydrogen storage electrodes of the effect the present invention relates to nickel partially Al alloy represented by TiNi, Si, V, Mn, Zn, Nb, and alloys formed by replacing at least one element selected from Mo are those used as a hydrogen storage material, since it is intended to provide improved discharge capacity and cycle characteristics, it is possible to provide a battery of excellent performance, its industrial value is extremely large.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図及び第2図は本発明の水素吸蔵電極を負極に用いた電池と比較電池のサイクル特性図である。 FIGS. 1 and 2 is a cycling characteristics diagram of the comparative battery and a battery using the hydrogen storage electrodes of the present invention the negative electrode.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】TiNiで表わされる合金のニッケルを部分的にAl、Si、V、Mn、Zn、Nb、Moから選ばれる少なくとも一種の元素と置き換えてなる合金を備えたことを特徴とする水素吸蔵電極。 1. A nickel partially Al alloy represented by TiNi, Si, V, Mn, Zn, Nb, hydrogen, characterized in that it comprises at least one element with replacement comprising an alloy selected from Mo absorbing electrode.
JP13128285A 1985-06-17 1985-06-17 Hydrogen storage electrode Expired - Lifetime JPH061695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13128285A JPH061695B2 (en) 1985-06-17 1985-06-17 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13128285A JPH061695B2 (en) 1985-06-17 1985-06-17 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS61288372A true JPS61288372A (en) 1986-12-18
JPH061695B2 true JPH061695B2 (en) 1994-01-05

Family

ID=15054300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13128285A Expired - Lifetime JPH061695B2 (en) 1985-06-17 1985-06-17 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH061695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728586A (en) * 1986-12-29 1988-03-01 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938344A (en) * 1972-08-25 1974-04-10
JPS5273342A (en) * 1975-12-16 1977-06-20 Matsushita Electric Ind Co Ltd Storage battery
JPS5286127A (en) * 1976-01-05 1977-07-18 Philips Nv Electrode for primary * secondary or fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938344A (en) * 1972-08-25 1974-04-10
JPS5273342A (en) * 1975-12-16 1977-06-20 Matsushita Electric Ind Co Ltd Storage battery
JPS5286127A (en) * 1976-01-05 1977-07-18 Philips Nv Electrode for primary * secondary or fuel cell

Also Published As

Publication number Publication date Type
JPS61288372A (en) 1986-12-18 application

Similar Documents

Publication Publication Date Title
US3060254A (en) Bonded electrodes
US5512385A (en) Hydrogen storage alloy and nickel-metal hydride storage battery using the same
US5008164A (en) Hydrogen-absorbing alloy electrode
US4130696A (en) Conductive diluent for pressed nickel electrodes
US4983474A (en) Hydroen absorbing Ni-based alloy and rechargeable alkaline battery
US5462821A (en) Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode
US5434022A (en) Electrodes and electrochemical storage cells utilizing tin-modified active materials
US5149383A (en) Hydrogen storage alloy electrode
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
US3617384A (en) Zinc alkaline secondary cell
EP0503686A2 (en) Method for making a hydrogen storage electrode
JPH113705A (en) Hydrogen storage alloy electrode and its manufacture
WO1995027315A1 (en) Improved metal hydride hydrogen storage electrodes
JPH05242908A (en) Metal hydride storage battery
US6342318B1 (en) Hydrogen absorbing alloy electrode and process for producing same
JPH09180717A (en) Nickel electrode for alkaline storage battery
JPH06187983A (en) Hydrogen storage alloy electrode
EP0923146A1 (en) Alkaline storage battery
US6309779B1 (en) Hydrogen storage alloy electrode and method for manufacturing the same
JPH05242906A (en) Air-metal hydride secondary battery
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
US5532076A (en) Hydrogen storage alloy and electrode therefrom
JPH10134806A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP2009181710A (en) Alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term