JP3191270B2 - Method for producing hydrogen storage electrode - Google Patents

Method for producing hydrogen storage electrode

Info

Publication number
JP3191270B2
JP3191270B2 JP25039391A JP25039391A JP3191270B2 JP 3191270 B2 JP3191270 B2 JP 3191270B2 JP 25039391 A JP25039391 A JP 25039391A JP 25039391 A JP25039391 A JP 25039391A JP 3191270 B2 JP3191270 B2 JP 3191270B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
alloy
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25039391A
Other languages
Japanese (ja)
Other versions
JPH0562671A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP25039391A priority Critical patent/JP3191270B2/en
Publication of JPH0562671A publication Critical patent/JPH0562671A/en
Application granted granted Critical
Publication of JP3191270B2 publication Critical patent/JP3191270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池などの
負極に用いる水素吸蔵合金からなる電極の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode made of a hydrogen storage alloy used for a negative electrode of an alkaline storage battery or the like.

【0002】[0002]

【従来の技術およびその課題】水素吸蔵電極は、水素の
可逆的な吸蔵および放出が可能な水素吸蔵合金を電極に
用いるものであり、その水素の電気化学的な酸化還元反
応をアルカリ蓄電池の負極の起電反応に利用する。水素
吸蔵電極に用いられる水素吸蔵合金には、LaNi5 、Lave
s 相のZrNi2 あるいはTiNiなどの金属間化合物の構成元
素を、そのほかの金属で置換して、水素吸蔵電極として
の性能を改良したものなどがある。
2. Description of the Related Art A hydrogen storage electrode uses a hydrogen storage alloy capable of reversibly storing and releasing hydrogen as an electrode. The electrochemical oxidation-reduction reaction of the hydrogen is used as a negative electrode of an alkaline storage battery. It is used for electromotive reaction. The hydrogen storage alloy used for the hydrogen storage electrode includes LaNi 5 ,
In some cases, the constituent elements of intermetallic compounds such as ZrNi 2 or TiNi in the s phase are replaced with other metals to improve the performance as a hydrogen storage electrode.

【0003】そして、これらの水素吸蔵合金を用いる従
来の水素吸蔵電極の製造方法には、次のようなものがあ
った。
[0003] Conventional methods of manufacturing a hydrogen storage electrode using these hydrogen storage alloys include the following.

【0004】1つは、水素吸蔵合金の粉末を、フッ素樹
脂などの結着剤によって、パンチングメタルや発泡ニッ
ケルなどの耐アルカリ性導電性支持体に保持させる方法
である。この方法で製造した電極を、プラスチックボン
デッドタイプの電極と呼ぶ。もう1つは、水素吸蔵合金
の粉末を焼結する方法である。この方法によって製造し
た電極を、焼結式の電極と呼ぶ。
[0004] One is a method in which a powder of a hydrogen storage alloy is held on an alkali-resistant conductive support such as punched metal or foamed nickel with a binder such as a fluororesin. The electrode manufactured by this method is called a plastic bonded type electrode. The other is a method of sintering a powder of a hydrogen storage alloy. The electrode manufactured by this method is called a sintered electrode.

【0005】プラスチックボンデッド電極は、水素吸蔵
合金の粉末をペースト状にして、このペーストを導電性
支持体に塗着したり充填してから、乾燥し、プレスする
方法で製造することができるので、簡単な製造装置によ
って、電極を高速に製造できる点で優れている。
[0005] The plastic bonded electrode can be produced by a method in which a powder of a hydrogen storage alloy is made into a paste, and the paste is applied or filled on a conductive support, and then dried and pressed. It is excellent in that electrodes can be manufactured at high speed by a simple manufacturing apparatus.

【0006】しかしながら、このプラスチックボンデッ
ド電極は、後述する焼結式電極と比較して、水素吸蔵合
金の坦持密度をある程度よりも高くすることができない
ので、電極の体積が同じ場合には、放電容量が小さくな
るという不都合がある。その主な原因は次の2つであ
る。
However, since the plastic bonded electrode cannot increase the density of the hydrogen storage alloy higher than a certain level as compared with a sintered electrode described later, when the electrode volume is the same, There is a disadvantage that the discharge capacity is reduced. The main causes are the following two.

【0007】第1に、プラスチックボンデッド電極で
は、水素吸蔵合金粉末の機械的結合力を結着剤によって
得ており、この結着剤の量が少ないほど、水素吸蔵電極
の機械的な強度が低下する。一方、水素吸蔵電極を取り
扱って電池を製造する際に、水素吸蔵合金粉末の脱落や
剥離がないように電極の機械的強度を高くする必要があ
る。したがってこの電極は、電池の製造に支障がない程
度の実用的な機械的強度のものを得ようとすると、結着
剤が水素吸蔵電極の充放電反応に寄与しないにもかかわ
らず、その結着剤の量をある程度多くして水素吸蔵合金
の量を少なくする必要がなる。
First, in a plastic bonded electrode, the mechanical binding force of the hydrogen storage alloy powder is obtained by a binder, and the smaller the amount of the binder, the higher the mechanical strength of the hydrogen storage electrode. descend. On the other hand, when a battery is manufactured by handling a hydrogen storage electrode, it is necessary to increase the mechanical strength of the electrode so that the hydrogen storage alloy powder does not fall off or peel off. Therefore, in order to obtain a practically strong mechanical electrode having such a level that does not hinder the production of the battery, the electrode does not contribute to the charge / discharge reaction of the hydrogen storage electrode. It is necessary to increase the amount of the agent to some extent and to reduce the amount of the hydrogen storage alloy.

【0008】第2に、プラスチックボンデッド電極を結
着剤が劣化しないような常温から数百℃程度の温度範囲
で加圧すると、水素吸蔵合金粉末の充填密度は加圧力が
数t/cm2 程度になるまでは増加するものの、加圧力をさ
らに20 kg/cm2 程度まで大きくしても、水素吸蔵合金粉
末の充填密度はそれ以上大きくなることがほとんどな
い。その原因は、次のことにある。すなわち、加圧力が
数t/cm2 を越えてからは、水素吸蔵合金粉末間にブリッ
ジ構造が形成される。そして、水素吸蔵合金粉末は常温
付近における降伏応力が著しく高いので、加圧力をこれ
よりも高くしてもこのブリッジ構造を破壊することが困
難になり、水素吸蔵合金粉末の充填密度を大きくするこ
とが困難になる。
Second, when the plastic bonded electrode is pressurized in a temperature range from room temperature to several hundreds of degrees Celsius so that the binder is not deteriorated, the packing density of the hydrogen storage alloy powder becomes several t / cm 2. However, even if the pressing force is further increased to about 20 kg / cm 2 , the packing density of the hydrogen storage alloy powder hardly increases further. The cause is as follows. That is, after the pressure exceeds several t / cm 2 , a bridge structure is formed between the hydrogen storage alloy powders. Since the hydrogen storage alloy powder has a remarkably high yield stress near room temperature, it is difficult to break this bridge structure even if the pressing force is set higher than this, and the packing density of the hydrogen storage alloy powder must be increased. Becomes difficult.

【0009】一方、焼結式電極は、水素吸蔵合金が焼結
されて結合しているので、電極の充放電反応に関与しな
い結着剤を用いなくとも機械的な強度が高い。したがっ
て、焼結を充分進行させてやれば、機械的強度が高く
て、しかも水素吸蔵合金の充填密度が高い水素吸蔵合金
が得られる。また、この電極は、水素吸蔵合金間の電子
伝導性が高いので電極の分極が小さい点でもプラスチッ
クボンデッド電極よりも優れている。
On the other hand, the sintered electrode has a high mechanical strength without using a binder which does not participate in the charge / discharge reaction of the electrode since the hydrogen storage alloy is sintered and bonded. Therefore, if sintering is sufficiently advanced, a hydrogen storage alloy having a high mechanical strength and a high packing density of the hydrogen storage alloy can be obtained. Further, since this electrode has high electron conductivity between the hydrogen storage alloys, it is superior to the plastic bonded electrode in that the electrode has a small polarization.

【0010】しかし、焼結式の電極では、例えば特公昭
58-40828号に記載されるように、950 ℃で30分間焼結し
たり、850 ℃で5 時間焼結するなどのように、高温での
長時間の焼結工程が必要であり、水素吸蔵電極の製造工
程の生産性が著しく低くなるという不都合がある。
However, in the case of sintered electrodes, for example,
As described in No. 58-40828, a long sintering process at high temperature is required, such as sintering at 950 ° C for 30 minutes or 850 ° C for 5 hours, and hydrogen storage is required. There is an inconvenience that productivity in the electrode manufacturing process is significantly reduced.

【0011】従って、水素吸蔵合金の充填密度が高く
て、しかも機械的強度が高い水素吸蔵電極を、短時間で
製造できる方法が望まれていた。
[0011] Therefore, there has been a demand for a method capable of producing a hydrogen storage electrode having a high packing density of the hydrogen storage alloy and a high mechanical strength in a short time.

【0012】[0012]

【課題を解決するための手段】本発明は、上述の課題を
解決するために、融解した水素吸蔵合金の微粒を支持体
に吹き付けて、その層を形成する水素吸蔵電極の製造方
法を提供し、とりわけ、融解した水素吸蔵合金の微粒を
支持体に吹き付けて、その層を形成する手段が溶射であ
る水素吸蔵電極の製造方法する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for supporting fine particles of a molten hydrogen storage alloy on a support.
Of hydrogen storage electrode that forms the layer by spraying
Method, among other things, to remove the fine particles of the molten hydrogen storage alloy.
The means for spraying the support to form that layer is thermal spraying.
Manufacturing method of the hydrogen storage electrode.

【0013】[0013]

【作用】溶射は、材料を融解させて液体状態の微粒を作
り、その融解した微粒を前方へ吹き飛ばして素材上に皮
膜を形成させる手法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Thermal spraying is a technique in which a material is melted to form fine particles in a liquid state, and the melted fine particles are blown forward to form a film on the material.

【0014】本発明では、融解した水素吸蔵合金の微粒
を支持体上に吹き付けて、その層を形成させることによ
って、水素吸蔵電極を製造する。この手段の一つとし
て、線材や粉末を材料とする溶射を用いることができ
る。また、線材や粉末状態を経る代わりに、融解した金
属材料を直接液滴にして吹き付けるスプレーデポジショ
ンも、この手段の一つとして用いることができる。
In the present invention, a hydrogen storage electrode is manufactured by spraying fine particles of a molten hydrogen storage alloy on a support to form a layer thereof. One of these means
Therefore, thermal spraying using wire or powder can be used.
You. Also, instead of going through a wire or powder state,
Spray deposition that sprays metal materials directly into droplets
Can also be used as one of these means.

【0015】この方法によれば、溶射材料の送り速度や
溶射距離などの条件を適切に選択することによって、多
孔度が数%〜10%程度の水素吸蔵合金層を得ることが
できる。この多孔度は、水素吸蔵合金粉末の焼結によっ
て得られる多孔度に匹敵する低い値である。しかも、溶
射層は、液体上の粒子が表面に衝突して平らに伸びたラ
メラと呼ばれる層構造になっていて水素吸蔵合金同士が
直接結合しているので、プラスチックボンデッド電極の
ような結着剤を用いることなく、焼結式の水素吸蔵電極
と同程度の高い水素吸蔵合金の充填密度、および電池の
組立に充分耐え得る高い機械的強度を有している。
According to this method, a hydrogen storage alloy layer having a porosity of about several to 10% can be obtained by appropriately selecting the conditions such as the feed rate of the thermal spray material and the thermal spray distance. This porosity is a low value comparable to the porosity obtained by sintering the hydrogen storage alloy powder. In addition, the thermal spray layer has a layer structure called lamella, in which particles on the liquid collide with the surface and extend flat, and the hydrogen storage alloys are directly bonded to each other. Without using an agent, it has a high packing density of a hydrogen storage alloy as high as that of a sintered hydrogen storage electrode, and high mechanical strength enough to withstand battery assembly.

【0016】さらに、このような溶射による水素吸蔵電
極の製造方法によれば、溶融合金の液滴を支持体に吹き
付けて溶射層を形成するという簡単な工程だけで直ちに
水素吸蔵電極を製造できるので、水素吸蔵合金粉末を成
型してから高温で長時間焼結する従来の製造方法と比較
して、水素吸蔵電極の製造に必要な時間が著しく短縮さ
れる。
Further, according to the method of manufacturing a hydrogen storage electrode by thermal spraying, the hydrogen storage electrode can be manufactured immediately by only a simple process of spraying a droplet of a molten alloy onto a support to form a sprayed layer. The time required for manufacturing the hydrogen storage electrode is significantly reduced as compared with the conventional manufacturing method in which the hydrogen storage alloy powder is molded and then sintered at a high temperature for a long time.

【0017】このようにして得た水素吸蔵合金の溶射層
は、電池の水素吸蔵電極として良好に作動する。
The sprayed layer of the hydrogen-absorbing alloy thus obtained works well as a hydrogen-absorbing electrode of a battery.

【0018】なお、溶射法には特有の種々の現象がある
ので、その現象と水素吸蔵合金の特徴とを勘案して、下
記のような種種の手段を選択することができる。
Since there are various phenomena peculiar to the thermal spraying method, the following various means can be selected in consideration of the phenomena and the characteristics of the hydrogen storage alloy.

【0019】まず、溶射法には、熱源や材料の形態に応
じて、ガス溶線式、アーク式、フレーム式、プラズマ
式、爆発式などの種種の方法がある。水素吸蔵合金には
稀土類や周期律表のチタン族などのような酸化されやす
い金属元素が含まれるので、合金組成の変化を避けるた
めには、その酸化がなるべく防止される方法をこれらの
溶射法から選択することが望ましい。具体的には、減圧
チャンバ内でアルゴンガスを用いる減圧プラズマ溶射法
が好適である。この方法によれば、水素吸蔵合金の酸化
を防止することができると共に、数mmの厚さの溶射層
が得られ、常圧法と比較して水素吸蔵合金電極の厚さの
大きいものまで製作できる。
First, the thermal spraying method includes various methods such as a gas melting method, an arc method, a flame method, a plasma method, and an explosion method according to the form of a heat source and a material. Hydrogen storage alloys contain metal elements that are easily oxidized, such as rare earth elements and the titanium group of the periodic table. To avoid a change in the alloy composition, a method of preventing such oxidation is recommended. It is desirable to choose from the law. Specifically, a reduced pressure plasma spraying method using argon gas in a reduced pressure chamber is suitable. According to this method, oxidation of the hydrogen storage alloy can be prevented, and a sprayed layer having a thickness of several millimeters can be obtained, and the thickness of the hydrogen storage alloy electrode can be increased as compared with the normal pressure method. .

【0020】溶射層の支持体は、電池の電解液に耐える
金属や炭素質などの導電体であれば、溶射によって形成
された溶射層と支持体との一体化物をそのまま電池用水
素吸蔵電極として使用することができる。また、プラス
チックや金属などを支持体に用いる場合には、その支持
体を溶解や分解によって除去すれば、水素吸蔵合金の溶
射層が残るので、これを水素吸蔵電極として使用するこ
ともできる。これらの支持体は、サンドブラストなどに
よってその表面をあらかじめ粗にしておくと溶射層の密
着性が向上する。
If the support of the thermal spray layer is a conductor such as metal or carbon which can withstand the electrolyte of the battery, an integrated product of the thermal spray layer and the support formed by thermal spraying is directly used as a hydrogen storage electrode for a battery. Can be used. Further, when plastic or metal is used for the support, if the support is removed by dissolution or decomposition, a sprayed layer of the hydrogen storage alloy remains, which can be used as a hydrogen storage electrode. If the surface of these supports is roughened in advance by sandblasting or the like, the adhesion of the sprayed layer is improved.

【0021】また、溶射層の水素吸蔵合金は、融解した
液滴が急冷されたものであるから、金属組織の結晶の歪
みが大きい。この場合に、水素吸蔵合金の平衡水素圧−
水素吸蔵量−等温線図(PTC特性)の平坦部の傾斜が
大きくなり、この水素吸蔵電極の充放電の進行にともな
う平衡電位の変化が大きくなる。そこで、この平衡電位
の変化を小さくしたい場合には、溶射して得た水素吸蔵
合金を熱処理するとよい。この場合に、溶射の材料の水
素吸蔵合金は、あらかじめ熱処理していないものを用い
ると経済的に有利である。なぜなら、溶射によって歪み
が生ずるから、水素吸蔵合金をあらかじめ熱処理して結
晶の歪みを除去しておいても、その処理が無駄になるか
らである。
Further, in the hydrogen storage alloy of the thermal sprayed layer, the molten liquid droplets are quenched, so that the crystal of the metal structure has large distortion. In this case, the equilibrium hydrogen pressure of the hydrogen storage alloy-
The slope of the flat portion of the hydrogen storage amount-isothermal diagram (PTC characteristic) increases, and the change in the equilibrium potential with the progress of charge and discharge of the hydrogen storage electrode increases. Therefore, when it is desired to reduce the change in the equilibrium potential, the hydrogen storage alloy obtained by thermal spraying may be heat-treated. In this case, it is economically advantageous to use a hydrogen storage alloy that has not been heat-treated in advance as a material for thermal spraying. This is because, because distortion occurs due to thermal spraying, even if the hydrogen storage alloy is heat-treated in advance to remove crystal distortion, the treatment is useless.

【0022】溶射層の表面粗さは大きいので、この水素
吸蔵電極を密閉形電池の負極に用いると、ガス吸収性能
が向上する。しかし、表面粗さが著しく大きくて、その
表面の突起物がセパレータを貫通して電池の内部短絡を
引き起こす場合には、表面を平滑にするように加工する
ことが望ましい。なお、上記及び下記では溶射を中心に
説明しているが、本発明の本質は要するに融解した水素
吸蔵合金を微粒の液滴にして、これを支持体に吹き付け
て堆積させる手段によって水素吸蔵電極を製造するもの
であるから、溶射に代えてスプレーデポジションを用い
ても同様の作用効果を生ずることは言うまでもない。
Since the thermal sprayed layer has a large surface roughness, when this hydrogen storage electrode is used for a negative electrode of a sealed battery, the gas absorption performance is improved. However, when the surface roughness is extremely large and the protrusions on the surface penetrate the separator to cause an internal short circuit of the battery, it is desirable to process the surface to be smooth. In addition, above and below, we focus on thermal spraying
As described, the essence of the present invention is that molten hydrogen
The occlusion alloy is made into fine droplets and sprayed on the support
Producing hydrogen storage electrodes by means of deposition
Use spray deposition instead of thermal spraying
Needless to say, the same effect can be obtained.

【0023】[0023]

【実施例】本発明を好適な実施例によって説明する。 [水素吸蔵電極(A)](本発明の製造方法による実施
例) 水素吸蔵合金の粉末は次のようにして製作した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described by way of preferred embodiments. [Hydrogen storage electrode (A)] (Example according to the manufacturing method of the present invention) A hydrogen storage alloy powder was produced as follows.

【0024】すなわち、モル比でLa0.8 Ce0.2 Ni3.8 Co
0.7 Al0.3 Mn0.2 の組成になるように、La、Ce、Ni、C
o、AlおよびMnを高周波溶解炉に投入して溶解した。次
に、この溶解物を水冷した銅製のモールドに注入して凝
固させ、この鋳塊をジョークラッシャーで粗粉砕してか
ら、アルミナ製のボールミルで微粉砕した。そして、分
級し、粒径が45μm以下の水素吸蔵合金粉末を得た。
That is, the molar ratio of La 0.8 Ce 0.2 Ni 3.8 Co
La, Ce, Ni, C so that the composition is 0.7 Al 0.3 Mn 0.2
o, Al and Mn were charged into a high-frequency melting furnace and melted. Next, this melt was poured into a water-cooled copper mold and solidified. The ingot was roughly pulverized with a jaw crusher and then finely pulverized with an alumina ball mill. Then, classification was performed to obtain a hydrogen storage alloy powder having a particle size of 45 μm or less.

【0025】次に、この水素吸蔵合金粉末を材料とし、
サンドブラストで表面を粗くした厚さが0.06mmのNi板を
支持体として、5 ×103 Paの減圧にしたアルゴン雰囲気
のチャンバー内で、アルゴンのプラズマで溶射した。溶
射は、溶射層の厚さが支持体の片面でそれぞれ約0.15mm
になるように、両面におこなった。溶射に要した時間は
10分間であった。そして、この支持体を切断し、水素
吸蔵合金の坦持部分の大きさが、厚さ約0.4mm 、巾約16
mm、高さ約57mmの本発明の製造方法による水素吸蔵電極
(A)を得た。電極は、水素吸蔵合金を坦持させていな
い電極端部の支持体のNi板に、Ni板からなるリード板を
取り付けて集電した。
Next, using the hydrogen storage alloy powder as a material,
Using a Ni plate having a thickness of 0.06 mm, whose surface was roughened by sandblasting, as a support, thermal spraying was performed with argon plasma in a chamber in an argon atmosphere at a reduced pressure of 5 × 10 3 Pa. Thermal spraying, the thickness of the sprayed layer is about 0.15 mm on each side of the support
It was done on both sides so that The time required for thermal spraying was 10 minutes. Then, this support is cut, and the size of the supporting portion of the hydrogen storage alloy is about 0.4 mm in thickness and about 16 in width.
A hydrogen storage electrode (A) having a height of about 57 mm and a height of about 57 mm according to the production method of the present invention was obtained. As for the electrode, a lead plate made of a Ni plate was attached to a Ni plate as a support at the end of the electrode that did not support the hydrogen storage alloy, and current was collected.

【0026】この電極1枚に含まれる水素吸蔵合金の重
量は、約1.7 gであった。
The weight of the hydrogen storage alloy contained in one electrode was about 1.7 g.

【0027】なお、粒径が45μm以下に分級したこの合
金粉末100mg と電解銅粉末400mg とを混合し、加圧成型
して、合金の容量評価用の電極を製作し、7M KOH電解液
中で、15mAの電流で2.5 時間充電し、酸化第2水銀電極
電位を基準として0.7Vまで放電するという充放電を繰り
返して放電容量を求めた結果、合金1g当たりの放電容量
は約0.32Ahであった。
In addition, 100 mg of the alloy powder classified to have a particle size of 45 μm or less and 400 mg of electrolytic copper powder were mixed and pressed to form an electrode for evaluating the capacity of the alloy. The battery was charged at a current of 15 mA for 2.5 hours, and was repeatedly charged and discharged to 0.7 V with reference to the mercury oxide electrode potential. The discharge capacity was determined to be about 0.32 Ah per gram of the alloy. .

【0028】従って、この水素吸蔵合金電極1枚には、
約0.65Ahの放電容量を有する水素吸蔵合金が含まれてい
る。
Therefore, one hydrogen storage alloy electrode has:
A hydrogen storage alloy having a discharge capacity of about 0.65 Ah is included.

【0029】この電極は機械的強度が高いので、電極を
切断する際や、電池を組み立てる際に水素吸蔵合金の脱
落は認められなかった。 [水素吸蔵電極(B)](従来の製造方法による比較
例) 水素吸蔵電極(A)の溶射の支持体に用いたものと同じ
Ni板の両面に、水素吸蔵電極(A)の溶射の材料に用い
たものと同じ水素吸蔵合金粉末を、圧着し、真空下で、
950 ℃にて30分間焼結した。得られた焼結体を、水素吸
蔵電極(A)と同じ寸法に切断して、従来の製造方法に
よる水素吸蔵電極(B)を製作した。
Since the electrode had high mechanical strength, no loss of the hydrogen storage alloy was observed when cutting the electrode or assembling the battery. [Hydrogen storage electrode (B)] (Comparative Example by Conventional Manufacturing Method) Same as that used for the support for thermal spraying of hydrogen storage electrode (A)
On both sides of the Ni plate, the same hydrogen storage alloy powder as that used for the material for spraying the hydrogen storage electrode (A) was pressed and pressed under vacuum.
Sintered at 950 ° C for 30 minutes. The obtained sintered body was cut into the same dimensions as the hydrogen storage electrode (A) to produce a hydrogen storage electrode (B) by a conventional manufacturing method.

【0030】この電極1枚に含まれる水素吸蔵合金の重
量は、約1.7 gであった。従って、この水素吸蔵合金電
極1枚には、約0.65Ahの放電容量を有する水素吸蔵合金
が含まれている。
The weight of the hydrogen storage alloy contained in one electrode was about 1.7 g. Therefore, one hydrogen storage alloy electrode contains a hydrogen storage alloy having a discharge capacity of about 0.65 Ah.

【0031】この電極は機械的強度が高いので、電極を
切断する際や、電池を組み立てる際に水素吸蔵合金の脱
落は認められなかった。 [水素吸蔵電極(C)](従来の製造法による比較例) 水素吸蔵電極(A)の溶射の材料に用いたものと同じ水
素吸蔵合金粉末100重量部に導電助剤たるファーネスブ
ラック1.5 重量部を混合し、結着剤たる3 重量部相当
(水素吸蔵合金粉末100 重量部にたいする量)のポリビ
ニルアルコールを溶解した水溶液を加えて混練し、ペー
スト状混合物を製作した。そして、このペースト状混合
物を、水素吸蔵電極(A)の溶射の支持体に用いたもの
と同じNi板のの両面に塗着し、乾燥してから、約 5ton/
cm2 の圧力でプレスし、水素吸蔵電極(A)と同じ寸法
に切断して、従来の製造方法による水素吸蔵電極(C)
を製作した。
Since the electrode had high mechanical strength, no loss of the hydrogen storage alloy was observed when cutting the electrode or assembling the battery. [Hydrogen storage electrode (C)] (Comparative example by conventional production method) 100 parts by weight of the same hydrogen storage alloy powder as used for the material for thermal spraying of hydrogen storage electrode (A) and 1.5 parts by weight of furnace black as a conductive auxiliary agent And an aqueous solution in which polyvinyl alcohol was dissolved in an amount of 3 parts by weight (corresponding to 100 parts by weight of the hydrogen storage alloy powder) as a binder was added and kneaded to prepare a paste-like mixture. Then, this paste-like mixture is applied to both sides of the same Ni plate as that used for the thermal spray support of the hydrogen storage electrode (A), dried, and then dried at about 5 ton /
Pressed at a pressure of 2 cm 2 , cut into the same dimensions as the hydrogen storage electrode (A),
Was made.

【0032】この水素吸蔵電極1枚に含まれる水素吸蔵
合金の重量は約1.0gであった。従って、この水素吸蔵
合金電極1枚には、約0.32Ahの放電容量を有する水素吸
蔵合金が含まれている。 [水素吸蔵電極(D)](従来の製造法による比較例) 水素吸蔵電極(C)のペースト状混合物に用いた結着剤
たるポリビニルアルコールの量を0.5 重量部にし、その
ほかの構成は水素吸蔵電極(C)と同じにして、従来の
製造方法による水素吸蔵電極(D)を製作した。
The weight of the hydrogen storage alloy contained in one hydrogen storage electrode was about 1.0 g. Therefore, one hydrogen storage alloy electrode contains a hydrogen storage alloy having a discharge capacity of about 0.32 Ah. [Hydrogen storage electrode (D)] (Comparative example by conventional manufacturing method) The amount of polyvinyl alcohol as a binder used in the paste mixture of the hydrogen storage electrode (C) was set to 0.5 part by weight, and the other components were hydrogen storage. A hydrogen storage electrode (D) was manufactured in the same manner as the electrode (C) by a conventional manufacturing method.

【0033】この水素吸蔵電極1枚に含まれる水素吸蔵
合金の重量は約1.2gであった。従って、この水素吸蔵
合金電極1枚には、約0.38Ahの放電容量を有する水素吸
蔵合金が含まれている。この電極は、結着剤の量が少な
いので、電極の体積当たりの水素吸蔵合金の坦持量は水
素吸蔵電極(C)よりも大きいが、活物質層の強度が小
さいので、電極を切断するなどの電極の取扱いの際の水
素吸蔵合金粉末の脱落が著しかった。従って、水素吸蔵
電極(C)を用いて完備電池を組み立てようとしても、
脱落した水素吸蔵合金粉末による電池の内部短絡が多発
したので、電池を組み立てることができなかった。
The weight of the hydrogen storage alloy contained in one hydrogen storage electrode was about 1.2 g. Therefore, one hydrogen storage alloy electrode contains a hydrogen storage alloy having a discharge capacity of about 0.38 Ah. Since the amount of the binder is small in this electrode, the carried amount of the hydrogen storage alloy per volume of the electrode is larger than that of the hydrogen storage electrode (C), but the electrode is cut because the strength of the active material layer is small. During the handling of the electrodes, the falling of the hydrogen storage alloy powder was remarkable. Therefore, even if an attempt is made to assemble a complete battery using the hydrogen storage electrode (C),
The battery could not be assembled because internal short-circuiting of the battery due to the dropped hydrogen storage alloy powder occurred frequently.

【0034】そこで、水素吸蔵電極(A)、(B)およ
び(C)それぞれ1枚を負極に用いて、開放形のニッケ
ル・金属水素化物蓄電池を製作した。
Therefore, an open nickel metal hydride storage battery was manufactured using one of the hydrogen storage electrodes (A), (B) and (C) as the negative electrode.

【0035】これらの電池1個には、大きさが、厚さ約
0.85mm、巾約17mm、高さ約58mmの公知の焼結式水酸化ニ
ッケル電極を2枚用い、これら2枚の正極板に含まれる
水酸化ニッケル及び添加物の水酸化コバルトの量の合計
は約2.9gであり、反応が1電子過程に従うことを仮定し
た場合の理論容量は約0.84Ahである。これらの電池の負
極には、上記の負極板それぞれ1枚を前記の2枚の正極
板の間にセパレータを介して狭持して用いた。従って、
これらのいずれの電池の放電容量も、負極の放電容量で
制限される構成である。
Each of these batteries has a size of about
Using two known sintered nickel hydroxide electrodes of 0.85 mm, width of about 17 mm and height of about 58 mm, the total amount of nickel hydroxide and the additive cobalt hydroxide contained in these two positive plates is It is about 2.9 g, and the theoretical capacity assuming that the reaction follows a one-electron process is about 0.84 Ah. For the negative electrodes of these batteries, one negative electrode plate was sandwiched between the two positive electrode plates with a separator interposed therebetween. Therefore,
The discharge capacity of any of these batteries is limited by the discharge capacity of the negative electrode.

【0036】セパレータには、ナイロン製の不織布を用
いた。このようにして構成した極板群を角形の電池容器
に収納して、開放形ニッケル・金属水素化物蓄電池を構
成した。電解液は、7M KOHに20g/l のLiOHを添加したも
のを用いた。
As the separator, a non-woven fabric made of nylon was used. The electrode group thus configured was housed in a rectangular battery container to form an open nickel / metal hydride storage battery. The electrolyte used was 7 M KOH to which 20 g / l of LiOH had been added.

【0037】これらの電池で、水素吸蔵電極(A)、
(B)、および(C)をそれぞれ負極に用いた電池を、
それぞれ電池(ア)、(イ)、および(ウ)と呼ぶ。
In these batteries, a hydrogen storage electrode (A),
A battery using (B) and (C) as the negative electrode,
The batteries are referred to as (a), (a), and (c), respectively.

【0038】これらの3種類の電池を、25℃において、
1Aの電流で1.2 時間充電し、1Aの電流で端子電圧が1.0V
になるまで放電するという充放電サイクルを10回繰り返
した。10サイクル目の放電容量を表1に示す。
At 25 ° C., these three types of batteries were
Charging for 1.2 hours at 1A current, terminal voltage of 1.0V at 1A current
The charge / discharge cycle of discharging until was reached was repeated 10 times. Table 1 shows the discharge capacity at the tenth cycle.

【0039】[0039]

【表1】 本発明の方法で製造した水素吸蔵電極(A)に坦持され
る水素吸蔵合金の量は、従来のプラスチックボンデッド
式の方法で製造した水素吸蔵電極(C)の約2倍であ
り、電極のの製造に長時間を要する従来の焼結式の方法
で製造した水素吸蔵電極(B)とほぼ同じである。従っ
て、電池の放電を負極の容量で制限したので、電池
(ア)の放電容量は、電池(ウ)の約2倍で、電池
(イ)とほぼ同じ大きい値である。
[Table 1] The amount of the hydrogen storage alloy supported on the hydrogen storage electrode (A) manufactured by the method of the present invention is about twice that of the hydrogen storage electrode (C) manufactured by the conventional plastic bonded method. This is almost the same as the hydrogen storage electrode (B) manufactured by the conventional sintering method, which requires a long time to manufacture. Therefore, since the discharge of the battery was limited by the capacity of the negative electrode, the discharge capacity of the battery (A) was about twice as large as that of the battery (C), and was almost the same value as the battery (A).

【0040】なお、上述の実施例では、LaNi5 合金の成
分元素の一部を特定の他の元素で置換した水素吸蔵合金
の場合について説明したが、本発明の効果は、TiNi合金
や、Laves 相合金についても同様の作用効果が得られる
ものである。
In the above embodiment, the description has been given of the case of the hydrogen storage alloy in which a part of the component elements of the LaNi 5 alloy is replaced by another specific element. However, the effect of the present invention is not limited to the TiNi alloy and the Laves alloy. A similar effect can be obtained for a phase alloy.

【0041】[0041]

【発明の効果】本発明によれば、水素吸蔵合金の充填密
度が高くて、しかも機械的強度が高い水素吸蔵電極を、
短時間で製造できる。
According to the present invention, a hydrogen storage electrode having a high packing density of a hydrogen storage alloy and a high mechanical strength is provided.
Can be manufactured in a short time.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融解した水素吸蔵合金の微粒を支持体に
吹き付けて、その層を形成することを特徴とする水素吸
蔵電極の製造方法。
1. A support comprising fine particles of a molten hydrogen storage alloy.
Spraying to form that layer
Method of manufacturing storage electrode.
【請求項2】 融解した水素吸蔵合金の微粒を支持体に2. The support is made of fine particles of the molten hydrogen storage alloy.
吹き付けて、その層を形成する手段が溶射であることをThat the means of spraying to form that layer is thermal spraying
特徴とする請求項1記載の水素吸蔵電極の製造方法。The method for producing a hydrogen storage electrode according to claim 1, wherein:
JP25039391A 1991-09-02 1991-09-02 Method for producing hydrogen storage electrode Expired - Fee Related JP3191270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25039391A JP3191270B2 (en) 1991-09-02 1991-09-02 Method for producing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25039391A JP3191270B2 (en) 1991-09-02 1991-09-02 Method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH0562671A JPH0562671A (en) 1993-03-12
JP3191270B2 true JP3191270B2 (en) 2001-07-23

Family

ID=17207251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25039391A Expired - Fee Related JP3191270B2 (en) 1991-09-02 1991-09-02 Method for producing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3191270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949915B1 (en) * 2016-02-22 2019-02-20 시마다 어플리 고도 가이샤 Apparatus for spray coating and method for preventing cobwebbing in spray coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9600070D0 (en) * 1996-01-04 1996-03-06 British Ceramic Res Ltd Electrodes
JP4538599B2 (en) * 2004-04-30 2010-09-08 独立行政法人物質・材料研究機構 Hydrogen storage alloy sprayed coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949915B1 (en) * 2016-02-22 2019-02-20 시마다 어플리 고도 가이샤 Apparatus for spray coating and method for preventing cobwebbing in spray coating

Also Published As

Publication number Publication date
JPH0562671A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JP3191270B2 (en) Method for producing hydrogen storage electrode
JP3141140B2 (en) Method for producing hydrogen storage alloy for battery
JP2719542B2 (en) Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode
JP3611450B2 (en) Metal hydride alkaline storage battery
JP2828680B2 (en) Hydrogen storage alloy electrode
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPS61176067A (en) Hydrogen occlusion electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode
JPH0562676A (en) Alkaline storage battery
JP2538610B2 (en) Metal oxide / hydrogen battery
JP3113892B2 (en) Method for producing hydrogen storage electrode
JP3258728B2 (en) Hydrogen storage alloy electrode for metal / hydride secondary batteries
JP2000268819A (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPS60119079A (en) Hydrogen absorption electrode
JPH0586621B2 (en)
JP3816138B6 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JP3816138B2 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JPH04280066A (en) Hydrogen storage electrode and manufacture thereof
JPH10280112A (en) Production of hydrogen storage nickel base alloy contributing suppression of secular reduction of discharge capacitance
JPH0586622B2 (en)
JPH06140039A (en) Hydrogen storage alloy electrode for metal hydride secondary battery
JPH06176756A (en) Hydrogen storage alloy electrode for battery
JPS61176065A (en) Hydrogen occlusion electrode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees