JP3258728B2 - Hydrogen storage alloy electrode for metal / hydride secondary batteries - Google Patents

Hydrogen storage alloy electrode for metal / hydride secondary batteries

Info

Publication number
JP3258728B2
JP3258728B2 JP30824092A JP30824092A JP3258728B2 JP 3258728 B2 JP3258728 B2 JP 3258728B2 JP 30824092 A JP30824092 A JP 30824092A JP 30824092 A JP30824092 A JP 30824092A JP 3258728 B2 JP3258728 B2 JP 3258728B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
metal
electrode
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30824092A
Other languages
Japanese (ja)
Other versions
JPH06140032A (en
Inventor
衛 木本
幹朗 田所
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30824092A priority Critical patent/JP3258728B2/en
Publication of JPH06140032A publication Critical patent/JPH06140032A/en
Application granted granted Critical
Publication of JP3258728B2 publication Critical patent/JP3258728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属・水素化物二次電
池用の水素吸蔵合金電極に係わり、特に、急速充電特性
及び高率放電特性を向上させることを目的とした、水素
吸蔵合金電極の新規、有用な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for a metal / hydride secondary battery, and more particularly to a hydrogen storage alloy electrode intended to improve rapid charge characteristics and high rate discharge characteristics. New and useful improvements to

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルなどの金属化合物を使用し、負極
に新素材の水素吸蔵合金を使用した金属・水素化物二次
電池が、単位重量及び単位体積当たりのエネルギー密度
が他の系の電池に比し高く、高容量化が可能であること
から、ニッケル・カドミウム二次電池に代わる次世代の
アルカリ蓄電池として脚光を浴びつつある。
2. Description of the Related Art In recent years,
A metal / hydride secondary battery that uses a metal compound such as nickel hydroxide for the positive electrode and a new material, a hydrogen storage alloy, for the negative electrode has a lower energy density per unit weight and unit volume than other types of batteries. Because of its high capacity and high capacity, it is being spotlighted as a next-generation alkaline storage battery that replaces nickel-cadmium secondary batteries.

【0003】従来、この種のアルカリ蓄電池の負極とし
て使用される水素吸蔵合金電極は、水素吸蔵合金粉末を
結着剤にて結着して一体化することにより作製されてい
る。
Conventionally, a hydrogen storage alloy electrode used as a negative electrode of this type of alkaline storage battery has been manufactured by binding and integrating a hydrogen storage alloy powder with a binder.

【0004】しかしながら、水素吸蔵合金粉末、特に希
土類金属を合金成分として含む水素吸蔵合金粉末は、水
素吸蔵合金塊の粉砕工程、電極の作製工程、電池の組立
工程などの各工程において表面酸化され易いため、水素
吸蔵合金電極における水素吸蔵合金粉末間の接触抵抗は
かなり大きい。因みに、この表面酸化による接触抵抗
は、水素吸蔵合金粉末の粒径が小さくなるにつれて増大
する。
[0004] However, the hydrogen storage alloy powder, particularly a hydrogen storage alloy powder containing a rare earth metal as an alloy component, is liable to be oxidized on its surface in each step such as a step of pulverizing the block of hydrogen storage alloy, a step of manufacturing an electrode, and a step of assembling a battery. Therefore, the contact resistance between the hydrogen storage alloy powder in the hydrogen storage alloy electrode is considerably large. Incidentally, the contact resistance due to the surface oxidation increases as the particle size of the hydrogen storage alloy powder decreases.

【0005】このような水素吸蔵合金粉末間の接触抵抗
が大きい、すなわち導電性の低い水素吸蔵合金電極を負
極に使用すると、急速充電特性や高率放電特性が低下す
る。
[0005] When such a hydrogen storage alloy electrode having a large contact resistance between the hydrogen storage alloy powders, that is, using a low conductivity hydrogen storage alloy electrode as the negative electrode, the rapid charge characteristics and the high rate discharge characteristics are reduced.

【0006】このため、従来、この接触抵抗を小さく抑
えるべく、水素吸蔵合金粉末に電子伝導性の高い金属粉
末を導電剤として粉体混合することが必要に応じて行わ
れている。
For this reason, conventionally, in order to suppress the contact resistance, powder mixing of a hydrogen storage alloy powder with a metal powder having a high electron conductivity as a conductive agent is performed as required.

【0007】しかしながら、この方法により得られる水
素吸蔵合金電極においては、金属粉末は水素吸蔵合金粉
末と単に粉体接触しているに過ぎない。このため、上記
した表面酸化を有効に抑制することができず、水素吸蔵
合金粉末間の接触抵抗はさほど小さくならない。
However, in the hydrogen storage alloy electrode obtained by this method, the metal powder is merely in powder contact with the hydrogen storage alloy powder. Therefore, the above-described surface oxidation cannot be effectively suppressed, and the contact resistance between the hydrogen storage alloy powders does not become so small.

【0008】以上の如く、従来の金属・水素化物二次電
池には、水素吸蔵合金粉末間の接触抵抗が大きい水素吸
蔵合金電極が負極に使用されていたため、負極の導電性
が悪く、急速充電特性や高率放電特性が良くないという
問題があった。
As described above, in the conventional metal / hydride secondary battery, a hydrogen storage alloy electrode having a large contact resistance between the hydrogen storage alloy powders is used for the negative electrode. There was a problem that the characteristics and the high-rate discharge characteristics were not good.

【0009】本発明は、従来の金属・水素化物二次電池
における上記した問題を解決するべくなされたものであ
って、その目的とするところは、急速充電特性及び高率
放電特性に優れた金属・水素化物二次電池を得ることを
可能にする、水素吸蔵合金粉末間の接触抵抗が小さい水
素吸蔵合金電極を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in a conventional metal / hydride secondary battery, and it is an object of the present invention to provide a metal having excellent quick charge characteristics and high rate discharge characteristics. The object of the present invention is to provide a hydrogen storage alloy electrode having a small contact resistance between hydrogen storage alloy powders, which makes it possible to obtain a hydride secondary battery.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る水素吸蔵合金電極(以下、「本発明電
極」と称する。)は、水素吸蔵合金成分の混合物の溶融
液(水素吸蔵合金の溶湯)に金属繊維を含有させたのち
凝固させて得た水素吸蔵合金塊を、粉末化し、結着剤に
て一体化してなるものである。
In order to achieve the above object, a hydrogen storage alloy electrode according to the present invention (hereinafter referred to as "electrode of the present invention") is a molten liquid (hydrogen storage alloy) of a mixture of hydrogen storage alloy components. A hydrogen storage alloy lump obtained by incorporating metal fibers into a molten metal (alloy) and then solidifying the powder is powdered and integrated with a binder.

【0011】上記金属繊維としては、Ru(ルテニウ
ム)、Co(コバルト)、Rh(ロジウム)、Ni(ニ
ッケル)、Pd(パラジウム)、Ag(銀)、Cu
(銅)、Au(金)、Tl(タリウム)、Pb(鉛)又
はBi(ビスマス)からなる金属繊維が好適なものとし
て例示されるが、水素吸蔵合金粉末同士の界面の接触抵
抗を有効に低減し得る金属繊維であれば特に制限なく使
用することができる。なお、これらの金属繊維は一種単
独を使用してもよく、必要に応じて二種以上を併用して
もよい。
The metal fibers include Ru (ruthenium), Co (cobalt), Rh (rhodium), Ni (nickel), Pd (palladium), Ag (silver), Cu
A metal fiber made of (copper), Au (gold), Tl (thallium), Pb (lead) or Bi (bismuth) is exemplified as a preferable one. Any metal fiber that can be reduced can be used without particular limitation. In addition, these metal fibers may be used alone or in combination of two or more as necessary.

【0012】本発明における金属繊維を含有せる水素吸
蔵合金粉末は、たとえば次に示す工程(1)〜(3)か
らなる製法により得ることができるが、もとより当該製
法に限定されるものではない。 (1)金属繊維を、水素吸蔵合金成分の溶融液に添加混
合する。 (2)所定の冷却速度で凝固させて、金属繊維を含有せ
る箔状の水素吸蔵合金塊とする。 (3)水素吸蔵合金塊を適宜の大きさに粉砕して水素吸
蔵合金粉末とする。
The hydrogen-absorbing alloy powder containing metal fibers in the present invention can be obtained, for example, by a method comprising the following steps (1) to (3), but is not limited thereto. (1) Metal fibers are added to and mixed with the melt of the hydrogen storage alloy component. (2) Solidification is performed at a predetermined cooling rate to form a foil-shaped hydrogen storage alloy lump containing metal fibers. (3) The hydrogen storage alloy block is pulverized to an appropriate size to obtain a hydrogen storage alloy powder.

【0013】凝固させる際の冷却速度は、1×104 °
C/秒以上が好ましい。かかる急冷速度で凝固させるこ
とにより、結晶粒(結晶子)の向きが溶融時の不規則状
態に近い、すなわち粒界が多数存在する合金結晶を得る
ことができ、これにより優れた急速充電特性及び高率放
電特性を発現し得る水素吸蔵合金電極が得られるからで
ある。なお、急冷凝固させる方法については特に制限さ
れず、たとえば従来公知のロール法(単ロール法、双ロ
ール法など)が好適に利用できる。
The cooling rate during solidification is 1 × 10 4 °
C / sec or more is preferable. By solidifying at such a rapid cooling rate, it is possible to obtain an alloy crystal in which the orientation of crystal grains (crystallites) is close to the irregular state at the time of melting, that is, an alloy crystal having a large number of grain boundaries. This is because a hydrogen storage alloy electrode that can exhibit high-rate discharge characteristics can be obtained. The method of rapid solidification is not particularly limited, and for example, a conventionally known roll method (single roll method, twin roll method, etc.) can be suitably used.

【0014】上記金属繊維は、急速充電特性及び高率放
電特性を向上させる上で、水素吸蔵合金100重量部に
対して、0.5重量部以上の割合で水素吸蔵合金粉末中
に含有させることが好ましい。
In order to improve the rapid charge characteristic and the high rate discharge characteristic, the metal fiber is contained in the hydrogen storage alloy powder at a ratio of 0.5 part by weight or more based on 100 parts by weight of the hydrogen storage alloy. Is preferred.

【0015】本発明における水素吸蔵合金としては、た
とえばLaNi5 、LaNi3 Co2 、これらのLaの
一部を他の金属で一部置換したMmNi5 、MmNi3
Co2 (Mm:ミッシュメタル、希土類金属の混合物)
等の希土類系水素吸蔵合金;Ti2 Ni、TiNi2
これらのNiの一部をCo、Mn、Alなどで置換した
もの等のTi−Ni系水素吸蔵合金;Ti−Mn系水素
吸蔵合金;Ti−Fe系水素吸蔵合金;Mg−Ni系水
素吸蔵合金;Ti−Zr系水素吸蔵合金;Zr−Mn系
水素吸蔵合金が挙げられるが、特に限定されない。
Examples of the hydrogen storage alloy in the present invention include LaNi 5 , LaNi 3 Co 2 , and MmNi 5 and MmNi 3 in which a part of La is partially substituted by another metal.
Co 2 (Mm: mixture of misch metal and rare earth metal)
Rare earth hydrogen storage alloys such as Ti 2 Ni, TiNi 2 ,
Ti-Ni-based hydrogen storage alloys such as those obtained by partially replacing Ni with Co, Mn, Al, etc .; Ti-Mn-based hydrogen storage alloys; Ti-Fe-based hydrogen storage alloys; Mg-Ni-based hydrogen storage alloys A Ti-Zr-based hydrogen storage alloy; a Zr-Mn-based hydrogen storage alloy, but is not particularly limited.

【0016】上述したように、本発明は、急速充電特性
及び高率放電特性に優れた金属・水素化物二次電池を得
ることが可能な水素吸蔵合金電極を提供すべく、金属繊
維を、凝固して合金化する前の段階である合金溶湯に添
加することにより、当該金属繊維を水素吸蔵合金粉末に
含有させ、もって水素吸蔵合金粉末間の接触抵抗を大幅
に低減させるようにした点に最大の特徴を有する。それ
ゆえ、これらの材料を結着一体化して電極を作製する際
に使用する結着剤の種類については、従来、水素吸蔵合
金電極用として実用され、或いは提案されている種々の
材料、たとえばポリテトラフルオロエチレン(PTF
E)、ポリビニリデンフルオライド(PVDF)などを
制限なく使用することが可能である。
[0016] As described above, the present invention provides a method for solidifying metal fibers to provide a hydrogen storage alloy electrode capable of obtaining a metal / hydride secondary battery having excellent rapid charge characteristics and high rate discharge characteristics. By adding the metal fiber to the hydrogen storage alloy powder by adding it to the molten alloy, which is a stage before alloying the metal alloy, the maximum is that the contact resistance between the hydrogen storage alloy powder is greatly reduced. It has the characteristics of Therefore, as for the kind of the binder used when preparing an electrode by binding and integrating these materials, various kinds of materials conventionally used or proposed for hydrogen storage alloy electrodes, for example, poly (poly), have been proposed. Tetrafluoroethylene (PTF
E), polyvinylidene fluoride (PVDF) and the like can be used without limitation.

【0017】[0017]

【作用】本発明電極に使用される水素吸蔵合金粉末は、
金属繊維を含有するので、水素吸蔵合金粉末の表面に露
出した金属繊維により、水素吸蔵合金粉末間の接触抵抗
が大幅に低減される。なお、金属繊維は、金属粉末に比
し、水素吸蔵合金粉末の表面に露出し易いので、上記接
触抵抗の低減作用が特に大きい。
The hydrogen storage alloy powder used for the electrode of the present invention is:
Since the metal fibers are contained, the contact resistance between the hydrogen storage alloy powders is greatly reduced by the metal fibers exposed on the surface of the hydrogen storage alloy powder. Since the metal fibers are more easily exposed to the surface of the hydrogen storage alloy powder than the metal powder, the effect of reducing the contact resistance is particularly large.

【0018】また、金属・水素化物二次電池では、過充
電時に正極で発生する酸素ガスは負極の水素吸蔵合金粉
末内に吸蔵された水素と反応させて除去されるが、本発
明電極に使用される水素吸蔵合金粉末は、還元性の高い
金属繊維を含有するので、水素吸蔵合金粉末の酸素ガス
還元能が従来の水素吸蔵合金電極のそれに比し高くな
る。
In a metal / hydride secondary battery, oxygen gas generated at the positive electrode during overcharge is removed by reacting with hydrogen stored in the hydrogen storage alloy powder of the negative electrode. Since the hydrogen storage alloy powder to be produced contains metal fibers having a high reducing property, the hydrogen storage alloy powder has a higher oxygen gas reducing ability than that of the conventional hydrogen storage alloy electrode.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0020】(実施例1)Mm、Ni、Co、Al及び
Mn(いずれも市販の純度99.9%以上の金属単体)
をモル比1:3.1:0.9:0.2:0.5で混合
し、不活性ガス(アルゴン)雰囲気の高周波溶解炉で、
高周波誘導加熱して溶融させた後、この溶融液100重
量部にNi繊維10重量部を添加して混合し、次いでメ
ルト・ドラッグ法(単ロール法の一種であり、ロール冷
却面に対し水平方向からノズルを介して合金溶湯を接触
させ、ロールの回転により上方に引き出しつつ連続的に
帯状の水素吸蔵合金を得る方法である。)にて1×10
4 °C/秒の冷却速度で急冷した後、平均粒径70μm
程度に粉砕して、Ni繊維を含有する組成式MmNi
3.1 Co0.9 Al0.2 Mn0.5 で表される水素吸蔵合金
粉末を作製した。
(Example 1) Mm, Ni, Co, Al and Mn (all simple metals having a purity of 99.9% or more which are commercially available)
Are mixed in a molar ratio of 1: 3.1: 0.9: 0.2: 0.5, and are mixed in a high-frequency melting furnace in an inert gas (argon) atmosphere.
After melted by high-frequency induction heating, 10 parts by weight of Ni fiber is added to and mixed with 100 parts by weight of the melt, and then melt-drag method (a type of single roll method, which is horizontal to the roll cooling surface). This is a method of continuously obtaining a band-shaped hydrogen storage alloy while bringing the molten alloy into contact with the molten metal through a nozzle and pulling it upward by rotating the roll.)
After quenching at a cooling rate of 4 ° C / sec, the average particle size is 70 μm.
Pulverized to a degree, a composition formula MmNi containing Ni fibers
A hydrogen storage alloy powder represented by 3.1 Co 0.9 Al 0.2 Mn 0.5 was produced.

【0021】次いで、このNi繊維含有水素吸蔵合金粉
末1重量部に、結着剤としてのポリテトラフルオロエチ
レン(PTFE)0.05重量部を混合し、圧延して合
金ペーストを得た。
Next, 0.05 parts by weight of polytetrafluoroethylene (PTFE) as a binder was mixed with 1 part by weight of the Ni fiber-containing hydrogen storage alloy powder and rolled to obtain an alloy paste.

【0022】この合金ペーストの所定量をニッケル製の
パンチングメタルからなる負極集電体の両面に塗布し、
乾燥して本発明電極E1を作製した。
A predetermined amount of this alloy paste is applied to both surfaces of a negative electrode current collector made of nickel punching metal,
The electrode E1 of this invention was produced by drying.

【0023】(実施例2)水素吸蔵合金粉末の作製にお
いて、Ni繊維を10重量部に代えて5重量部使用した
こと以外は実施例1と同様にして、本発明電極E2を作
製した。
(Example 2) An electrode E2 of the present invention was produced in the same manner as in Example 1 except that 5 parts by weight of Ni fiber was used instead of 10 parts by weight in the preparation of the hydrogen storage alloy powder.

【0024】(実施例3)水素吸蔵合金粉末の作製にお
いて、Ni繊維を10重量部に代えて3重量部使用した
こと以外は実施例1と同様にして、本発明電極E3を作
製した。
(Example 3) An electrode E3 of the present invention was produced in the same manner as in Example 1 except that in the preparation of the hydrogen storage alloy powder, 3 parts by weight of Ni fiber was used instead of 10 parts by weight.

【0025】(実施例4)水素吸蔵合金粉末の作製にお
いて、Ni繊維を10重量部に代えて1重量部使用した
こと以外は実施例1と同様にして、本発明電極E4を作
製した。
Example 4 An electrode E4 of the present invention was produced in the same manner as in Example 1, except that 1 part by weight of Ni fiber was used instead of 10 parts by weight in the preparation of the hydrogen storage alloy powder.

【0026】(実施例5)水素吸蔵合金粉末の作製にお
いて、Ni繊維を10重量部に代えて0.5重量部使用
したこと以外は実施例1と同様にして、本発明電極E5
を作製した。
Example 5 An electrode E5 according to the present invention was prepared in the same manner as in Example 1 except that 0.5 parts by weight of Ni fiber was used instead of 10 parts by weight in the preparation of the hydrogen storage alloy powder.
Was prepared.

【0027】(実施例6)水素吸蔵合金粉末の作製にお
いて、Ni繊維10重量部に代えてCu繊維を10重量
部使用したこと以外は実施例1と同様にして、本発明電
極E6を作製した。
Example 6 An electrode E6 of the present invention was produced in the same manner as in Example 1 except that 10 parts by weight of Cu fiber was used instead of 10 parts by weight of Ni fiber in the preparation of the hydrogen storage alloy powder. .

【0028】(実施例7)水素吸蔵合金粉末の作製にお
いて、Ni繊維10重量部に代えてCu繊維を5重量部
使用したこと以外は実施例1と同様にして、本発明電極
E7を作製した。
(Example 7) An electrode E7 of the present invention was produced in the same manner as in Example 1 except that 5 parts by weight of Cu fiber was used instead of 10 parts by weight of Ni fiber in the preparation of the hydrogen storage alloy powder. .

【0029】(実施例8)水素吸蔵合金粉末の作製にお
いて、Ni繊維10重量部に代えてCu繊維を3重量部
使用したこと以外は実施例1と同様にして、本発明電極
E8を作製した。
Example 8 An electrode E8 of the present invention was produced in the same manner as in Example 1 except that 3 parts by weight of Cu fiber was used instead of 10 parts by weight of Ni fiber in the preparation of the hydrogen storage alloy powder. .

【0030】(実施例9)水素吸蔵合金粉末の作製にお
いて、Ni繊維10重量部に代えてCu繊維を1重量部
使用したこと以外は実施例1と同様にして、本発明電極
E9を作製した。
Example 9 An electrode E9 of the present invention was produced in the same manner as in Example 1 except that 1 part by weight of Cu fiber was used instead of 10 parts by weight of Ni fiber in the preparation of the hydrogen storage alloy powder. .

【0031】(実施例10)水素吸蔵合金粉末の作製に
おいて、Ni繊維10重量部に代えてCu繊維を0.5
重量部使用したこと以外は実施例1と同様にして、本発
明電極E10を作製した。
Example 10 In the preparation of a hydrogen storage alloy powder, Cu fiber was replaced with 0.5 part of Cu fiber instead of 10 parts by weight of Ni fiber.
An electrode E10 of the present invention was made in the same manner as in Example 1 except that the parts by weight were used.

【0032】(比較例1)金属繊維を含有しない組成式
MmNi3.1 Co0.9 Al0.2 Mn0.5 で表される水素
吸蔵合金粉末を使用したこと以外は実施例1と同様にし
て、比較電極CE1を作製した。
Comparative Example 1 A comparative electrode CE1 was produced in the same manner as in Example 1 except that a hydrogen storage alloy powder represented by a composition formula of MmNi 3.1 Co 0.9 Al 0.2 Mn 0.5 containing no metal fiber was used. did.

【0033】(比較例2)Cu繊維を水素吸蔵合金の溶
湯に添加せず、Cu繊維を含有しない水素吸蔵合金粉末
100重量部とCu繊維10重量部とを混合したこと以
外は実施例1と同様にして、比較電極CE2を作製し
た。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the Cu fiber was not added to the molten metal of the hydrogen storage alloy, and 100 parts by weight of the hydrogen storage alloy powder containing no Cu fiber and 10 parts by weight of the Cu fiber were mixed. Similarly, a comparative electrode CE2 was produced.

【0034】(高率放電特性試験)実施例1〜10で作
製した本発明電極E1〜E10又は比較例1、2で作製
した比較電極CE1、CE2を負極に使用して単三型の
ニッケル・水素化物二次電池(順に「電池BA1〜BA
10及び比較電池BC1、BC2」と称する。)を組み
立てた。なお、正極として焼結式ニッケル極を、セパレ
ータとしてナイロン不織布を、アルカリ電解液として3
0%濃度の水酸化カリウム水溶液を、それぞれ使用し
た。
(High Rate Discharge Characteristics Test) Using the electrodes E1 to E10 of the present invention produced in Examples 1 to 10 or the comparative electrodes CE1 and CE2 produced in Comparative Examples 1 and 2 as negative electrodes, an AA nickel Hydride rechargeable batteries (in order, “Batteries BA1 to BA
10 and comparative batteries BC1, BC2 ". ) Assembled. In addition, a sintered nickel electrode was used as the positive electrode, a nylon nonwoven fabric was used as the separator, and 3
A 0% strength aqueous potassium hydroxide solution was used.

【0035】図1は作製した電池BA1(BA2〜BA
10、比較電池BC1、BC2も同形状の電池であ
る。)の断面図であり、図示の電池BA1は、正極1及
び負極(水素吸蔵合金電極)2、これら両電極を離間す
るセパレータ3、正極リード4、負極リード5、正極外
部端子6、アルカリ電解液が注液された負極缶7などか
らなる。
FIG. 1 shows the battery BA1 (BA2 to BA
10. The comparative batteries BC1 and BC2 are also batteries of the same shape. The battery BA1 shown in the figure has a positive electrode 1, a negative electrode (hydrogen storage alloy electrode) 2, a separator 3 separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6, an alkaline electrolyte. Is injected into the negative electrode can 7 and the like.

【0036】正極1及び負極2はセパレータ3を介して
渦巻き状に巻き取られた状態で負極缶7内に収容されて
おり、正極1は正極リード4を介して正極外部端子6
に、また負極2は負極リード5を介して負極缶7に接続
され、電池BA1内部で生じた化学エネルギーを電気エ
ネルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound through a separator 3, and the positive electrode 1 is connected to a positive external terminal 6 through a positive electrode lead 4.
In addition, the negative electrode 2 is connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery BA1 can be taken out as electric energy.

【0037】なお、正極外部端子6と封口体8との間に
は、コイルスプリング9が設けられて、電池の内圧が異
常上昇したときに圧縮されて電池内のガスを大気中に放
出し得るようになっている。
A coil spring 9 is provided between the positive electrode external terminal 6 and the sealing member 8 so that when the internal pressure of the battery rises abnormally, it is compressed and gas in the battery can be released to the atmosphere. It has become.

【0038】以上の如き構成の電池BA1〜BA10及
び比較電池BC1、BC2について高率放電特性を調べ
た。結果を図2に示す。
The high-rate discharge characteristics of the batteries BA1 to BA10 and the comparative batteries BC1 and BC2 configured as described above were examined. The results are shown in FIG.

【0039】図2は、電池BA1〜BA4、BA6〜B
A9及び比較電池BC1、BC2の高率放電特性を、縦
軸に電池電圧(V)を、また横軸に放電容量比率(%)
をとって示したグラフである。
FIG. 2 shows batteries BA1 to BA4, BA6 to B
A9 and the high-rate discharge characteristics of the comparative batteries BC1 and BC2, the vertical axis represents the battery voltage (V), and the horizontal axis represents the discharge capacity ratio (%).
FIG.

【0040】放電容量比率は、常温(25°C)にて
0.2Cで1.3Vまで充電したのち0.2Cで1.0
Vまで放電したときの放電容量に対する、常温にて0.
2Cで1.3Vまで充電したのち4.0Cで1.0Vま
で放電したときの放電容量の割合をパーセントで表示し
た値である。
The discharge capacity ratio was as follows: at room temperature (25 ° C.), the battery was charged to 1.3 V at 0.2 C and then charged at 1.0 at 0.2 C.
At room temperature with respect to the discharge capacity when discharged to V
This is a value expressed as a percentage of the discharge capacity when the battery is charged to 1.3 V at 2 C and then discharged to 1.0 V at 4.0 C.

【0041】図2より、比較電池BC1、BC2の放電
容量比率はいずれも50%前後と小さいのに対して、電
池BA1〜BA4及びBA6〜BA9の放電容量比率は
70%以上と大きく、本発明電極E1〜E4及びE6〜
E9を使用した電池BA1〜BA4及びBA6〜BA9
は、比較電極CE1を使用した比較電池BC1に比し、
高率放電特性に格段優れていることが分かる。
FIG. 2 shows that the discharge capacity ratios of the comparative batteries BC1 and BC2 are as small as about 50%, whereas the discharge capacity ratios of the batteries BA1 to BA4 and BA6 to BA9 are as large as 70% or more. Electrodes E1-E4 and E6-
Batteries BA1-BA4 and BA6-BA9 using E9
Is compared to the comparative battery BC1 using the comparative electrode CE1,
It can be seen that the high rate discharge characteristics are much better.

【0042】また、図3は、縦軸に電池BA1〜BA1
0及び比較電池BC1の放電容量比率(%)を、また横
軸に水素吸蔵合金に対する金属繊維の配合比率(%)を
とって、放電容量比率と金属繊維の配合比率との関係を
示したグラフである。
In FIG. 3, the vertical axis represents the batteries BA1 to BA1.
A graph showing the relationship between the discharge capacity ratio and the mixing ratio of the metal fibers by taking the discharge capacity ratio (%) of the battery cell 0 and the comparative battery BC1, and the mixing ratio (%) of the metal fibers to the hydrogen storage alloy on the horizontal axis. It is.

【0043】図3より、金属繊維の水素吸蔵合金に対す
る配合比率が1重量部以上のときに放電容量比率が70
%程度以上となることから、高率放電特性に特に優れた
ニッケル・水素化物二次電池を得る上で、水素吸蔵合金
100重量部に対して1重量部以上の金属繊維を水素吸
蔵合金粉末に含有させることが好ましいことが分かる。
FIG. 3 shows that the discharge capacity ratio was 70 when the mixing ratio of the metal fibers to the hydrogen storage alloy was 1 part by weight or more.
% Or more, in order to obtain a nickel-hydride secondary battery having particularly excellent high-rate discharge characteristics, 1% by weight or more of metal fiber is added to the hydrogen storage alloy powder with respect to 100 parts by weight of the hydrogen storage alloy. It turns out that it is preferable to contain.

【0044】[0044]

【発明の効果】本発明電極は、水素吸蔵合金粉末間の接
触抵抗が小さく、導電性が高いため、急速充電特性及び
高率放電特性に優れた金属・水素化物二次電池を得るこ
とが可能になるなど、本発明は優れた特有の効果を奏す
る。
The electrode of the present invention has a low contact resistance between the hydrogen storage alloy powders and a high conductivity, so that it is possible to obtain a metal / hydride secondary battery having excellent quick charge characteristics and high rate discharge characteristics. The present invention has an excellent specific effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製したニッケル・水素化物二次電池
の断面図である。
FIG. 1 is a cross-sectional view of a nickel hydride secondary battery manufactured in an example.

【図2】高率放電特性を示すグラフである。FIG. 2 is a graph showing high-rate discharge characteristics.

【図3】放電容量比率(高率放電特性)と、水素吸蔵合
金に対する金属繊維の配合比率との関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between a discharge capacity ratio (high-rate discharge characteristics) and a mixing ratio of metal fibers to a hydrogen storage alloy.

【符号の説明】[Explanation of symbols]

BA1 電池(金属・水素化物二次電池) 1 正極(焼結式ニッケル極) 2 負極(水素吸蔵合金電極) 3 セパレータ BA1 Battery (metal / hydride secondary battery) 1 Positive electrode (sintered nickel electrode) 2 Negative electrode (hydrogen storage alloy electrode) 3 Separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−110553(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/26 H01M 4/38 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-110553 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24 H01M 4/26 H01M 4 / 38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金成分の混合物の溶融液に金属
繊維を含有させたのち凝固させて得た水素吸蔵合金塊
を、粉末化し、結着剤にて一体化してなる金属・水素化
物二次電池用の水素吸蔵合金電極。
1. A metal / hydride composite obtained by incorporating a metal fiber into a melt of a mixture of hydrogen storage alloy components and then solidifying the mixture to obtain a hydrogen storage alloy block, which is then powdered and integrated with a binder. Hydrogen storage alloy electrode for secondary batteries.
【請求項2】前記金属繊維が、Ru、Co、Rh、N
i、Pd、Ag、Cu、Au、Tl、Pb及びBiより
なる群から選ばれた少なくとも一種の金属からなる請求
項1記載の金属・水素化物二次電池用の水素吸蔵合金電
極。
2. The method according to claim 1, wherein the metal fibers are Ru, Co, Rh, N
2. The hydrogen storage alloy electrode for a metal / hydride secondary battery according to claim 1, comprising at least one metal selected from the group consisting of i, Pd, Ag, Cu, Au, Tl, Pb and Bi.
JP30824092A 1992-10-21 1992-10-21 Hydrogen storage alloy electrode for metal / hydride secondary batteries Expired - Fee Related JP3258728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30824092A JP3258728B2 (en) 1992-10-21 1992-10-21 Hydrogen storage alloy electrode for metal / hydride secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30824092A JP3258728B2 (en) 1992-10-21 1992-10-21 Hydrogen storage alloy electrode for metal / hydride secondary batteries

Publications (2)

Publication Number Publication Date
JPH06140032A JPH06140032A (en) 1994-05-20
JP3258728B2 true JP3258728B2 (en) 2002-02-18

Family

ID=17978628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30824092A Expired - Fee Related JP3258728B2 (en) 1992-10-21 1992-10-21 Hydrogen storage alloy electrode for metal / hydride secondary batteries

Country Status (1)

Country Link
JP (1) JP3258728B2 (en)

Also Published As

Publication number Publication date
JPH06140032A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
EP0647973B1 (en) Hydrogen-absorbing alloy electrode and process for producing the same
US7198868B2 (en) Alkaline storage battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP2000311704A (en) Sealed nickel hydrogen secondary battery
JP3258728B2 (en) Hydrogen storage alloy electrode for metal / hydride secondary batteries
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3490866B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery using the same
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3432866B2 (en) Hydrogen storage alloy electrodes for alkaline storage batteries
JPH06140039A (en) Hydrogen storage alloy electrode for metal hydride secondary battery
JP3432847B2 (en) Hydrogen storage alloy electrode
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3454780B2 (en) Alkaline storage battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3407989B2 (en) Metal hydride electrode
JP3369148B2 (en) Alkaline storage battery
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH08287908A (en) Hydrogen storage alloy electrode
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees