JPH10259445A - Hydrogen storage alloy, its production and nickel-hydrogen secondary battery - Google Patents

Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Info

Publication number
JPH10259445A
JPH10259445A JP9068736A JP6873697A JPH10259445A JP H10259445 A JPH10259445 A JP H10259445A JP 9068736 A JP9068736 A JP 9068736A JP 6873697 A JP6873697 A JP 6873697A JP H10259445 A JPH10259445 A JP H10259445A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
hydrogen
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9068736A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Takamichi Inaba
隆道 稲葉
Toshiya Sakamoto
敏也 坂本
Fumiyuki Kawashima
史行 川島
Shusuke Inada
周介 稲田
Noriaki Sato
典昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9068736A priority Critical patent/JPH10259445A/en
Publication of JPH10259445A publication Critical patent/JPH10259445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Continuous Casting (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen storage alloy excellent in hydrogen occluding characteristics and corrosion resistance and useful as the material for the negative electrode of a battery by preparing a hydrogen storage alloy shown by a specified formula in which elements selected from each group of La, Ce or the like, of Ti, Zr or the like and of Co, Ni or the like are contained in specified ratios and fine crystal phases are precipitated. SOLUTION: A hydrogen storage alloy composed of an alloy expressed by the general formula of (Ra M1-a )100-6 T6 [where R denotes one or more kinds of elements among La, Ce, Nd, Sm, and Y, M denotes one or more kinds of elements among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, T denotes one or more kinds of elements among Mn, Fe, Co, Ni, Cu, Zn, B, Al, Si and Sn, (a) satisfies 0<a<1 by atomic ratio, and (b) satisfies 30<=b<=80 by atomic %], and in which fine crystal phases having <= 10 μm grain size are precipitated into at least a part of the alloy structure is prepd. In the case this hydrogen storage alloy is used as the active substance of the negative electrode of a secondary battery, high electrode capacitance, long life characteristics so as to withstand repeated use and high dischargeability are satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金,そ
の製造方法およびその合金を使用したニッケル水素二次
電池に係り、特に合金を二次電池の負電極の活物質とし
て使用した場合に、高い電極容量(電池容量)と繰返し
の使用に耐える長寿命特性(長サイクル特性)と、高率
放電性とを共に満足させることが可能な水素吸蔵合金,
その製造方法およびニッケル水素二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, a method for producing the same, and a nickel-hydrogen secondary battery using the alloy, and more particularly, to a case where the alloy is used as an active material for a negative electrode of a secondary battery. Hydrogen storage alloy capable of satisfying both high electrode capacity (battery capacity), long life characteristics (long cycle characteristics) that can withstand repeated use, and high rate discharge performance,
The present invention relates to a method for manufacturing the same and a nickel-metal hydride secondary battery.

【0002】[0002]

【従来の技術】石油系燃料などの従来の化石燃料と異な
り、燃焼させても有害ガスを発生せずにH2 Oとなる水
素が、クリーンなエネルギー源として注目されている。
この水素の具体的な利用を実現するためには、水素の実
用規模での貯蔵方法や輸送方法等が重要である。しかし
ながら、水素を気体として通常のボンベに貯蔵する場合
には、ボンベ容積が過大になる一方、水素を極低温下で
液体として貯蔵する場合には、冷凍設備などの補助設備
が必要になり、いずれにしろ貯蔵設備が大型化する難点
がある。そこで、水素と反応して金属酸化物として水素
を吸収し、かつ加熱等により水素を放出する水素吸蔵合
金が、水素の貯蔵や輸送の手段として注目されている。
水素吸蔵合金の応用範囲は広く、上述した水素の貯蔵手
段や輸送手段以外に、水素駆動自動車の燃料源、二次電
池の負極材料、水素の分離、回収、精製装置、ヒートポ
ンプ、冷暖房システム、冷凍システム、蓄熱装置、アク
チュエータ、コンプレッサ、温度センサ、触媒等、種々
の分野での利用が検討されている。特に二次電池の負極
材料としての水素吸蔵合金の用途は拡大の一途を辿って
いる。
2. Description of the Related Art Unlike conventional fossil fuels such as petroleum-based fuels, hydrogen, which is converted into H 2 O without generating harmful gases even when burned, has attracted attention as a clean energy source.
In order to realize this specific use of hydrogen, a method of storing and transporting hydrogen on a practical scale is important. However, when hydrogen is stored as a gas in a normal cylinder, the volume of the cylinder becomes excessive.On the other hand, when hydrogen is stored at a very low temperature as a liquid, auxiliary equipment such as a refrigeration facility is required. Anyway, there is a problem that the storage equipment becomes large. Therefore, a hydrogen storage alloy that absorbs hydrogen as a metal oxide by reacting with hydrogen and releases hydrogen by heating or the like has attracted attention as a means for storing and transporting hydrogen.
The application range of hydrogen storage alloys is wide, and in addition to the above-mentioned hydrogen storage means and transport means, fuel sources for hydrogen-powered vehicles, negative electrode materials for secondary batteries, hydrogen separation / recovery / purification equipment, heat pumps, cooling / heating systems, refrigeration Applications in various fields such as systems, heat storage devices, actuators, compressors, temperature sensors, and catalysts are being studied. In particular, applications of the hydrogen storage alloy as a negative electrode material of a secondary battery are steadily expanding.

【0003】すなわち、近年の電子技術の進歩による省
電力化、実装技術の進歩により従来では予想し得なかっ
た電子機器が小型化およびポータブル化されてきてい
る。それに伴い、前記電子機器の電源である二次電池に
対する高容量化,長寿命化,放電電流の安定化が特に要
求されている。例えばパーソナル化、ポータブル化が進
むOA機器,電話機,AV機器においては、特に小型軽
量化,およびコードレスでの機器使用時間の延伸などの
目的で高性能電池の開発が所望されている。このような
要求に対応する電池として、従来の焼結式ニッケルカド
ミウム(Ni−Cd)電池の電極基板を三次元構造体と
した非焼結式Ni−Cd二次電池が開発されたが、顕著
な容量増加は達成されていない。
In other words, recent advances in electronic technology have led to power savings, and advances in packaging technology have led to smaller and more portable electronic devices that could not be expected in the past. Accordingly, there is a particular demand for a secondary battery as a power source of the electronic device to have a high capacity, a long life, and a stable discharge current. For example, in OA devices, telephones, and AV devices that are becoming more personalized and portable, there is a demand for the development of a high-performance battery, particularly for the purpose of reducing the size and weight and extending the use time of the device cordlessly. As a battery corresponding to such a demand, a non-sintered Ni-Cd secondary battery having a three-dimensional structure using an electrode substrate of a conventional sintered nickel cadmium (Ni-Cd) battery has been developed. No significant capacity increase has been achieved.

【0004】そこで、近年、負極として水素吸蔵合金粉
末を集電体に固定した構造のものを使用したアルカリ二
次電池(ニッケル水素二次電池)が提案され、脚光を浴
びている。このニッケル水素電池に使用される負極は、
一般に、下記の手順で製造される。すなわち、高周波溶
解法やアーク溶解法などによって水素吸蔵合金を溶解し
た後に、冷却・粉砕し、得られた粉砕粉に導電剤や結合
剤を添加して混練物を形成し、この混練物を集電体に塗
布または圧着して製造される。この水素吸蔵合金を使用
した負極は、従来の代表的なアルカリ二次電池用負極材
料であるカドミウム(Cd)に比較し、単位重量当りま
たは単位容積当りの実効的なエネルギ密度を大きくする
ことができ、電池の高容量化を可能とする他、毒性が少
なく環境汚染のおそれが少ないという特徴を持ってい
る。
Therefore, in recent years, an alkaline secondary battery (nickel-metal hydride secondary battery) using a structure in which a hydrogen storage alloy powder is fixed to a current collector as a negative electrode has been proposed and attracted attention. The negative electrode used in this nickel-metal hydride battery is
Generally, it is manufactured by the following procedure. That is, after the hydrogen storage alloy is melted by a high-frequency melting method or an arc melting method, the mixture is cooled and pulverized, and a conductive agent and a binder are added to the obtained pulverized powder to form a kneaded material, and the kneaded material is collected. It is manufactured by coating or crimping on an electric body. A negative electrode using this hydrogen storage alloy can increase the effective energy density per unit weight or unit volume as compared with cadmium (Cd), which is a conventional representative negative electrode material for alkaline secondary batteries. In addition to being able to increase the capacity of the battery, it has the characteristics of being less toxic and less likely to cause environmental pollution.

【0005】しかしながら、水素吸蔵合金を含む負極
は、二次電池に組み込まれた状態において電解液である
濃厚なアルカリ水溶液に浸漬される他、特に過充電時に
は正極より発生する酸素に曝されるため、水素吸蔵合金
が腐食して電極特性が劣化し易い。さらに、充放電時に
おいて前記水素吸蔵合金中への水素の吸蔵、放出に伴っ
て体積が膨張、収縮するため、水素吸蔵合金に割れを生
じ、水素吸蔵合金粉末の微粉化が進行する。水素吸蔵合
金の微粉化が進行すると、水素吸蔵合金の比表面積が加
速度的に増加するため、水素吸蔵合金表面のアルカリ性
電解液による劣化面積の割合が増加する。しかも、水素
吸蔵合金粉末と集電体との間の導電性も劣化するため、
サイクル寿命が低下する上に電極特性も劣化する。
[0005] However, the negative electrode containing the hydrogen storage alloy is immersed in a concentrated alkaline aqueous solution as an electrolytic solution in a state where the negative electrode is incorporated in a secondary battery, and is exposed to oxygen generated from the positive electrode particularly during overcharge. In addition, the hydrogen storage alloy is corroded and the electrode characteristics are likely to deteriorate. Further, at the time of charging and discharging, the volume expands and contracts in accordance with the occlusion and release of hydrogen in the hydrogen storage alloy, so that the hydrogen storage alloy cracks and the hydrogen storage alloy powder becomes finer. As the pulverization of the hydrogen storage alloy progresses, the specific surface area of the hydrogen storage alloy increases at an accelerated rate, so that the ratio of the area of the surface of the hydrogen storage alloy deteriorated by the alkaline electrolyte increases. Moreover, since the conductivity between the hydrogen storage alloy powder and the current collector also deteriorates,
The cycle life is reduced and the electrode characteristics are also deteriorated.

【0006】そこで、上述した問題を解決するために水
素吸蔵合金を多元化したり、水素吸蔵合金粉末表面また
は水素吸蔵合金を含む負極表面にニッケル薄膜や銅薄膜
をめっき法、蒸着法等により付着させ電解液と直接接触
しないようにして耐食性を向上させたり、機械的強度を
増加させて割れを防止したり、あるいはアルカリ溶液中
へ浸漬後、乾燥させることにより水素吸蔵合金表面の劣
化を抑制したりという方法が提案されているが、必ずし
も十分な改善を図ることができず、却って電極容量の低
下を招く場合があった。
Therefore, in order to solve the above-mentioned problem, the hydrogen storage alloy is diversified, or a nickel thin film or a copper thin film is adhered to the surface of the hydrogen storage alloy powder or the negative electrode including the hydrogen storage alloy by plating, vapor deposition, or the like. Improve corrosion resistance by preventing direct contact with the electrolyte, prevent mechanical cracks by increasing mechanical strength, or suppress deterioration of the hydrogen storage alloy surface by immersing it in an alkaline solution and drying it. However, it has not always been possible to achieve a sufficient improvement, and in some cases, the electrode capacity is reduced.

【0007】上記アルカリ二次電池に用いられる水素吸
蔵合金として、LaNi5 で代表されるAB5 系合金が
ある。この六方晶構造を有する合金系を使用した負極
は、従来の代表的なアルカリ二次電池用負電極材料であ
るカドミウムを使用した場合と比較して、電池の単位重
量または単位容積当りの実効的なエネルギ密度を大きく
することが可能であり、電池の高容量化を可能とする上
に、カドミウム公害等の環境汚染を発生するおそれも少
なく、電池特性も良好であるという特徴を有している。
また上記AB5 系合金を使用した電池では、高い電流値
で放電できる特性があり、いわゆる高率放電が可能であ
るという長所がある。
[0007] As the hydrogen storage alloy used for the alkaline secondary battery, there is AB 5 type alloy represented by LaNi 5. The negative electrode using the alloy system having the hexagonal structure has a more effective battery per unit weight or unit volume than the case of using cadmium which is a conventional representative negative electrode material for an alkaline secondary battery. Energy density can be increased, the battery capacity can be increased, and there is little risk of environmental pollution such as cadmium pollution, and the battery characteristics are good. .
In the battery using the AB 5 type alloy, there is a characteristic that can be discharged at a high current value, there is an advantage that it is possible to so-called high rate discharge.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、例えば
Lm−Ni−Co−Al系合金(LmはLa富化ミッシ
ュメタル)から成る従来のAB5 系水素吸蔵合金の電極
容量は、現在300mAh/gを僅かに超えた程度であ
り、また充放電によるサイクル寿命も、電池のさらなる
高容量化と長寿命化とが希求されている状況では十分で
はなかった。
[SUMMARY OF THE INVENTION However, for example, the electrode capacitance of the Lm-Ni-Co-Al alloy (Lm is La enriched misch metal) conventional AB 5 type hydrogen-absorbing alloy comprising the current 300 mAh / g It was slightly exceeded, and the cycle life due to charge and discharge was not sufficient in a situation where higher capacity and longer life of the battery were desired.

【0009】一方、ZrNi2 やZrMn2 などの組成
材を基材とする、いわゆるAB2 系水素吸蔵合金を負極
材料として使用した電池では、400mAh/g以上の
容量が得られる反面、高率放電すると、急激に容量が低
下したり、寿命が不十分になるなど、電池機能が著しく
低下する問題点があり、いずれにしても電池を使用した
機器の動作信頼性が大幅に低下してしまう問題点があっ
た。
On the other hand, in a battery using a so-called AB 2 -based hydrogen storage alloy as a negative electrode material, which is made of a composition material such as ZrNi 2 or ZrMn 2, a capacity of 400 mAh / g or more can be obtained, but a high-rate discharge Then, there is a problem that the battery function is remarkably reduced, such as a sudden decrease in capacity and an insufficient life, and in any case, a problem that operation reliability of the device using the battery is greatly reduced. There was a point.

【0010】また、Mg2 Ni合金から成る水素吸蔵合
金は多量の水素を吸蔵する性質を有しているが、水素の
放出が極めて困難であり、電池容量を高める対策を講じ
ない限り、電池負極材としての実用化は困難であるとい
う問題もあった。
A hydrogen storage alloy made of an Mg 2 Ni alloy has a property of storing a large amount of hydrogen, but it is extremely difficult to release hydrogen. Unless measures are taken to increase the battery capacity, a negative electrode of the battery is required. There was also a problem that practical use as a material was difficult.

【0011】また従来の水素吸蔵合金を負極材料として
使用したニッケル水素電池においては、非使用時に高温
度条件で保持した場合に合金の劣化が急速に進行し易
く、いわゆる高温放置条件を加味した寿命特性が低下す
る問題点もあった。
In a conventional nickel-metal hydride battery using a hydrogen-absorbing alloy as a negative electrode material, the deterioration of the alloy is apt to proceed rapidly when held at a high temperature condition when not in use. There is also a problem that characteristics are deteriorated.

【0012】さらに、電池が使用される温度範囲(−2
0℃〜+80℃)の上限温度領域および下限温度領域で
電池容量の低下が顕著になり、場合によっては放電しな
いこともあり、電池機能が著しく低下するという、いわ
ゆる温度依存性が大きくなる問題点があった。特に寒冷
地にて使用した場合には電圧降下が大きくなり、機器の
動作不良を生じる難点があり、いずれにしても電池を駆
動電源とする機器の動作信頼性が大幅に低下してしまう
問題点があった。
Further, the temperature range in which the battery is used (−2)
(0 ° C. to + 80 ° C.) in the upper limit temperature range and the lower limit temperature range, the battery capacity is remarkably reduced, and in some cases, the battery does not discharge. was there. In particular, when used in a cold region, the voltage drop becomes large, and there is a problem that the device malfunctions. In any case, the operation reliability of the device using a battery as a driving power source is greatly reduced. was there.

【0013】また電池の容量立上り特性(活性化の容易
さ)が不良となる問題点があった。すなわち電池組立後
において僅かな回数の活性化操作(充放電操作)のみで
所定の高い電極容量が即時に得られないという問題点が
あった。この容量立上り性は製品としての電池をユーザ
が使用する上では注目する必要がない特性であるが、こ
の容量立上り性が不良であると電池の製造工数が増大
し、電池の製造コストを大きく引き上げる要因になるた
め、メーカーサイドで電池設計を行なう場合に、重視さ
れる特性の1つとなる。
Further, there has been a problem that the capacity rising characteristics (easiness of activation) of the battery become poor. That is, there is a problem that a predetermined high electrode capacity cannot be obtained immediately by only a small number of activation operations (charge / discharge operations) after the battery is assembled. This capacity rising property is a characteristic that does not need to be noticed when a user uses a battery as a product. However, if the capacity rising property is poor, the number of man-hours for manufacturing the battery increases, and the manufacturing cost of the battery increases significantly. This is one of the important characteristics when battery design is performed on the manufacturer side.

【0014】本発明は上記問題点を解決するためになさ
れたものであり、電池の負極材料とした場合に、高い電
極容量と繰り返しの使用に耐える長寿命特性と高率放電
性とを共に満足することが可能な水素吸蔵合金,その製
造方法およびその合金を使用したニッケル水素二次電池
を提供することを目的とする。
The present invention has been made in order to solve the above problems, and when used as a negative electrode material for a battery, both high electrode capacity, long life characteristics that can withstand repeated use, and high rate discharge characteristics are satisfied. It is an object of the present invention to provide a hydrogen storage alloy which can be used, a method for producing the same, and a nickel-metal hydride secondary battery using the alloy.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
本願発明者らは種々の金属組織,結晶構造および組成を
有する合金を調製し、その合金の組織,結晶粒径および
組成が電池の容量やその立上り性,寿命特性,温度依存
性および高率放電性に及ぼす影響を比較研究した。その
結果、合金化が困難とされている元素同士であり、かつ
水素化物を形成する元素同士の組み合せに、それぞれの
元素群と合金化が容易な元素を添加して所定組成の合金
原料とし、この所定組成を有する溶湯を急冷凝固せしめ
たり、あるいは合金原料にメカニカルアロイングやメカ
ニカルグラインディングなどの機械的処理を実施して、
一旦、特定の非平衡相を有する合金材を調製し、しかる
後に、この合金材を熱処理して微細な結晶相を析出せし
めた合金を調製したときに、水素吸蔵特性および耐食性
が優れた水素吸蔵合金が得られ、また、この合金を二次
電池の負極材料として使用した場合に電極容量,寿命特
性,高温耐性,温度依存性,容量立上り性および高率放
電性などの電池特性に優れたニッケル水素二次電池が得
られるという知見を得た。本発明は上記知見に基づいて
完成されたものである。
In order to achieve the above object, the present inventors have prepared alloys having various metal structures, crystal structures and compositions, and the structures, crystal grain sizes and compositions of the alloys are determined by the capacity of the battery. And their effects on start-up, life characteristics, temperature dependence and high-rate discharge were compared. As a result, the alloying elements are considered to be difficult, and the combination of the elements forming the hydride is added to each element group and the element that is easy to alloy to obtain an alloy raw material having a predetermined composition, The molten metal having this predetermined composition is rapidly solidified, or mechanical processing such as mechanical alloying or mechanical grinding is performed on the alloy raw material,
Once an alloy material having a specific non-equilibrium phase is prepared, and then the alloy material is heat-treated to prepare an alloy in which a fine crystal phase is precipitated, the hydrogen absorption characteristics and corrosion resistance are excellent. An alloy is obtained, and when this alloy is used as a negative electrode material for a secondary battery, nickel is excellent in battery characteristics such as electrode capacity, life characteristics, high temperature resistance, temperature dependency, capacity rising property and high rate discharge property. The knowledge that a hydrogen secondary battery can be obtained was obtained. The present invention has been completed based on the above findings.

【0016】すなわち本発明に係る水素吸蔵合金は、一
般式(Ra 1-a 100-b b (但し、RはLa,C
e,Pr,Nd,SmおよびYから選択される少なくと
も1種の元素であり、MはTi,Zr,Hf,V,N
b,Ta,Cr,MoおよびWから選択される少なくと
も1種の元素であり、TはMn,Fe,Co,Ni,C
u,Zn,B,Al,SiおよびSnから選択される少
なくとも1種の元素であり、aは原子比で0<a<1で
あり、bは原子%で30≦b≦80である。)で表わさ
れる合金から成り、合金組織の少なくとも一部に結晶粒
径が10μm以下の微細な結晶相が析出していることを
特徴とする。また合金の平均結晶粒径が1nm〜5μmの
範囲であるとよい。
That is, the hydrogen storage alloy according to the present invention has the general formula (R a M 1-a ) 100-b T b (where R is La, C
e, at least one element selected from Pr, Nd, Sm and Y, and M is Ti, Zr, Hf, V, N
b, Ta, Cr, Mo and W are at least one element selected from the group consisting of Mn, Fe, Co, Ni, C
It is at least one element selected from u, Zn, B, Al, Si and Sn, a is an atomic ratio of 0 <a <1, and b is an atomic% and 30 ≦ b ≦ 80. ), Wherein a fine crystal phase having a crystal grain size of 10 μm or less is precipitated in at least a part of the alloy structure. The average crystal grain size of the alloy is preferably in the range of 1 nm to 5 μm.

【0017】さらに、合金に含有される希土類元素など
のR成分の原子比aを0<a≦0.3の範囲とした場合
には、特に高温放置条件を加えた寿命特性(高温耐性)
が良好なニッケル水素二次電池が得れらる。また、合金
に含有されるR成分の原子比aを0.3<a≦0.7の
範囲とした場合には、特に温度依存性が少なく温度特性
が良好なニッケル水素二次電池が得られる。さらに、合
金に含有されるR成分の原子比aを0.7<a<1の範
囲とした場合には、特に容量の立上り特性が良好なニッ
ケル水素二次電池が得られる。
Further, when the atomic ratio a of the R component such as a rare earth element contained in the alloy is in the range of 0 <a ≦ 0.3, the life characteristics (high-temperature resistance) particularly under high-temperature storage conditions
, A nickel-hydrogen secondary battery having a good value can be obtained. Further, when the atomic ratio a of the R component contained in the alloy is in the range of 0.3 <a ≦ 0.7, a nickel-hydrogen secondary battery having particularly low temperature dependence and good temperature characteristics can be obtained. . Further, when the atomic ratio a of the R component contained in the alloy is in the range of 0.7 <a <1, a nickel-metal hydride secondary battery having particularly good capacity rising characteristics can be obtained.

【0018】また本発明に係る水素吸蔵合金の製造方法
は、上記所定の組成を有し合金組織の少なくとも一部に
非平衡相を形成した合金を調製し、しかる後に得られた
合金を熱処理することにより、平均結晶粒径が1nm〜5
μmの微細な結晶相を析出せしめることを特徴とする。
Further, in the method for producing a hydrogen storage alloy according to the present invention, an alloy having the above-mentioned predetermined composition and having a non-equilibrium phase formed in at least a part of the alloy structure is prepared, and then the obtained alloy is heat-treated. As a result, the average grain size is 1 nm to 5 nm.
It is characterized in that a fine crystal phase of μm is precipitated.

【0019】また本発明に係るニッケル水素二次電池
は、上記所定の組成および結晶組織を有する水素吸蔵合
金を含む負極と,ニッケル酸化物を含む正極との間に電
気絶縁性を有するセパレータを介装して密閉容器内に収
容し、この密閉容器内にアルカリ電解液を充填したこと
を特徴とする。
Further, in the nickel-hydrogen secondary battery according to the present invention, an electrically insulating separator is interposed between a negative electrode containing a hydrogen storage alloy having the above-mentioned predetermined composition and crystal structure and a positive electrode containing nickel oxide. The sealed container is housed in a closed container, and the closed container is filled with an alkaline electrolyte.

【0020】本発明に係る水素吸蔵合金において、一般
式中、R成分はLa,Ce,Pr,Nd,SmおよびY
から選択される少なくとも一種の元素である。これらの
R成分に係る各元素はM成分とともに含有させると、溶
湯急冷処理またはメカニカルアロイング処理などの合金
化手法によって、合金組織内に均一に分散し、結晶粒の
微細化を促進する働きを有する。
In the hydrogen storage alloy according to the present invention, the R component in the general formula is La, Ce, Pr, Nd, Sm and Y.
At least one element selected from the group consisting of: When each of the elements relating to the R component is contained together with the M component, the alloy is uniformly dispersed in the alloy structure by an alloying technique such as a molten metal quenching process or a mechanical alloying process, and has a function of promoting the refinement of crystal grains. Have.

【0021】また、M成分は IVa族,Va族, VIa族元
素、すなわちTi,Zr,Hf,V,Nb,Ta,C
r,MoおよびWから選択される少なくとも1種の元素
であり、いずれも合金の水素吸蔵能力をもたらす基本元
素であり、その他の元素、特に後述するT成分の含有量
との兼ね合いで水素の脱蔵を容易にする元素である。
The M component is a group IVa, Va, or VIa element, that is, Ti, Zr, Hf, V, Nb, Ta, C
at least one element selected from the group consisting of r, Mo, and W, each of which is a basic element that contributes to the hydrogen storage capacity of the alloy, and desorbs hydrogen in consideration of the content of other elements, particularly, the T component described later. It is an element that facilitates storage.

【0022】なお、結晶粒の微細化は、電池の初期活性
化を容易にするとともに、水素の吸脱蔵を促進すること
に有効である。ここで合金の平均結晶粒径が1nm未満ま
たは5μmを超える場合には上記初期活性を高め、水素
吸脱蔵を促進する効果が少なくなる。したがって、合金
の平均結晶粒径は10μm以下とされるが、さらに1nm
以上〜5μm以下の範囲がより好ましい。
The refinement of the crystal grains is effective in facilitating the initial activation of the battery and promoting the absorption and desorption of hydrogen. Here, when the average crystal grain size of the alloy is less than 1 nm or more than 5 μm, the above-mentioned initial activity is increased, and the effect of promoting hydrogen absorption and desorption is reduced. Therefore, the average crystal grain size of the alloy is set to 10 μm or less, and further 1 nm.
The range of not less than 5 to 5 μm is more preferable.

【0023】またR成分含有量は、M成分との合計量に
対する原子比aで0<a<1の範囲とされる。しかし、
R成分含有量が原子比aで0.01未満の場合には、合
金組織の微細化が促進されない一方、0.3を超える場
合には、一定時間毎に高温度環境に保持した際の電池の
寿命特性が劣化し始める。したがって、特に高温耐性に
優れた電池を形成するためには、R成分含有量を0.0
1〜0.3の範囲とすることが好ましい。
The content of the R component is in the range of 0 <a <1 in terms of the atomic ratio a to the total amount with the M component. But,
When the content of the R component is less than 0.01 in atomic ratio a, the refinement of the alloy structure is not promoted, while when the content exceeds 0.3, the battery when kept in a high-temperature environment at regular time intervals is used. Starts to deteriorate. Therefore, in order to form a battery having particularly excellent high temperature resistance, the content of the R component is set to 0.0
It is preferred to be in the range of 1 to 0.3.

【0024】またR成分含有量が原子比で0.3を超え
0.7以下の場合において、特に温度依存性が少なく、
温度特性が良好な電池が得られる一方で、放電容量のサ
イクルによる立上りが遅くなる傾向がある。さらにR成
分含有量が0.7を超え1未満の場合においては、容量
の立上り特性が良好な電池が得られる。本発明の合金
は、M−T,R−Tなどの合金相を主相とする複相構造
を有することが電池特性を高める上で好ましい。
When the content of the R component is more than 0.3 and 0.7 or less in atomic ratio, the temperature dependency is particularly low,
While a battery having good temperature characteristics can be obtained, the rise due to the cycle of the discharge capacity tends to be slow. Further, when the R component content is more than 0.7 and less than 1, a battery having a good capacity rising characteristic can be obtained. The alloy of the present invention preferably has a multi-phase structure having an alloy phase such as MT or RT as a main phase from the viewpoint of improving battery characteristics.

【0025】また、T成分はMn,Fe,Ni,Co,
Cu,Zn,B,Al,SiおよびSnから選択される
少なくとも1種の元素であり、これらの元素はいずれも
合金内に侵入した水素の拡散や合金表面での触媒作用を
高めるとともに、合金の耐食性を改善し、さらには水素
吸蔵時の格子の膨張に伴う合金の割れを抑制することに
より、寿命改善効果を発揮する元素である。これらのT
成分の添加量bが30原子%未満においては、水素放出
が十分ではなく、また上記改善効果が不十分である一
方、添加量bが80原子%を超えると容量の低下が顕著
になる。したがってT成分の添加量bは、30〜80原
子%の範囲とされるが、40〜70原子%の範囲がより
好ましい。また、合金表面における触媒作用を高めるた
めには、上記T成分のうち、Niが特に好ましい。さら
水素吸蔵時における格子の膨張に起因する割れを抑制す
るとともに、寿命特性を改善する元素としてCoが特に
好ましい。
The T component is Mn, Fe, Ni, Co,
It is at least one element selected from Cu, Zn, B, Al, Si and Sn, and all of these elements enhance the diffusion of hydrogen penetrating into the alloy and the catalytic action on the alloy surface, and also increase the activity of the alloy. It is an element that improves the corrosion resistance and suppresses the cracking of the alloy due to the expansion of the lattice at the time of hydrogen absorption, thereby exerting the effect of improving the life. These T
When the added amount b of the component is less than 30 atomic%, the hydrogen release is not sufficient, and the above-mentioned improvement effect is insufficient. On the other hand, when the added amount b exceeds 80 atomic%, the capacity becomes remarkable. Therefore, the addition amount b of the T component is set in the range of 30 to 80 atomic%, but more preferably in the range of 40 to 70 atomic%. In order to enhance the catalytic action on the alloy surface, Ni is particularly preferable among the above T components. Further, Co is particularly preferable as an element that suppresses cracks caused by lattice expansion during hydrogen storage and improves the life characteristics.

【0026】また、前記合金成分のうち、特にNiはM
成分と合金化されて、耐食性に優れた水素吸蔵合金を形
成して水素の吸蔵・放出を行うために有効な元素であ
る。またCo,Fe,Cuなどの元素はいずれも合金の
耐食性を改善するとともに、水素吸蔵時における格子の
膨張に伴う割れの発生を効果的に抑止し、寿命改善効果
を発揮する元素である。またMn,Al,Siなどの元
素はいずれも合金の寿命改善に寄与する元素でもある。
さらにSi,Cr,Snなどの元素はいずれも合金の寿
命改善にも有効である。
Further, among the above alloy components, particularly Ni is M
It is an element that is effective in forming and absorbing hydrogen by forming a hydrogen storage alloy having excellent corrosion resistance by being alloyed with the components. In addition, elements such as Co, Fe, and Cu are elements that improve the corrosion resistance of the alloy, effectively suppress the generation of cracks due to the expansion of the lattice during hydrogen absorption, and exhibit a life improving effect. Elements such as Mn, Al, and Si are all elements that contribute to improving the life of the alloy.
Furthermore, elements such as Si, Cr, and Sn are all effective in improving the life of the alloy.

【0027】また上記T成分のうち、Mnは、水素吸蔵
合金を含む負電極の高容量化、不働態膜の形成促進によ
る耐食性改善および水素の吸蔵放出圧力(平衡圧)の低
下調整に有効である。一方、AlはMnと同様に水素の
吸蔵放出圧力(解離圧)を、密閉型電池に好適な操作圧
力まで下げる作用を有するとともに耐久性を増加させる
ことができる。
Of the above-mentioned T components, Mn is effective in increasing the capacity of the negative electrode containing the hydrogen storage alloy, improving the corrosion resistance by accelerating the formation of the passive film, and adjusting the decrease in the hydrogen storage / release pressure (equilibrium pressure). is there. On the other hand, Al has the effect of lowering the storage / release pressure (dissociation pressure) of hydrogen to the operating pressure suitable for a sealed battery, as well as Mn, and can increase the durability.

【0028】またT成分としてのCoは、電解液等に対
する合金の耐食性を向上させる上で有効であり、合金の
微粉化は顕著に抑制され、電池の寿命特性が改善され
る。なおCo添加量を増やすとサイクル寿命は向上する
反面、電極容量が低下する傾向があるため、電池の用途
に応じてCo添加量の最適化を図る必要がある。
Further, Co as the T component is effective in improving the corrosion resistance of the alloy against an electrolytic solution or the like, and the pulverization of the alloy is remarkably suppressed, and the life characteristics of the battery are improved. When the amount of Co added is increased, the cycle life is improved, but the electrode capacity tends to decrease. Therefore, it is necessary to optimize the amount of Co added according to the use of the battery.

【0029】この他、本発明に係る水素吸蔵合金には、
C,N,O,FおよびClなどの元素が不純物として本
願発明合金の特性を阻害しない範囲で含まれていてもよ
い。なお、これらの不純物の含有量はそれぞれ6000
ppm以下の範囲であることが好ましい。より好ましく
は5000ppm以下、さらに好ましくは4000pp
m以下が良い。
In addition, the hydrogen storage alloy according to the present invention includes:
Elements such as C, N, O, F, and Cl may be contained as impurities as long as the properties of the alloy of the present invention are not impaired. The content of these impurities was 6000 each.
It is preferably in the range of ppm or less. More preferably 5,000 ppm or less, still more preferably 4000 pp
m or less is good.

【0030】本発明に係る水素吸蔵合金の製造方法とし
ては、所定組成を有するように調合した原料混合体を高
周波誘導炉で加熱して合金溶湯を調製し、しかる後に得
られた合金溶湯を、高速度で移動する冷却体上に射出し
100℃/秒以上の冷却速度で急冷凝固せしめて、少な
くとも一部に非平衡相を形成した急冷合金を調製し、し
かる後に得られた急冷合金を熱処理することにより、平
均粒径が1nm〜5μmの微細な結晶相を析出せしめるこ
とにより製造できる。上記急冷凝固処理により、添加成
分が合金組織中に均一に分散した非平衡相を有する溶湯
急冷合金を得ることができる。このような急冷凝固処理
を行う方法としては、ガスアトマイズ法,回転ディスク
法,遠心噴霧法,単ロール法,双ロール法などの溶湯急
冷法がある。
As a method for producing a hydrogen storage alloy according to the present invention, a raw material mixture prepared so as to have a predetermined composition is heated in a high-frequency induction furnace to prepare a molten alloy. Injected onto a cooling body moving at a high speed, quenched and solidified at a cooling rate of 100 ° C./sec or more to prepare a quenched alloy having a non-equilibrium phase formed at least in part, and then heat-treating the obtained quenched alloy By doing so, it can be produced by precipitating a fine crystal phase having an average particle size of 1 nm to 5 μm. By the rapid solidification treatment, it is possible to obtain a molten metal quenched alloy having a non-equilibrium phase in which the additional components are uniformly dispersed in the alloy structure. As a method of performing such rapid solidification treatment, there are a molten metal quenching method such as a gas atomizing method, a rotating disk method, a centrifugal spraying method, a single roll method and a twin roll method.

【0031】そして合金溶湯を冷却するに際し、冷却速
度を100℃/秒以上,好ましくは300℃/秒以上、
さらに好ましくは1800℃/秒以上に設定することに
より、Laなどの希土類元素や偏析し易い元素を相対的
に多量に含有した場合においても、組織が均一であり、
偏析が少ない合金が得られる。
When cooling the molten alloy, the cooling rate is 100 ° C./sec or more, preferably 300 ° C./sec or more.
More preferably, by setting the temperature to 1800 ° C./second or more, even when a rare earth element such as La or an element that easily segregates is contained in a relatively large amount, the structure is uniform.
An alloy with less segregation can be obtained.

【0032】上記の合金溶湯の具体的な冷却凝固法とし
て、例えば高速移動する冷却体上に合金溶湯を射出し、
厚さ10〜100μm程度のフレーク状試料を得る方法
がある。得られた試料は、微細な結晶から成るM−T
相,R−T相などが主相となり、その平均結晶粒径は1
mm〜5μm程度である。
As a specific method of cooling and solidifying the molten alloy, for example, the molten alloy is injected onto a high-speed moving cooling body,
There is a method of obtaining a flake-like sample having a thickness of about 10 to 100 μm. The obtained sample is an MT made of fine crystals.
Phase, the RT phase, etc. are the main phases, and the average crystal grain size is 1
It is about mm to 5 μm.

【0033】なお合金溶湯の冷却凝固法として、特にガ
スアトマイズ法,回転ディスク法,遠心噴霧法,単ロー
ル法,双ロール法等のように溶融状態にある合金溶湯を
急冷する溶湯急冷法を用い、冷却ロールの材質および表
面性,冷却ロールの回転数(走行面の周速),溶湯温
度,冷却ロール用の冷却水温度,冷却チャンバ内のガス
種,圧力,溶湯噴射ノズル径,噴射量等の製造条件を最
適化することにより合金を安定的に大量に製造すること
ができる。
As a method for cooling and solidifying the molten alloy, a quenching method for rapidly cooling the molten alloy in a molten state such as a gas atomizing method, a rotating disk method, a centrifugal spraying method, a single roll method, a twin roll method, etc. is used. The material and surface properties of the cooling roll, the number of revolutions of the cooling roll (peripheral speed of the running surface), the temperature of the molten metal, the temperature of the cooling water for the cooling roll, the gas type in the cooling chamber, the pressure, the diameter of the molten metal injection nozzle, the injection amount By optimizing the manufacturing conditions, the alloy can be manufactured stably in large quantities.

【0034】単ロール法 図1は、単ロール法による水素吸蔵合金製造装置を示
す。この製造装置は、銅、ニッケル等の熱導伝性に優れ
る直径400mm程度の冷却ロール5と、取鍋2から供
給された水素吸蔵合金溶湯3を貯留した後に前記冷却ロ
ール5の走行面に噴射する注湯ノズル4とを備えた構成
となっている。前記冷却ロール5等は不活性ガス雰囲気
に調整された冷却チャンバー1内に収納されている。ま
た、前記冷却ロール5の回転数は、冷却ロール5の濡性
と冷却速度および水素吸蔵合金溶湯3の噴射量に依存す
るが、概ね100〜5000rpmに設定される。
Single Roll Method FIG. 1 shows an apparatus for producing a hydrogen storage alloy by a single roll method. This manufacturing apparatus stores a cooling roll 5 having a diameter of about 400 mm, which is excellent in heat conductivity such as copper and nickel, and a hydrogen storage alloy melt 3 supplied from a ladle 2 and then sprays the same onto the running surface of the cooling roll 5. And a pouring nozzle 4 to be used. The cooling roll 5 and the like are housed in a cooling chamber 1 adjusted to an inert gas atmosphere. The rotation speed of the cooling roll 5 depends on the wettability and the cooling speed of the cooling roll 5 and the injection amount of the hydrogen storage alloy melt 3, but is generally set to 100 to 5000 rpm.

【0035】上述した図1に示す製造装置において、取
鍋2から供給された水素吸蔵合金溶湯3を注湯ノズル4
より冷却ロール5の走行面へ噴射すると、合金溶湯は冷
却ロール5に接する面より固化し、結晶成長が始まり、
冷却ロール5より離脱するまでに完全に固化が終了す
る。その後、冷却チャンバー1内を飛翔する間に更に冷
却が進み、偏析が少なく結晶成長方向が揃った水素吸蔵
合金6が製造される。
In the manufacturing apparatus shown in FIG. 1, the molten hydrogen storage alloy 3 supplied from the ladle 2
When the molten alloy is further sprayed onto the running surface of the cooling roll 5, the alloy melt solidifies from the surface in contact with the cooling roll 5, and crystal growth starts,
The solidification is completely completed before the solidification is removed from the cooling roll 5. Thereafter, the cooling proceeds further while flying in the cooling chamber 1, and the hydrogen storage alloy 6 with less segregation and a uniform crystal growth direction is manufactured.

【0036】双ロール法 図2は、双ロール法による水素吸蔵合金製造装置を示
す。この製造装置は、冷却チャンバー1内に各走行面が
対向するように配置された1対以上の冷却ロール5a,
5bと、原料金属を溶解し水素吸蔵合金溶湯3を調製す
る溶解炉7と、この溶解炉7からの水素吸蔵合金溶湯3
をタンディッシュ8を経て前記冷却ロール5a,5bの
間に噴射する注湯ノズル4を備えた構成になっている。
The twin roll method Figure 2 is a hydrogen storage alloy manufacturing apparatus according twin roll method. This manufacturing apparatus includes one or more pairs of cooling rolls 5 a, which are arranged in the cooling chamber 1 such that respective running surfaces face each other.
5b, a melting furnace 7 for melting the raw material metal to prepare a hydrogen storage alloy melt 3, and a hydrogen storage alloy melt 3 from the melting furnace 7.
Is provided between the cooling rolls 5a and 5b via a tundish 8.

【0037】前記冷却ロール5a,5bは、銅、鉄等の
熱導伝性に優れた材質で形成された直径300mm程度
のものである。前記冷却ロール5a,5bは0〜0.5
mm程度の微少な間隙dを維持しながら100〜200
0rpm程度の回転数で高速回転する。なお、冷却ロー
ルとしては図2に示すように走行面が平行になっている
ものの他、走行面の断面形状をU字型やV字型とした、
いわゆる型ロールを採用することもできる。また、冷却
ロール5a,5bの間隙dを過大にすると、冷却方向が
揃わず、その結果結晶成長方向が揃わない水素吸蔵合金
が製造されるため、0.2mm以下に設定することが好
ましい。
The cooling rolls 5a and 5b are formed of a material having excellent heat conductivity such as copper and iron and have a diameter of about 300 mm. The cooling rolls 5a and 5b are 0 to 0.5
100 to 200 while maintaining a small gap d of about mm.
It rotates at a high speed of about 0 rpm. In addition, as a cooling roll, as shown in FIG. 2, the running surface is parallel, and the running surface has a U-shaped or V-shaped cross-sectional shape.
A so-called mold roll can also be employed. Further, if the gap d between the cooling rolls 5a and 5b is excessively large, a cooling direction is not uniform, and as a result, a hydrogen storage alloy in which the crystal growth direction is not uniform is manufactured.

【0038】上述した図2に示す製造装置において、注
湯ノズル4から水素吸蔵合金溶湯3を冷却ロール5a,
5bの間隙方向へ噴射すると、水素吸蔵合金溶湯が両側
の冷却ロール5a,5bに接する側より固化、結晶成長
が始まり、冷却ロール5a,5bより離脱するまでに完
全に固化が終了する。その後、冷却チャンバー1内を飛
翔する間に更に冷却が進み、偏析が少なく結晶成長方向
が揃った水素吸蔵合金6が製造される。
In the manufacturing apparatus shown in FIG. 2, the molten hydrogen storage alloy 3 is poured from the pouring nozzle 4 into the cooling rolls 5a,
When the molten hydrogen storage alloy is injected in the gap direction of 5b, solidification and crystal growth of the hydrogen storage alloy melt start from the sides in contact with the cooling rolls 5a, 5b on both sides, and complete solidification by the time the metal is separated from the cooling rolls 5a, 5b. Thereafter, the cooling proceeds further while flying in the cooling chamber 1, and the hydrogen storage alloy 6 with less segregation and a uniform crystal growth direction is manufactured.

【0039】上記のような冷却凝固法を使用して、リボ
ン状,フレーク状または粒状の水素吸蔵合金を製造する
場合、合金溶湯の凝固冷却時の試料内温度勾配、冷却ロ
ールや回転ディスクの材質、合金溶湯の供給量等の条件
により、アモルファス相などの非平衡組織や非平衡相を
主相とし微細な結晶粒を一部に含む結晶組織が合金内に
形成される。
When a ribbon-shaped, flake-shaped or granular hydrogen-absorbing alloy is produced by using the cooling and solidifying method as described above, the temperature gradient in the sample during the solidification cooling of the molten alloy, the material of the cooling roll and the rotating disk Depending on conditions such as the supply amount of the molten alloy, a non-equilibrium structure such as an amorphous phase, or a crystal structure including a non-equilibrium phase as a main phase and partially including fine crystal grains is formed in the alloy.

【0040】すなわち、上記合金粒子の製造工程におい
て、100℃/秒以上、好ましくは300℃/秒以上、
さらに好ましくは1800℃/秒以上の冷却速度にて溶
湯を急冷処理して水素吸蔵合金を製造すると、合金組織
はアモルファス相のみから形成されたり、あるいは非平
衡相を主相とし一部に1nm〜5μm程度の微細な結晶粒
が析出した合金組織が得られる。
That is, in the production process of the alloy particles, 100 ° C./sec or more, preferably 300 ° C./sec or more,
More preferably, when the molten metal is quenched at a cooling rate of 1800 ° C./sec or more to produce a hydrogen storage alloy, the alloy structure is formed of only an amorphous phase or a non-equilibrium phase as a main phase and 1 nm to An alloy structure having fine crystal grains of about 5 μm is obtained.

【0041】また、上記溶湯急冷法に代えて、メカニカ
ルアロイング法やメカニカルグラインディング法などの
機械的処理法を使用することにより、微細化した結晶粒
から成る合金粒子を作成することも可能である。すなわ
ち、予め所定の組成となるように調合した試料または合
金化した試料を、ある程度の衝撃力を試料粒子に与えな
がら粒子相互の反応を機械的に促進し、また金属組織を
制御する遊星ボールミルなどの撹拌混合機を利用して合
金粒子を製造してもよい。この機械的処理法において、
処理時間は1〜100時間程度であり、また処理雰囲気
としては、アルゴン,窒素ガスなどの不活性ガス雰囲気
中あるいは水素ガスなどの還元雰囲気中で実施すること
が好ましい。使用するボールミルのポットやボールなど
の材質としては、特に制限はないが、ステンレス鋼やセ
ラミックスなどが好ましい。この機械的処理法によって
得られる合金粉末の粒径は0.1〜100μmの範囲が
好ましい。
Also, by using a mechanical processing method such as a mechanical alloying method or a mechanical grinding method instead of the molten metal quenching method, it is possible to produce alloy particles composed of fine crystal grains. is there. In other words, a planetary ball mill, which mechanically promotes the reaction between particles while applying a certain degree of impact force to the sample particles, and controls the metal structure of a sample prepared or alloyed in advance to have a predetermined composition, etc. May be used to produce alloy particles. In this mechanical processing method,
The processing time is about 1 to 100 hours, and the processing is preferably performed in an inert gas atmosphere such as argon or nitrogen gas or a reducing atmosphere such as hydrogen gas. The material of the ball mill pot or ball used is not particularly limited, but stainless steel and ceramics are preferred. The particle size of the alloy powder obtained by this mechanical treatment is preferably in the range of 0.1 to 100 μm.

【0042】上記のように溶湯急冷法や機械的処理法に
より調製した合金においては内部歪みや偏析が発生し易
く、いずれの場合にも合金を負極材料として用いた場合
に電極容量および寿命が低下する場合が多い。また、合
金に形成されたアモルファス相などの非平衡相には、水
素吸蔵量−圧力線図におけるプラトー領域が形成されな
いため、非平衡相を多く含む合金を電池材料として使用
した場合には、水素の吸蔵放出反応時の操作圧力が不安
定になる。
In the alloy prepared by the molten metal quenching method or the mechanical treatment method as described above, internal strain and segregation are liable to occur, and in any case, when the alloy is used as a negative electrode material, the electrode capacity and life are reduced. Often do. Further, since a plateau region in the hydrogen storage capacity-pressure diagram is not formed in a non-equilibrium phase such as an amorphous phase formed in the alloy, when an alloy containing a large amount of the non-equilibrium phase is used as a battery material, The operating pressure during the occlusion and release reaction becomes unstable.

【0043】そこで調製した合金を、温度300〜11
00℃で10分間〜10時間加熱する熱処理を実施する
必要がある。この熱処理により、予め形成された非平衡
相中に微細な結晶相が析出するとともに、内部歪みが除
去されて均質な合金組織が得られる。また結晶化した金
属相にはプラトー領域が明確に形成されるため、この合
金を使用した電池の操作圧力の安定化が図れる。
The alloy prepared therefrom was used at a temperature of 300 to 11
It is necessary to perform a heat treatment of heating at 00 ° C. for 10 minutes to 10 hours. By this heat treatment, a fine crystal phase is precipitated in the previously formed non-equilibrium phase, and at the same time, internal strain is removed and a homogeneous alloy structure is obtained. Further, since a plateau region is clearly formed in the crystallized metal phase, the operating pressure of a battery using this alloy can be stabilized.

【0044】上記熱処理の温度が300℃未満の場合に
は、非平衡相の結晶化が不十分となるとともに、内部歪
の除去が困難となり、熱処理による寿命特性の改善効果
が小さくなる一方、熱処理温度が1100℃を超える場
合には、 IVa族元素および希土類元素などの酸化や蒸発
による組成変動を引き起こす。そのため熱処理温度は3
00〜1100℃の範囲に設定される。特に電極特性を
向上させるためには、450〜900℃の範囲が好まし
い。
When the temperature of the heat treatment is lower than 300 ° C., the crystallization of the non-equilibrium phase becomes insufficient, and it becomes difficult to remove the internal strain. When the temperature exceeds 1100 ° C., the composition changes due to oxidation and evaporation of the group IVa element and the rare earth element. Therefore, the heat treatment temperature is 3
The temperature is set in the range of 00 to 1100 ° C. In particular, in order to improve the electrode characteristics, the range of 450 to 900 ° C. is preferable.

【0045】また熱処理時間が10分未満の場合は、結
晶化が不均一となり、特性のばらつきが大きい。一方、
処理時間が10時間を超える程度に長期化すると、合金
表面の酸化が進行し易く、また合金組成が大幅にずれる
ため、好ましくない。そのため、製造効率も勘案すると
10分間〜10時間が好ましい。
If the heat treatment time is less than 10 minutes, the crystallization becomes non-uniform and the characteristics vary greatly. on the other hand,
If the treatment time is prolonged to more than 10 hours, the oxidation of the alloy surface is apt to progress, and the alloy composition is significantly shifted, which is not preferable. Therefore, in consideration of the production efficiency, 10 minutes to 10 hours is preferable.

【0046】なお熱処理雰囲気は、水素吸蔵合金の高温
酸化を防止するために、Arなどの不活性ガス雰囲気ま
たは真空が好ましい。
The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar or a vacuum in order to prevent high-temperature oxidation of the hydrogen storage alloy.

【0047】上記熱処理により合金組織中に析出する結
晶の平均粒径は1nm〜5μmの範囲に調整することが電
池特性を改善する観点から好ましい。すなわち平均結晶
粒径が1nm未満と過小な場合には合金の水素吸収特性が
不十分であり、またプラトー領域が不明確になり、特に
電池材料として適用することが困難になる。一方、平均
結晶粒径が5μmを超えるように過大になると高率放電
比が低下する。したがって結晶の平均粒径は1nm〜5μ
mの範囲とされるが、1nm〜3μmの範囲が好ましく、
さらには1nm〜1μmの範囲がより好ましい。
It is preferable to adjust the average particle size of the crystals precipitated in the alloy structure by the above heat treatment in the range of 1 nm to 5 μm from the viewpoint of improving battery characteristics. That is, if the average crystal grain size is too small, less than 1 nm, the hydrogen absorption characteristics of the alloy are insufficient, and the plateau region becomes unclear, which makes it particularly difficult to apply as a battery material. On the other hand, when the average crystal grain size is too large to exceed 5 μm, the high-rate discharge ratio is reduced. Therefore, the average grain size of the crystal is 1 nm to 5 μm.
m, preferably in the range of 1 nm to 3 μm,
Furthermore, the range of 1 nm to 1 μm is more preferable.

【0048】このようにしてアモルファス相などの非平
衡相を熱処理により微細結晶化させると、水素吸脱蔵の
際に水素が拡散する経路となる粒界相が多量に形成さ
れ、高容量でかつ長寿命の合金の実現が可能になるもの
と考えられる。
When a non-equilibrium phase such as an amorphous phase is finely crystallized by heat treatment in this way, a large amount of grain boundary phases, which serve as a diffusion path of hydrogen during hydrogen absorption / desorption, are formed, and a high capacity and a high capacity are obtained. It is considered that a long-life alloy can be realized.

【0049】また上記のように溶湯急冷法または機械的
処理法によって調製した水素吸蔵合金に対して下記のよ
うな表面処理を実施することにより、電極材料として使
用した場合に電極特性を改善することができる。すなわ
ち、酸処理,アルカリ処理,ふっ化処理,無電解めっき
処理等の表面処理を実施することにより、合金表面の活
性や耐食性を高めることができる。上記表面処理のう
ち、特にKOH溶液やNaOH溶液を使用したアルカリ
処理が特に有効である。アルカリ処理温度は、45℃か
らアルカリ溶液の沸点の範囲が好ましく、処理時間は5
分〜24時間の範囲とすることが好ましい。これらの表
面処理は、急冷凝固したままの形状の状態で実施しても
よい。さらに粉砕した後の状態でも、またはアルカリ溶
液中で粉砕中に実施してもよい。
Further, by performing the following surface treatment on the hydrogen storage alloy prepared by the molten metal quenching method or the mechanical treatment method as described above, the electrode characteristics can be improved when used as an electrode material. Can be. That is, by performing a surface treatment such as an acid treatment, an alkali treatment, a fluoride treatment, and an electroless plating treatment, the activity and corrosion resistance of the alloy surface can be increased. Among the above surface treatments, an alkali treatment using a KOH solution or a NaOH solution is particularly effective. The alkali treatment temperature is preferably in the range of 45 ° C. to the boiling point of the alkaline solution, and the treatment time is 5 minutes.
It is preferable to set the range of minutes to 24 hours. These surface treatments may be performed in a state where the solidified solid remains rapidly quenched. Further, it may be carried out in a state after pulverization or during pulverization in an alkaline solution.

【0050】次に、上記水素吸蔵合金を負極活物質とし
て使用した本発明に係るニッケル水素二次電池(円筒形
ニッケル水素二次電池)について図3を参照して説明す
る。
Next, a nickel-metal hydride secondary battery (cylindrical nickel-metal hydride secondary battery) according to the present invention using the above-mentioned hydrogen storage alloy as a negative electrode active material will be described with reference to FIG.

【0051】本発明に係るニッケル水素二次電池は、前
記の一般式(Ra 1-a 100-b b で表わされる水素
吸蔵合金を含む負極11とニッケル酸化物を含む正極1
2との間に電気絶縁性を有するセパレータ13を介装し
て密閉容器14内に収容し、この密閉容器14内にアル
カリ電解液を充填して構成される。
The nickel-hydrogen secondary battery according to the present invention, the positive electrode 1 including the negative electrode 11 and the nickel oxide containing the above general formula (R a M 1-a) hydrogen storage alloy represented by the 100-b T b
The container 13 is housed in a closed container 14 with an electrically insulating separator 13 interposed therebetween, and the closed container 14 is filled with an alkaline electrolyte.

【0052】すなわち、水素吸蔵合金を含む水素吸蔵合
金電極(負極)11は、非焼結式ニッケル電極(正極)
12との間にセパレータ13を介在して渦巻状に捲回さ
れ、有底円筒状の容器14内に収納されている。アルカ
リ電解液は、前記容器14内に収容されている。中央に
穴15を有する円形の封口板16は、前記容器14の上
部開口部に配置されている。リング状の絶縁性ガスケッ
ト17は、前記封口板16の周縁と前記容器14の上部
開口部内面との間に配置され、前記上部開口部を内側に
縮径するカシメ加工により前記容器14に前記封口板1
6を前記ガスケット17を介して気密に固定している。
正極リード18は、一端が前記正極12に接続され、他
端が前記封口板16の下面に接続されている。帽子形状
をなす正極端子19は、前記封口板16上に前記穴15
を覆うように取り付けられている。ゴム製の安全弁20
は、前記封口板16と前記正極端子19で囲まれた空間
内に前記穴15を塞ぐように配置されている。絶縁チュ
ーブ21は、前記正極端子19および前記容器14の上
端に載置される鍔紙22を固定するように前記容器14
の上端付近に取り付けられている。
That is, the hydrogen storage alloy electrode (negative electrode) 11 containing a hydrogen storage alloy is a non-sintered nickel electrode (positive electrode).
12 are wound spirally with a separator 13 interposed therebetween, and housed in a bottomed cylindrical container 14. The alkaline electrolyte is contained in the container 14. A circular sealing plate 16 having a hole 15 in the center is arranged at the upper opening of the container 14. The ring-shaped insulating gasket 17 is disposed between the peripheral edge of the sealing plate 16 and the inner surface of the upper opening of the container 14, and is sealed to the container 14 by caulking to reduce the diameter of the upper opening inward. Board 1
6 is hermetically fixed via the gasket 17.
One end of the positive electrode lead 18 is connected to the positive electrode 12, and the other end is connected to the lower surface of the sealing plate 16. The cap-shaped positive electrode terminal 19 is provided on the sealing plate 16 with the hole 15.
It is attached to cover. Rubber safety valve 20
Is disposed so as to close the hole 15 in a space surrounded by the sealing plate 16 and the positive electrode terminal 19. The insulating tube 21 is used to fix the positive electrode terminal 19 and the flange paper 22 placed on the upper end of the container 14.
It is attached near the upper end of.

【0053】前記水素吸蔵合金電極11は、以下に説明
するペースト式および非ペースト式のものが用いられ
る。 (1)ペースト式水素吸蔵合金電極は、上記水素吸蔵合
金を粉砕することにより得た水素吸蔵合金粉末と高分子
結着剤と必要に応じて添加される導電性粉末とを混合し
てペースト状とし、このペーストを集電体である導電性
基板に塗布、充填、乾燥した後、ローラープレス等を施
すことにより作製される。 (2)非ペースト式水素吸蔵合金電極は上記水素吸蔵合
金粉末と高分子結着剤と必要に応じて添加される導電性
粉末とを撹拌し、集電体である導電性基板に散布した後
ローラープレス等を施すことにより作製される。
As the hydrogen storage alloy electrode 11, a paste type and a non-paste type described below are used. (1) The paste-type hydrogen storage alloy electrode is prepared by mixing a hydrogen storage alloy powder obtained by pulverizing the above-mentioned hydrogen storage alloy, a polymer binder, and a conductive powder to be added as necessary. The paste is applied to a conductive substrate serving as a current collector, filled, dried, and then subjected to a roller press or the like. (2) The non-paste type hydrogen storage alloy electrode is obtained by stirring the above-mentioned hydrogen storage alloy powder, the polymer binder, and the conductive powder to be added as required, and spraying the mixed powder on the conductive substrate serving as a current collector. It is produced by applying a roller press or the like.

【0054】前記水素吸蔵合金の粉砕方法としては、例
えばボールミル、パルペライザー、ジェットミル等の機
械的粉砕方法、または高圧の水素を吸蔵・放出させ、そ
の際の体積膨張により粉砕する方法が採用される。
As a method for pulverizing the hydrogen storage alloy, for example, a mechanical pulverization method such as a ball mill, a pulperizer, or a jet mill, or a method in which high-pressure hydrogen is occluded / released and pulverized by volume expansion at that time, is employed. .

【0055】前記高分子結着剤としては、例えばポリア
クリル酸ソーダ、ポリテトラフルオロエチレン(PTF
E)、カルボキシメチルセルロース(CMC),ポリビ
ニルアルコール(PVA)等を挙げることができる。こ
のような高分子結着剤は、前記水素吸蔵合金100重量
部に対して0.1〜5重量部の範囲で配合することが好
ましい。ただし、前記(2)の非ペースト式水素吸蔵合
金電極を作製する場合には撹拌により繊維化して前記水
素吸蔵合金粉末および必要に応じて添加される導電性粉
末を三次元状(網目状)に固定することが可能なポリテ
トラフルオロエチレン(PTFE)を高分子結着剤とし
て用いることが好適である。
As the polymer binder, for example, sodium polyacrylate, polytetrafluoroethylene (PTF)
E), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA) and the like. Such a polymer binder is preferably blended in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy. However, when preparing the non-paste type hydrogen storage alloy electrode of the above (2), the hydrogen storage alloy powder and the conductive powder to be added as required are formed into a three-dimensional shape (mesh shape) by fiberization by stirring. It is preferable to use immobilizable polytetrafluoroethylene (PTFE) as the polymer binder.

【0056】前記導電性粉末としては、例えば黒鉛粉
末、ケッチェンブラックなどのカーボン粉末、またはニ
ッケル、銅、コバルトなどの金属粉末を挙げることがで
きる。このような導電性粉末は、前記水素吸蔵合金10
0重量部に対して0.1〜5重量部の範囲で配合するこ
とが好ましい。
Examples of the conductive powder include carbon powder such as graphite powder and Ketjen black, and metal powder such as nickel, copper and cobalt. Such conductive powder can be used as the hydrogen storage alloy 10
It is preferable to add 0.1 to 5 parts by weight to 0 part by weight.

【0057】前記導電性基板としては、例えばパンチド
メタル、エキスパンドメタル、金網等の二次元基板、ま
たは発泡メタル基板、網状焼結繊維基板、不織布へ金属
をめっきしたフェルトめっき基板等の三次元基板を挙げ
ることができる。ただし、前記(2)の非ペースト式水
素吸蔵合金電極を作製する場合には水素吸蔵合金粉末を
含む合剤が散布されることから二次元基板を導電性基板
として用いることが好適である。
As the conductive substrate, for example, a two-dimensional substrate such as a punched metal, an expanded metal, or a wire mesh, or a three-dimensional substrate such as a foamed metal substrate, a mesh-like sintered fiber substrate, or a felt-plated substrate obtained by plating a metal on a nonwoven fabric. Can be mentioned. However, when producing the non-paste type hydrogen storage alloy electrode of the above (2), it is preferable to use a two-dimensional substrate as the conductive substrate since a mixture containing the hydrogen storage alloy powder is sprayed.

【0058】前記水素吸蔵合金電極と組み合される非焼
結式ニッケル電極12は、例えば水酸化ニッケルと必要
に応じて添加される水酸化コバルト(Co(O
H)2 )、一酸化コバルト(CoO)、金属コバルト等
との混合物にカルボキシメチルセルロース(CMC)、
ポリアクリル酸ソーダなどのポリアクリル酸塩を適宜配
合してペーストとし、このペーストを発泡メタル基板、
網状焼結繊維基板、不織布へ金属をめっきしたフェルト
めっき基板などの三次元構造の基板に充填し、乾燥した
後、ローラープレス等を施すことにより作製される。
The non-sintered nickel electrode 12 combined with the hydrogen storage alloy electrode is made of, for example, nickel hydroxide and cobalt hydroxide (Co (O
H) 2 ), carboxymethyl cellulose (CMC), a mixture with cobalt monoxide (CoO), metallic cobalt, etc.
A polyacrylic acid salt such as sodium polyacrylate is appropriately blended to form a paste, and this paste is used as a foam metal substrate,
It is prepared by filling a substrate having a three-dimensional structure such as a reticulated sintered fiber substrate or a felt-plated substrate obtained by plating a metal on a non-woven fabric, drying it, and then performing roller pressing or the like.

【0059】前記セパレータ13に使用される高分子繊
維不織布としては、例えばナイロン、ポリプロピレン、
ポリエチレンなどの単体高分子繊維、またはこれら高分
子繊維を混紡した複合高分子繊維を挙げることができ
る。
The polymer fiber non-woven fabric used for the separator 13 is, for example, nylon, polypropylene,
Examples thereof include simple polymer fibers such as polyethylene, and composite polymer fibers obtained by blending these polymer fibers.

【0060】アルカリ電解液としては、例えば6規定か
ら9規定の濃度を有する水酸化カリウム溶液または前記
水酸化カリウム溶液に水酸化リチウム、水酸化ナトリウ
ムなどを混合したものが使用される。
As the alkaline electrolyte, for example, a potassium hydroxide solution having a concentration of 6N to 9N or a mixture of the potassium hydroxide solution with lithium hydroxide, sodium hydroxide or the like is used.

【0061】上記構成に係る水素吸蔵合金によれば、合
金を構成する各種元素の種類およびその組成比を適正に
設定するとともに、水素の吸蔵特性に優れた微細な結晶
相を合金組織内に形成しているため、水素の吸蔵特性お
よび耐食性が優れた水素吸蔵合金が得られる。したがっ
て、この合金を負極材料として使用した場合に、電池容
量が大きくなり、かつアルカリ溶解液による合金の微粉
化劣化を防止できるため、寿命が長く、さらに高率放電
性に優れたニッケル水素二次電池を提供することができ
る。
According to the hydrogen storage alloy having the above structure, the types and composition ratios of the various elements constituting the alloy are properly set, and a fine crystal phase having excellent hydrogen storage characteristics is formed in the alloy structure. Therefore, a hydrogen storage alloy having excellent hydrogen storage characteristics and corrosion resistance can be obtained. Therefore, when this alloy is used as a negative electrode material, the battery capacity is increased, and the pulverization of the alloy due to the alkali solution can be prevented from being deteriorated. A battery can be provided.

【0062】[0062]

【発明の実施の形態】次に本発明の実施形態について以
下の実施例を参照して、より具体的に説明する。
Next, embodiments of the present invention will be described more specifically with reference to the following examples.

【0063】実施例1〜10 表1の左欄に示す合金組成となるように各種金属原料粉
末を配合し、実施例9〜10用の原料粉末については、
Si3 4 製ポットとボールとを備えた遊星ボールミル
を使用して水素雰囲気中で40時間メカニカルアロイン
グ(MA)処理を実施してそれぞれ粉末状の試料を得
た。次に得られた各試料を表1に示す温度および時間条
件で熱処理を実施することにより、合金組織の結晶化と
均質化とを図り、実施例9〜10に係る水素吸蔵合金を
それぞれ調製した。
Examples 1 to 10 Various metal raw material powders were blended so as to have the alloy compositions shown in the left column of Table 1, and the raw material powders for Examples 9 to 10 were
Using a planetary ball mill equipped with a Si 3 N 4 pot and a ball, mechanical alloying (MA) treatment was performed in a hydrogen atmosphere for 40 hours to obtain powdery samples. Next, the obtained samples were subjected to heat treatment under the temperature and time conditions shown in Table 1 to achieve crystallization and homogenization of the alloy structure, and to prepare hydrogen storage alloys according to Examples 9 to 10, respectively. .

【0064】一方、実施例1〜8用の原料混合体を真空
炉で加熱融解して各実施例用の合金溶湯(母合金)をそ
れぞれ調製した。
On the other hand, the raw material mixtures for Examples 1 to 8 were heated and melted in a vacuum furnace to prepare molten alloys (master alloys) for the respective examples.

【0065】次に得られた合金溶湯を、Ar雰囲気中で
以下に示す処理条件に従って冷却凝固せしめ、それぞれ
フレーク状の合金試料を調製した。
Next, the obtained molten alloy was solidified by cooling in an Ar atmosphere according to the following processing conditions to prepare flake-shaped alloy samples.

【0066】すなわち、実施例1〜8用の合金溶湯を図
1に示すような単ロール法により急冷凝固せめしてフレ
ーク状の合金試料をそれぞれ調製した。冷却ロールとし
ては、直径400mmのCu製ロールを使用し、注湯ノズ
ル(射出ノズル)と冷却ロールとの間隙は10mmに設定
し、射出温度は各合金の融点+150℃に設定し、射出
圧力は0.5kg/cm2 とした。また急冷操作はAr雰囲
気で実施し、ロール周速は25m/秒に設定した。
That is, the molten alloys for Examples 1 to 8 were rapidly solidified by a single roll method as shown in FIG. 1 to prepare flake-shaped alloy samples. As the cooling roll, a Cu roll having a diameter of 400 mm was used, the gap between the pouring nozzle (injection nozzle) and the cooling roll was set to 10 mm, the injection temperature was set to the melting point of each alloy + 150 ° C, and the injection pressure was set to 0.5 kg / cm 2 . The quenching operation was performed in an Ar atmosphere, and the roll peripheral speed was set at 25 m / sec.

【0067】こうして得られた合金試料のうち、単ロー
ル法で製造された急冷合金試料の形態はいずれもフレー
ク状であり、その厚さは50〜100μmであった。こ
れらのフレーク状合金試料について、表1に示す温度お
よび時間条件に従って熱処理を実施し、合金組織の結晶
化と均質化とを図った。
Of the alloy samples thus obtained, each of the quenched alloy samples manufactured by the single roll method had a flake shape and a thickness of 50 to 100 μm. These flake-like alloy samples were subjected to a heat treatment according to the temperature and time conditions shown in Table 1 to achieve crystallization and homogenization of the alloy structure.

【0068】比較例1〜2 表1左欄に示す合金組成を満足するように原料粉末を配
合し、得られた原料混合体を真空炉で加熱溶解して、各
比較例用の合金溶湯をそれぞれ調製した。なお、比較例
1に係る合金組成は、従来のAB5 系水素吸蔵合金の典
型的な組成例を示し、比較例2に係る合金組成は、従来
のAB5 系水素吸蔵合金の他の典型的な組成例を示す。
Comparative Examples 1 and 2 Raw material powders were mixed so as to satisfy the alloy composition shown in the left column of Table 1, and the obtained raw material mixture was heated and melted in a vacuum furnace to obtain an alloy melt for each comparative example. Each was prepared. Incidentally, the alloy composition according to Comparative Example 1 shows a typical composition of a conventional AB 5 type hydrogen storage alloy, the alloy composition of Comparative Example 2, another exemplary conventional AB 5 type hydrogen storage alloy An example of a suitable composition is shown below.

【0069】そして各合金溶湯を鋳造法により、冷却速
度を5〜60℃/分に設定して冷却凝固せしめ、それぞ
れ厚さ50mmの比較例1,2に係るブロック状の合金試
料(水素吸蔵合金)を調製した。さらに得られた比較例
1,2の合金試料について1000℃で5時間加熱して
熱処理を実施した。
Then, each alloy melt was solidified by cooling at a cooling rate of 5 to 60 ° C./min by a casting method, and a block-shaped alloy sample (hydrogen storage alloy) according to Comparative Examples 1 and 2 each having a thickness of 50 mm was prepared. ) Was prepared. Further, the obtained alloy samples of Comparative Examples 1 and 2 were heated at 1000 ° C. for 5 hours to perform a heat treatment.

【0070】次に得られたフレーク状の各合金試料につ
いて、粗粉砕後、ハンマーミルによって微粉砕を実施
し、得られた粉砕粉を篩に通して75μm以下の粒度に
分級して各電池用水素吸蔵合金粉末とした。なお平均粒
径は35〜40μmであった。また各電池用水素吸蔵合
金粉末をX線回折に供し、得られた半値幅からシェーラ
ー(Scheerer)の式に基づいて平均結晶粒径を算出し、
表1に示す結果を得た。
Next, each of the obtained flake-shaped alloy samples was coarsely pulverized, then finely pulverized by a hammer mill, and the obtained pulverized powder was passed through a sieve and classified to a particle size of 75 μm or less. This was a hydrogen storage alloy powder. The average particle size was 35 to 40 μm. Further, the hydrogen storage alloy powder for each battery was subjected to X-ray diffraction, and the average crystal grain size was calculated from the obtained half-width based on Scheerer's formula,
The results shown in Table 1 were obtained.

【0071】次に上記各実施例および比較例に係る電池
用水素吸蔵合金の電池材料としての特性を評価するため
に、以下に示すような手順で上記各電池用水素吸蔵合金
を使用して電極を形成し、その電極容量,充放電サイク
ル数(寿命)および高率放電性を測定した。
Next, in order to evaluate the characteristics of the hydrogen storage alloy for a battery according to each of the above Examples and Comparative Examples as a battery material, an electrode was prepared using each of the hydrogen storage alloys for a battery according to the following procedure. Was formed, and its electrode capacity, number of charge / discharge cycles (life), and high rate discharge were measured.

【0072】まず上記実施例および比較例に係る電池用
水素吸蔵合金粉末と、PTFE粉末と、カーボン粉末と
をそれぞれ重量%で95.5%,4.0%,0.5%に
なるように秤量後、混練圧延して各電極シートを作成し
た。電極シートを所定の大きさに切り出してニッケル製
集電体に圧着し、水素吸蔵合金電極をそれぞれ作成し
た。
First, the hydrogen storage alloy powder for a battery, the PTFE powder, and the carbon powder according to the above Examples and Comparative Examples were adjusted to 95.5%, 4.0%, and 0.5% by weight, respectively. After weighing, each electrode sheet was prepared by kneading and rolling. The electrode sheet was cut out to a predetermined size, and pressed to a nickel current collector to prepare a hydrogen storage alloy electrode.

【0073】一方、水酸化ニッケル90重量%と一酸化
コバルト10重量%とに少量のCMC(カルボキシメチ
ルセルロース)と水とを添加し撹拌混合してペーストを
調製した。このペーストを、三次元構造を有するニッケ
ル多孔体に充填乾燥後、ローラプレスによって圧延する
ことによりニッケル極を製造した。
On the other hand, a small amount of CMC (carboxymethylcellulose) and water were added to 90% by weight of nickel hydroxide and 10% by weight of cobalt monoxide and mixed by stirring to prepare a paste. This paste was filled in a porous nickel body having a three-dimensional structure, dried, and then rolled by a roller press to produce a nickel electrode.

【0074】そして上記各水素吸蔵合金電極とニッケル
極とを組み合わせて、容量については単極評価で測定す
る一方、寿命評価については、実際に各実施例の合金を
用いニッケル水素電池(4/3−Aサイズ,4000m
Ah仕様電池)を組み立てて評価を行なった。ここで電
解液としては、8規定の水酸化カリウム水溶液を使用し
た。
The capacity of each of the above-mentioned hydrogen storage alloy electrodes and the nickel electrode was combined and measured by the unipolar evaluation, while the life was evaluated by the nickel-metal hydride battery (4/3 -A size, 4000m
(Ah specification battery) was assembled and evaluated. Here, an 8N aqueous potassium hydroxide solution was used as the electrolytic solution.

【0075】そして、各水素吸蔵合金電極の容量評価で
は、40℃の恒温槽中で合金1g当り200mAの電流
値(200mA/g)で400mAh/gまで充電した
後に、上記電流値でHg/HgO参照電極に対して、−
0.5Vの電位になるまで放電させ、この充放電を繰り
返して放電量が最大になったときの値を容量として測定
した。
In the evaluation of the capacity of each hydrogen storage alloy electrode, the battery was charged to 400 mAh / g at a current value of 200 mA per gram of alloy (200 mA / g) in a constant temperature bath at 40 ° C., and then the Hg / HgO was charged at the above current value. With respect to the reference electrode,
The battery was discharged until the potential reached 0.5 V, and the charge and discharge were repeated, and the value when the amount of discharge reached the maximum was measured as the capacity.

【0076】また、高率放電性は、単位重量当りの放電
電流が20mA/gおよび200mA/gの場合におけ
る容量をそれぞれC20およびC200 として測定し、それ
らの比(C200 /C20)を高率放電比とし、その比の大
小によって評価した。
The high rate discharge property is determined by measuring the capacities at discharge currents per unit weight of 20 mA / g and 200 mA / g as C 20 and C 200 , respectively, and their ratio (C 200 / C 20 ). Was defined as a high rate discharge ratio, and the ratio was evaluated according to the magnitude of the ratio.

【0077】また寿命評価では、各電池について、4A
で1.1時間充電後、電池電圧が0.9Vになるまで4
Aの電流で放電する充放電サイクルを繰り返し、電池容
量が初期容量の80%になるまでのサイクル数を40℃
で評価し、電池寿命として測定した。各測定結果を下記
表1に示す。
In the life evaluation, 4 A
After charging for 1.1 hours, until the battery voltage reaches 0.9 V
The charge / discharge cycle of discharging with the current of A is repeated, and the number of cycles until the battery capacity becomes 80% of the initial capacity is set to 40 ° C.
And measured as battery life. Table 1 below shows the measurement results.

【0078】[0078]

【表1】 [Table 1]

【0079】上記表1に示す結果から明らかなように、
一般式中のM成分,R成分およびT成分を構成する元素
の種類と、各成分の組成比とを適正に設定し、冷却凝固
せしめた後に、熱処理を行って微細な結晶相を析出せし
めて調製した各実施例に係る水素吸蔵合金を使用して形
成した電極および電池においては、従来の組成比および
合金組織構造を有する比較例の電池と比較して、電極容
量,寿命および高率放電性の全ての特性において良好で
あり、優れた電池性能を発揮できることが確認できた。
As is clear from the results shown in Table 1 above,
After appropriately setting the types of the elements constituting the M component, the R component and the T component in the general formula and the composition ratio of each component, and solidifying by cooling, heat treatment is performed to precipitate a fine crystal phase. In the electrode and the battery formed using the hydrogen storage alloy according to each of the prepared examples, the electrode capacity, the life, and the high-rate discharge performance were compared with those of the comparative example having the conventional composition ratio and alloy structure. It was confirmed that all the characteristics were good and that excellent battery performance could be exhibited.

【0080】一方、従来のAB5 系水素吸蔵合金である
比較例1の合金では高率放電性については実施例と同等
であるが、容量および寿命が実施例と比較して低下する
ことが判明した。また、従来の他のAB5 系水素吸蔵合
金である比較例2の合金では、容量については実施例に
近似するが、高率放電性および寿命が大幅に低下するこ
とが確認された。すなわち、本実施例において規定する
組成範囲に設定し、微細な結晶相を形成することによ
り、高容量で、かつ長寿命で高率放電性に優れたニッケ
ル水素二次電池が得られることが判明した。
[0080] On the other hand, in the conventional AB 5 type hydrogen storage alloy a is Comparative Example 1 Alloy although the high rate discharge properties are equivalent to Example, found that capacity and service life may be reduced as compared with Example did. Further, in another conventional AB 5 type hydrogen storage alloy a is Comparative Example 2 alloy, but approximates to an embodiment for volume, that high-rate discharge properties and lifetime is greatly reduced has been confirmed. That is, it was found that by setting the composition range specified in the present example and forming a fine crystal phase, a nickel-hydrogen secondary battery having a high capacity, a long life, and an excellent high-rate discharge property can be obtained. did.

【0081】次に各水素吸蔵合金を使用したニッケル水
素二次電池の高温耐性について、前記の実施例1〜4,
9および比較例1〜2の電池に加えて下記実施例11お
よび比較例3の水素吸蔵合金を使用した電池を作成して
評価した。
Next, the high-temperature resistance of the nickel-metal hydride secondary batteries using the respective hydrogen storage alloys was examined in Examples 1 to 4 described above.
In addition to the batteries of Example 9 and Comparative Examples 1 and 2, batteries using the hydrogen storage alloys of Example 11 and Comparative Example 3 below were prepared and evaluated.

【0082】実施例11〜16および比較例3 表2に示す合金組成となるように原料粉末を配合し、得
られた原料混合体を真空炉で加熱融解して実施例11〜
16用および比較例3用の合金溶湯をそれぞれ調製し
た。各合金溶湯を実施例9と同様に単ロール法にて急冷
処理し、さらに表2に示す温度、時間条件で熱処理し、
さらに分級して得た各合金粉末について平均結晶粒径を
測定して表2に示す結果を得た。
Examples 11 to 16 and Comparative Example 3 Raw materials were blended so as to have the alloy compositions shown in Table 2, and the obtained raw material mixture was heated and melted in a vacuum furnace to obtain Examples 11 to 16 .
The alloy melts for No. 16 and Comparative Example 3 were respectively prepared. Each alloy melt was quenched by the single roll method in the same manner as in Example 9, and further heat-treated at the temperature and time conditions shown in Table 2.
The average crystal grain size of each alloy powder obtained by further classification was measured, and the results shown in Table 2 were obtained.

【0083】また実施例11〜16および比較例3に係
る水素吸蔵合金粉末を使用して実施例9と同一仕様の4
/3−Aサイズ電池を作成し容量および寿命を測定し
た。寿命評価条件は充放電サイクルが30回毎に電池を
温度90℃で1日放置する条件を付加した以外は実施例
9と同一条件とした。この方式で測定した寿命を高温放
置寿命として下記表2に示す。比較例1〜2の電池につ
いても同様に測定して下記表2の結果を得た。
Also, using the hydrogen storage alloy powders according to Examples 11 to 16 and Comparative Example 3,
A / 3-A size battery was prepared and its capacity and life were measured. The life evaluation conditions were the same as those in Example 9 except that a condition that the battery was left at a temperature of 90 ° C. for one day every 30 charge / discharge cycles was added. The life measured by this method is shown in Table 2 below as a high-temperature storage life. The batteries of Comparative Examples 1 and 2 were similarly measured, and the results shown in Table 2 below were obtained.

【0084】[0084]

【表2】 [Table 2]

【0085】上記表2に示す結果から明らかなように、
各実施例に係る電池によれば、従来のAB5 型水素吸蔵
合金を使用した比較例1〜2の電池と比較して高温放置
寿命が高くなり、過酷な高温度条件下で使用された場合
においても優れた寿命特性を発揮することが確認でき
た。
As is clear from the results shown in Table 2 above,
According to the battery according to the embodiment, the high-temperature exposure lifetime becomes higher than the battery of Comparative Example 1-2 using the conventional AB 5 type hydrogen storage alloys, when used under severe high temperature conditions It was confirmed that excellent life characteristics were exhibited also in

【0086】特にR成分含有量とM成分量との合計に対
してR成分の原子比aが0.05〜0.25となる実施
例1〜5の電池において、特に高温放置寿命が長くな
り、優れた高温耐性を有することが判明した。一方、R
成分を含有しない比較例3およびR成分含有量が相対的
に多い実施例16の電池においては、容量は確保される
反面、いずれも高温放置寿命が小さくなることが判明し
た。
In particular, in the batteries of Examples 1 to 5 in which the atomic ratio a of the R component is 0.05 to 0.25 with respect to the sum of the content of the R component and the amount of the M component, the high temperature storage life is particularly prolonged. It was found to have excellent high temperature resistance. On the other hand, R
In the battery of Comparative Example 3 containing no component and the battery of Example 16 having a relatively large content of the R component, it was found that while the capacity was secured, the lifetime at high temperature was shortened.

【0087】次に、R成分とM成分との合計量に対する
R成分の原子比aを0.3〜0.7の範囲とした水素吸
蔵合金を使用した電池の特性を下記実施例に基づいて説
明する。
Next, the characteristics of a battery using a hydrogen storage alloy in which the atomic ratio a of the R component to the total amount of the R component and the M component is in the range of 0.3 to 0.7 will be described based on the following examples. explain.

【0088】実施例17〜26 表3の左欄に示す合金組成となるように各種原料粉末を
配合し、実施例25〜26用の原料粉末については実施
例1と同様に水素雰囲気中でメカニカルアロイング(M
A)処理を実施してそれぞれ粉末状の合金試料を得た。
Examples 17 to 26 Various raw material powders were blended so as to have the alloy compositions shown in the left column of Table 3, and the raw material powders for Examples 25 to 26 were mechanically treated in a hydrogen atmosphere in the same manner as in Example 1. Alloying (M
A) Processing was performed to obtain powdery alloy samples.

【0089】一方、実施例17〜24用の原料粉末につ
いては真空炉で加熱融解して合金溶湯(母合金)をそれ
ぞれ調製し、各合金溶湯を実施例9と同一条件で単ロー
ル法により作成しフレーク状の合金試料を得た。
On the other hand, the raw material powders for Examples 17 to 24 were heated and melted in a vacuum furnace to prepare molten alloys (master alloys), and each molten alloy was prepared by the single roll method under the same conditions as in Example 9. A flake-like alloy sample was obtained.

【0090】次に各合金試料を表3に示す条件で熱処理
した後に分級して各実施例に係る水素吸蔵合金粉末と
し、同様に平均結晶粒径を測定して表3に示す結果を得
た。
Next, each alloy sample was heat-treated under the conditions shown in Table 3 and then classified to obtain the hydrogen storage alloy powder according to each Example. Similarly, the average crystal grain size was measured to obtain the results shown in Table 3. .

【0091】さらに各実施例の水素吸蔵合金粉末を使用
して4/3Aサイズの4000mAh仕様の二次電池を
作成し、容量,寿命および高率放電比を前記実施例1と
同一条件で測定して下記表3に示す結果を得た。なお前
記比較例1〜2に係る電池についての測定結果も併記す
る。
Further, a 4000 mAh secondary battery of 4/3 A size was prepared using the hydrogen storage alloy powder of each embodiment, and the capacity, life and high rate discharge ratio were measured under the same conditions as in the first embodiment. The results shown in Table 3 below were obtained. The measurement results for the batteries according to Comparative Examples 1 and 2 are also shown.

【0092】[0092]

【表3】 [Table 3]

【0093】上記表3に示す結果から明らかなように、
所定の組成を有し、合金組織を微細化した各実施例に係
るニッケル水素二次電池においては、従来の粗大な結晶
粒を有するAB5 型水素吸蔵合金で形成した比較例の電
池と比較して高容量で長寿命であり、高率放電性も良好
である。
As is clear from the results shown in Table 3 above,
Having a predetermined composition, in the nickel-hydrogen secondary battery according to the embodiments described finer alloy structure, compared with the battery of Comparative Example was formed in AB 5 type hydrogen storage alloy having a conventional coarse grains , High capacity, long life, and good high rate discharge.

【0094】次に本発明に係る水素吸蔵合金を使用した
二次電池の温度特性について、下記の実施例に基づいて
説明する。
Next, the temperature characteristics of the secondary battery using the hydrogen storage alloy according to the present invention will be described based on the following examples.

【0095】実施例27〜33 表4の左欄に示す合金組成となるように各種原料粉末を
配合し、各実施例用の原料粉末について実施例1と同様
に真空炉で加熱融解して合金溶湯(母合金)をそれぞれ
調製し、各合金溶湯を実施例1と同一条件で単ロール法
により作成しフレーク状の合金試料を得た。
Examples 27 to 33 Various raw material powders were blended so as to have the alloy composition shown in the left column of Table 4, and the raw material powder for each example was heated and melted in a vacuum furnace in the same manner as in Example 1 to obtain an alloy. Each molten metal (master alloy) was prepared, and each molten alloy was prepared by the single roll method under the same conditions as in Example 1 to obtain a flake-shaped alloy sample.

【0096】次に各合金試料を表4に示す条件で熱処理
した後に分級して各実施例に係る水素吸蔵合金粉末と
し、同様に平均結晶粒径を測定して表4に示す結果を得
た。
Next, each alloy sample was heat-treated under the conditions shown in Table 4 and then classified to obtain a hydrogen storage alloy powder according to each Example, and the average crystal grain size was measured in the same manner to obtain the results shown in Table 4. .

【0097】さらに各実施例の水素吸蔵合金粉末を使用
して4/3Aサイズの4000mAh仕様の二次電池を
作成し、容量,寿命および高率放電比を前記実施例1と
同一条件で測定して下記表4に示す結果を得た。また各
実施例に係る水素吸蔵合金粉末を使用してペースト状電
極を作成した。得られた各電極について実施例1の容量
評価と同一条件で行い、室温(25℃)において最大放
電容量に達した後に、評価温度を高温側(60℃)と低
温側(−15℃)に変化させて同様に容量Cを測定し、
室温に対する高温時および低温時の容量変化を温度特性
として測定し下記表4に示す結果を得た。なお前記比較
例1〜2に係る電池についての測定結果も併記する。
Further, a 4 / 3A size secondary battery of 4000 mAh specification was prepared using the hydrogen storage alloy powder of each of the examples, and the capacity, life and high rate discharge ratio were measured under the same conditions as in Example 1. The results shown in Table 4 below were obtained. Further, a paste-like electrode was prepared using the hydrogen storage alloy powder according to each example. The obtained electrodes were evaluated under the same conditions as the capacity evaluation of Example 1. After reaching the maximum discharge capacity at room temperature (25 ° C.), the evaluation temperature was changed to the high temperature side (60 ° C.) and the low temperature side (−15 ° C.). Similarly, measure the capacitance C by changing
Capacitance changes at high temperature and low temperature with respect to room temperature were measured as temperature characteristics, and the results shown in Table 4 below were obtained. The measurement results for the batteries according to Comparative Examples 1 and 2 are also shown.

【0098】[0098]

【表4】 [Table 4]

【0099】上記表4に示す結果から明らかなように、
所定の組成を有し、合金組織を微細化した各実施例に係
るニッケル水素二次電池においては、従来の粗大な結晶
粒を有するAB5 型水素吸蔵合金で形成した比較例の電
池と比較して高容量であり、高率放電性も良好である。
またR成分含有量に相当する原子比aを0.4〜0.6
の範囲にすることにより、各実施例の合金について容量
の温度依頼性が小さく、広い温度範囲で熱的に安定した
高容量の二次電池が得られている。
As is clear from the results shown in Table 4 above,
Having a predetermined composition, in the nickel-hydrogen secondary battery according to the embodiments described finer alloy structure, compared with the battery of Comparative Example was formed in AB 5 type hydrogen storage alloy having a conventional coarse grains And high capacity, and high rate discharge property is also good.
Further, the atomic ratio a corresponding to the R component content is set to 0.4 to 0.6.
With the above range, the temperature dependence of the capacity of the alloy of each embodiment is small, and a high capacity secondary battery that is thermally stable over a wide temperature range is obtained.

【0100】次に、R成分とM成分との合計量に対する
R成分の原子比aを0.7〜1未満の範囲とした水素吸
蔵合金を使用した電池の特性を下記実施例に基づいて説
明する。
Next, the characteristics of a battery using a hydrogen storage alloy in which the atomic ratio a of the R component to the total amount of the R component and the M component is in the range of 0.7 to less than 1 will be described based on the following examples. I do.

【0101】実施例34〜43 表5の左欄に示す合金組成となるように各種原料粉末を
配合し、実施例42〜43用の原料粉末については実施
例9と同様に水素雰囲気中でメカニカルアロイング(M
A)処理を実施してそれぞれ粉末状の合金試料を得た。
Examples 34 to 43 Various raw material powders were blended so as to have the alloy compositions shown in the left column of Table 5, and the raw material powders for Examples 42 to 43 were mechanically treated in a hydrogen atmosphere in the same manner as in Example 9. Alloying (M
A) Processing was performed to obtain powdery alloy samples.

【0102】一方、実施例34〜41用の原料粉末につ
いては真空炉で加熱融解して合金溶湯(母合金)をそれ
ぞれ調製し、各合金溶湯を実施例1と同一条件で単ロー
ル法により作成しフレーク状の合金試料を得た。
On the other hand, the raw material powders for Examples 34 to 41 were heated and melted in a vacuum furnace to prepare molten alloys (master alloys), and each molten alloy was prepared by the single roll method under the same conditions as in Example 1. A flake-like alloy sample was obtained.

【0103】次に各合金試料を表5に示す条件で熱処理
した後に分級して各実施例に係る水素吸蔵合金粉末と
し、同様に平均結晶粒径を測定して表5に示す結果を得
た。
Next, each alloy sample was heat-treated under the conditions shown in Table 5 and then classified to obtain a hydrogen storage alloy powder according to each Example, and the average crystal grain size was measured in the same manner to obtain the results shown in Table 5. .

【0104】さらに各実施例の水素吸蔵合金粉末を使用
して4/3Aサイズの4000mAh仕様の二次電池を
作成し、容量,寿命および高率放電比を前記実施例1と
同一条件で測定して下記表5に示す結果を得た。なお前
記比較例1〜2に係る電池についての測定結果も併記す
る。
Further, a 4 / 3A size secondary battery of 4000 mAh specification was prepared using the hydrogen storage alloy powder of each example, and the capacity, life and high rate discharge ratio were measured under the same conditions as in the above example 1. The results shown in Table 5 below were obtained. The measurement results for the batteries according to Comparative Examples 1 and 2 are also shown.

【0105】[0105]

【表5】 [Table 5]

【0106】上記表5に示す結果から明らかなように、
所定の組成を有し、合金組織を微細化した各実施例に係
るニッケル水素二次電池においては、従来の粗大な結晶
粒を有するAB5 型水素吸蔵合金で形成した比較例の電
池と比較して高容量で長寿命であり、高率放電性も良好
である。
As is clear from the results shown in Table 5 above,
Having a predetermined composition, in the nickel-hydrogen secondary battery according to the embodiments described finer alloy structure, compared with the battery of Comparative Example was formed in AB 5 type hydrogen storage alloy having a conventional coarse grains , High capacity, long life, and good high rate discharge.

【0107】次に本発明に係る水素吸蔵合金を使用した
二次電池の立上り特性(初期活性化の容易性)につい
て、下記の実施例に基づいて説明する。
Next, the rising characteristics (easiness of initial activation) of a secondary battery using the hydrogen storage alloy according to the present invention will be described based on the following examples.

【0108】実施例44〜49 表6の左欄に示す合金組成となるように各種原料粉末を
配合し、各実施例用の原料粉末について、実施例1と同
様に真空炉で加熱融解して合金溶湯(母合金)をそれぞ
れ調製し、各合金溶湯を実施例1と同一条件で単ロール
法により作成しフレーク状の合金試料を得た。
Examples 44 to 49 Various raw material powders were blended so as to have the alloy composition shown in the left column of Table 6, and the raw material powder for each example was heated and melted in a vacuum furnace in the same manner as in Example 1. Each molten alloy (master alloy) was prepared, and each molten metal was prepared by the single roll method under the same conditions as in Example 1 to obtain a flake-shaped alloy sample.

【0109】次に各合金試料を表6に示す条件で熱処理
した後に分級して各実施例に係る水素吸蔵合金粉末と
し、同様に平均結晶粒径を測定して表6に示す結果を得
た。
Next, each alloy sample was heat-treated under the conditions shown in Table 6 and then classified to obtain a hydrogen storage alloy powder according to each Example, and the average crystal grain size was measured in the same manner to obtain the results shown in Table 6. .

【0110】さらに各実施例の水素吸蔵合金粉末を使用
して4/3Aサイズの4000mAh仕様の二次電池を
作成し、容量,寿命および高率放電比を前記実施例1と
同一条件で測定して下記表6に示す結果を得た。また、
急冷後、粉砕して得た各実施例に係る水素吸蔵合金粉末
を、前記実施例1と同様な条件でペースト化し、単極で
の容量評価に供した。ここで容量の立上り特性は、前記
容量評価法と同様に合金1gあたり200mAの電流値
(200mA/g)で400mAh/gまで充電した
後、上記電流値でHg/HgO参照電極に対して、−
0.5Vの電位になるまで放電させ、この充放電を繰り
返して放電量が最大になるまでのサイクル回数を活性化
回数として測定した。なお前記比較例1〜2に係る電池
についての測定結果も併記する。
Further, a 4 / 3A size secondary battery of 4000 mAh specification was prepared using the hydrogen storage alloy powder of each of the examples, and the capacity, life and high rate discharge ratio were measured under the same conditions as in the example 1. The results shown in Table 6 below were obtained. Also,
After quenching, the hydrogen storage alloy powder according to each of the examples obtained by pulverization was pasted under the same conditions as in Example 1 and subjected to capacity evaluation with a single electrode. Here, as in the case of the above-mentioned capacity evaluation method, the rising characteristics of the capacity were determined as follows: after charging to 400 mAh / g at a current value of 200 mA per gram of alloy (200 mA / g), the above-mentioned current value was applied to the Hg / HgO reference electrode.
The battery was discharged until the potential reached 0.5 V, and the charge and discharge were repeated, and the number of cycles until the amount of discharge reached the maximum was measured as the number of times of activation. The measurement results for the batteries according to Comparative Examples 1 and 2 are also shown.

【0111】[0111]

【表6】 [Table 6]

【0112】上記表6に示す結果から明らかなように、
所定の組成を有し、合金組織を微細化した各実施例に係
るニッケル水素二次電池においては、従来の粗大な結晶
粒を有するAB5 型水素吸蔵合金で形成した比較例の電
池と比較して高容量であり、高率放電性も良好である。
またR成分含有量に相当する原子比aを0.8〜0.9
の範囲にした合金においては、活性化回数が少なく、容
量の立上り特性が良好な二次電池が得られている。
As is clear from the results shown in Table 6 above,
Having a predetermined composition, in the nickel-hydrogen secondary battery according to the embodiments described finer alloy structure, compared with the battery of Comparative Example was formed in AB 5 type hydrogen storage alloy having a conventional coarse grains And high capacity, and high rate discharge property is also good.
Further, the atomic ratio a corresponding to the R component content is set to 0.8 to 0.9.
In the alloys in the range, the number of times of activation is small, and a secondary battery having a good capacity rising characteristic is obtained.

【0113】[0113]

【発明の効果】以上説明の通り本発明に係る水素吸蔵合
金によれば、合金を構成する各種元素の種類およびその
組成比を適正に設定するとともに、水素の吸蔵特性に優
れた微細な結晶相を合金組織内に形成しているため、水
素の吸蔵特性および耐食性が優れた水素吸蔵合金が得ら
れる。したがって、この合金を負極材料として使用した
場合に、電池容量が大きくなり、かつ、寿命が長く、さ
らに高率放電性に優れたニッケル水素二次電池を提供す
ることができる。
As described above, according to the hydrogen storage alloy of the present invention, the type of various elements constituting the alloy and the composition ratio thereof are properly set, and the fine crystalline phase excellent in hydrogen storage characteristics is obtained. Is formed in the alloy structure, so that a hydrogen storage alloy having excellent hydrogen storage characteristics and corrosion resistance can be obtained. Therefore, when this alloy is used as a negative electrode material, a nickel-hydrogen secondary battery having a large battery capacity, a long life, and excellent high-rate discharge performance can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単ロール法による水素吸蔵合金製造装置の構成
を示す斜視図。
FIG. 1 is a perspective view showing the configuration of a hydrogen storage alloy manufacturing apparatus using a single roll method.

【図2】双ロール法による水素吸蔵合金製造装置の構成
を示す断面図。
FIG. 2 is a cross-sectional view showing a configuration of a hydrogen storage alloy manufacturing apparatus using a twin-roll method.

【図3】本発明に係るニッケル水素二次電池の構成例を
部分的に破断して示す斜視図。
FIG. 3 is a perspective view showing a configuration example of a nickel-metal hydride secondary battery according to the present invention, partially cut away;

【符号の説明】[Explanation of symbols]

1 冷却チャンバ 2 取鍋 3 水素吸蔵合金溶湯 4 注湯ノズル 5,5a,5b 冷却ロール 6 水素吸蔵合金 7 溶解炉 8 タンディッシュ 11 水素吸蔵合金電極(負極) 12 非焼結式ニッケル電極(正極) 13 セパレータ 14 容器 15 穴 16 封口板 17 絶縁性ガスケット 18 正極リード 19 正極端子 20 安全弁 21 絶縁チューブ 22 鍔紙 d 間隙 DESCRIPTION OF SYMBOLS 1 Cooling chamber 2 Ladle 3 Hydrogen storage alloy melt 4 Pouring nozzle 5, 5a, 5b Cooling roll 6 Hydrogen storage alloy 7 Melting furnace 8 Tundish 11 Hydrogen storage alloy electrode (negative electrode) 12 Non-sintered nickel electrode (positive electrode) DESCRIPTION OF SYMBOLS 13 Separator 14 Container 15 Hole 16 Sealing plate 17 Insulating gasket 18 Positive electrode lead 19 Positive electrode terminal 20 Safety valve 21 Insulating tube 22 Flange paper d Gap

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/16 C22F 1/16 A H01M 4/38 H01M 4/38 A 10/30 10/30 Z // B22D 11/06 360 B22D 11/06 360B 360C C22F 1/00 601 C22F 1/00 601 641 641A 661 661A 681 681 682 682 (72)発明者 川島 史行 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 稲田 周介 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐藤 典昭 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/16 C22F 1/16 A H01M 4/38 H01M 4/38 A 10/30 10/30 Z // B22D 11/06 360 B22D 11/06 360B 360C C22F 1/00 601 C22F 1/00 601 641 641A 661 661A 681 681 682 682 (72) Inventor Fumiyuki Kawashima 8 Shinsugitacho, Isogo-ku, Yokohama-shi, Kanagawa Pref. 72) Inventor Shusuke Inada 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Works Co., Ltd. (72) Inventor Noriaki Sato 8 Shin-Sugita-cho, Isogo-ku, Yokohama-shi Kanagawa Prefecture Inside the Toshiba Yokohama Works Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Ra 1-a 100-b b (但
し、RはLa,Ce,Pr,Nd,SmおよびYから選
択される少なくとも1種の元素であり、MはTi,Z
r,Hf,V,Nb,Ta,Cr,MoおよびWから選
択される少なくとも1種の元素であり、TはMn,F
e,Co,Ni,Cu,Zn,B,Al,SiおよびS
nから選択される少なくとも1種の元素であり、aは原
子比で0<a<1であり、bは原子%で30≦b≦80
である。)で表わされる合金から成り、合金組織の少な
くとも一部に結晶粒径が10μm以下の微細な結晶相が
析出していることを特徴とする水素吸蔵合金。
1. General formula (R a M 1-a ) 100-b T b (where R is at least one element selected from La, Ce, Pr, Nd, Sm and Y, and M is Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo and W are at least one element selected from the group consisting of Mn, F
e, Co, Ni, Cu, Zn, B, Al, Si and S
n is at least one element selected from n, a is an atomic ratio of 0 <a <1, and b is an atomic% of 30 ≦ b ≦ 80.
It is. A hydrogen storage alloy comprising an alloy represented by the formula (1), wherein a fine crystal phase having a crystal grain size of 10 μm or less is precipitated in at least a part of the alloy structure.
【請求項2】 合金の平均結晶粒径が1nm〜5μmの範
囲であることを特徴とする請求項1記載の水素吸蔵合
金。
2. The hydrogen storage alloy according to claim 1, wherein the average crystal grain size of the alloy is in the range of 1 nm to 5 μm.
【請求項3】 合金に含有されるR成分の原子比aが0
<a≦0.3であることを特徴とする請求項1記載の水
素吸蔵合金。
3. The atomic ratio a of the R component contained in the alloy is 0.
The hydrogen storage alloy according to claim 1, wherein <a ≦ 0.3.
【請求項4】 合金に含有されるR成分の原子比aが
0.3<a≦0.7であることを特徴とする請求項1記
載の水素吸蔵合金。
4. The hydrogen storage alloy according to claim 1, wherein the atomic ratio a of the R component contained in the alloy satisfies 0.3 <a ≦ 0.7.
【請求項5】 合金に含有されるR成分の原子比aが
0.7<a<1であることを特徴とする請求項1記載の
水素吸蔵合金。
5. The hydrogen storage alloy according to claim 1, wherein the atomic ratio a of the R component contained in the alloy satisfies 0.7 <a <1.
【請求項6】 一般式(Ra 1-a 100-b b (但
し、RはLa,Ce,Pr,Nd,SmおよびYから選
択される少なくとも1種の元素であり、MはTi,Z
r,Hf,V,Nb,Ta,Cr,MoおよびWから選
択される少なくとも1種の元素であり、TはMn,F
e,Co,Ni,Cu,Zn,B,Al,SiおよびS
nから選択される少なくとも1種の元素であり、aは原
子比で0<a<1であり、bは原子%で30≦b≦80
である。)で表わされる組成を有し合金組織の少なくと
も一部に非平衡相を形成した合金を調製し、しかる後に
得られた合金を熱処理することにより、平均結晶粒径が
1nm〜5μmの微細な結晶相を析出せしめることを特徴
とする水素吸蔵合金の製造方法。
6. A general formula (R a M 1-a ) 100-b T b (where R is at least one element selected from La, Ce, Pr, Nd, Sm and Y, and M is Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo and W are at least one element selected from the group consisting of Mn, F
e, Co, Ni, Cu, Zn, B, Al, Si and S
n is at least one element selected from n, a is an atomic ratio of 0 <a <1, and b is an atomic% of 30 ≦ b ≦ 80.
It is. An alloy having a composition represented by the formula (1) and having a non-equilibrium phase formed in at least a part of the alloy structure is prepared, and then the obtained alloy is heat-treated to obtain fine crystals having an average crystal grain size of 1 nm to 5 μm. A method for producing a hydrogen storage alloy, comprising precipitating a phase.
【請求項7】 一般式(Ra 1-a 100-b b (但
し、RはLa,Ce,Pr,Nd,SmおよびYから選
択される少なくとも1種の元素であり、MはTi,Z
r,Hf,V,Nb,Ta,Cr,MoおよびWから選
択される少なくとも1種の元素であり、TはMn,F
e,Co,Ni,Cu,Zn,B,Al,SiおよびS
nから選択される少なくとも1種の元素であり、aは原
子比で0<a<1であり、bは原子%で30≦b≦80
である。)で表わされる合金から成り、合金組織の少な
くとも一部に結晶粒径が10μm以下の微細な結晶相が
析出している水素吸蔵合金を含む負極と,ニッケル酸化
物を含む正極との間に電気絶縁性を有するセパレータを
介装して密閉容器内に収容し、この密閉容器内にアルカ
リ電解液を充填したことを特徴とするニッケル水素二次
電池。
7. General formula (R a M 1-a ) 100-b T b (where R is at least one element selected from La, Ce, Pr, Nd, Sm and Y, and M is Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo and W are at least one element selected from the group consisting of Mn, F
e, Co, Ni, Cu, Zn, B, Al, Si and S
n is at least one element selected from n, a is an atomic ratio of 0 <a <1, and b is an atomic% of 30 ≦ b ≦ 80.
It is. ), And a positive electrode containing a nickel oxide and a negative electrode containing a hydrogen storage alloy in which a fine crystal phase having a crystal grain size of 10 μm or less is precipitated in at least a part of the alloy structure. A nickel-metal hydride secondary battery, wherein a nickel-hydrogen secondary battery is housed in a sealed container with an insulating separator interposed therebetween, and the sealed container is filled with an alkaline electrolyte.
JP9068736A 1997-03-21 1997-03-21 Hydrogen storage alloy, its production and nickel-hydrogen secondary battery Pending JPH10259445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9068736A JPH10259445A (en) 1997-03-21 1997-03-21 Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9068736A JPH10259445A (en) 1997-03-21 1997-03-21 Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JPH10259445A true JPH10259445A (en) 1998-09-29

Family

ID=13382384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9068736A Pending JPH10259445A (en) 1997-03-21 1997-03-21 Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH10259445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026764A3 (en) * 1999-02-05 2002-09-25 Toshiba Battery Co., Ltd. Hydrogen absorbing alloy, method of manufacturing hydrogen absorbing alloy and alkali secondary battery
CN110931786A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of iron-nickel battery cathode silicate crystal material
CN111224092A (en) * 2019-12-05 2020-06-02 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
CN115989334A (en) * 2020-09-01 2023-04-18 株式会社三德 Hydrogen storage material, hydrogen storage container, and hydrogen supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026764A3 (en) * 1999-02-05 2002-09-25 Toshiba Battery Co., Ltd. Hydrogen absorbing alloy, method of manufacturing hydrogen absorbing alloy and alkali secondary battery
CN111224092A (en) * 2019-12-05 2020-06-02 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
CN111224092B (en) * 2019-12-05 2022-08-30 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
CN110931786A (en) * 2019-12-11 2020-03-27 河南创力新能源科技股份有限公司 Preparation method of iron-nickel battery cathode silicate crystal material
CN115989334A (en) * 2020-09-01 2023-04-18 株式会社三德 Hydrogen storage material, hydrogen storage container, and hydrogen supply device

Similar Documents

Publication Publication Date Title
WO1995017531A1 (en) Hydrogen-absorbing alloy and alkaline secondary cell using the same
JP2002334695A (en) Secondary battery and manufacturing method of secondary battery
JP2002105564A (en) Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
JP2002069554A (en) Hydrogen storage alloy, alkali secondary battery, hybrid car and electric vehicle
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
JP4659936B2 (en) Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10102172A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP5161451B2 (en) Hydrogen storage alloy, electrode using the same, and nickel metal hydride secondary battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP4117918B2 (en) Hydrogen storage alloy, manufacturing method thereof, and nickel metal hydride secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH0765833A (en) Hydrogen storage alloy electrode
JPH10102170A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH1060565A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH10265886A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH10237569A (en) Hydrogen storate alloy for battery, its production and nickel-hydrogen secondary battery
JPH10237571A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10237568A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery