JP2719542B2 - Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode - Google Patents

Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode

Info

Publication number
JP2719542B2
JP2719542B2 JP1074451A JP7445189A JP2719542B2 JP 2719542 B2 JP2719542 B2 JP 2719542B2 JP 1074451 A JP1074451 A JP 1074451A JP 7445189 A JP7445189 A JP 7445189A JP 2719542 B2 JP2719542 B2 JP 2719542B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
powder
electrode
alloy
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1074451A
Other languages
Japanese (ja)
Other versions
JPH02253558A (en
Inventor
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13547616&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2719542(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1074451A priority Critical patent/JP2719542B2/en
Publication of JPH02253558A publication Critical patent/JPH02253558A/en
Application granted granted Critical
Publication of JP2719542B2 publication Critical patent/JP2719542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池の負極に用いる水素吸蔵合
金粉末および水素吸蔵電極に関するものである。
Description: TECHNICAL FIELD The present invention relates to a hydrogen storage alloy powder and a hydrogen storage electrode used for a negative electrode of an alkaline storage battery.

従来の技術とその課題 水素吸蔵電極は、水素の可逆的な吸蔵および放出が可
能な水素吸蔵合金を電極に用いるものであり、その水素
の電気化学的な酸化還元反応をアルカリ蓄電池の負極の
起電反応に利用する。水素吸蔵電極に用いられる水素吸
蔵合金には、TiNi,Ti2Ni,LaNi5およびTiMn2等の金属間
化合物や、これらの金属間化合物の構成元素を他の元素
で置換したものがある。これらの水素吸蔵合金は、その
組成が異なると、水素吸蔵量,平衡水素圧力,アルカリ
電解液中で充放電を繰り返す場合の保持容量特性等の性
質が変化するので、合金の組成を変えて、水素吸蔵電極
の性能の改良が試みられている。
Conventional technology and its problems The hydrogen storage electrode uses a hydrogen storage alloy capable of reversibly storing and releasing hydrogen for the electrode, and the electrochemical oxidation-reduction reaction of the hydrogen is used to raise the negative electrode of the alkaline storage battery. It is used for electric reaction. The hydrogen storage alloy used in the hydrogen storage electrode, TiNi, Ti 2 Ni, and the intermetallic compound such as LaNi 5 and TiMn 2, there is a constituent element of the intermetallic compound was replaced by another element. If the composition of these hydrogen storage alloys is different, properties such as hydrogen storage capacity, equilibrium hydrogen pressure, and storage capacity characteristics when charging and discharging are repeated in an alkaline electrolyte change, so the alloy composition is changed. Attempts have been made to improve the performance of hydrogen storage electrodes.

従来の電池用の水素吸蔵電極は、LaNi5やTiMn2系の合
金のように水素吸蔵合金の粉末が脆弱な場合には、その
合金を機械的に粉砕して粉末を調製し、この粉末を耐ア
ルカリ性高分子で結合させて、導電性芯体に保持させた
り、発泡メタルに充填したり、あるいはこの粉末を高温
で焼結して製作していた。このように、水素吸蔵合金の
粉末を用いる方法は、電極を短時間で製作できるので、
水素吸蔵電極の量産性に優れるという特徴があった。
In conventional hydrogen storage electrodes for batteries, when the powder of a hydrogen storage alloy such as LaNi 5 or TiMn 2 alloy is brittle, the alloy is mechanically pulverized to prepare a powder, and this powder is prepared. It has been manufactured by bonding with an alkali-resistant polymer and holding it on a conductive core, filling foam metal, or sintering this powder at a high temperature. In this way, the method using the powder of the hydrogen storage alloy allows the electrodes to be manufactured in a short time,
There was a feature that the hydrogen storage electrode was excellent in mass productivity.

そして、これらの水素吸蔵電極の製作に用いられる合
金の粉末は、アーク溶解炉や高周波誘導炉等を用いて金
属を溶解してから冷却して合金を製作し、これを機械的
に粉砕して調製していた。
The alloy powder used in the production of these hydrogen storage electrodes is produced by melting the metal using an arc melting furnace or high-frequency induction furnace and then cooling to produce an alloy, which is then mechanically pulverized. Had been prepared.

しかし、金属間化合物TiNiのように、特に硬度が高い
合金の場合には、その合金を機械的に粉砕することは容
易ではなく、特殊な高エネルギーの粉砕装置で長時間粉
砕する必要があったので、機械的に粉砕して調製したこ
の種の水素吸蔵合金の粉末は、極めて高価であった。し
かも、このように機械的に粉砕して調整したこの種の水
素吸蔵合金の粉末を水素吸蔵電極に用いる場合には、そ
の放電容量は、後述するように、水素吸蔵合金を機械的
に粉砕することなく高温下で反応させて多孔体にした電
極よりも放電容量が小さいという欠点もあった。したが
って、TiNiのように、水素吸蔵電極として用いた場合は
充放電サイクル寿命が長いという優れた性能を有してい
る合金であっても、その合金の硬度が特に高い場合に
は、その合金を機械的に粉砕して、その粉末を工業的に
大量に使用することはなかった。
However, in the case of an alloy having a particularly high hardness, such as the intermetallic compound TiNi, it is not easy to mechanically pulverize the alloy, and it was necessary to pulverize for a long time using a special high-energy pulverizer. Therefore, this kind of hydrogen storage alloy powder prepared by mechanical pulverization was extremely expensive. In addition, when such a hydrogen storage alloy powder that is mechanically pulverized and adjusted as described above is used for a hydrogen storage electrode, its discharge capacity is such that the hydrogen storage alloy is mechanically pulverized as described later. There is also a disadvantage that the discharge capacity is smaller than that of an electrode which is made to react at a high temperature without using a porous material. Therefore, even if the alloy has an excellent performance such as a long charge / discharge cycle life when used as a hydrogen storage electrode, such as TiNi, if the hardness of the alloy is particularly high, the alloy may be used. The powder was not mechanically crushed and the powder was not used industrially in large quantities.

従来は、このように特に硬度が高い水素吸蔵合金を用
いる場合には、その合金の粉末を用いるのではなく、例
えば金属ニッケルとチタン水素化物との粉末の混合物を
水素雰囲気中で高温下で反応させて、その多孔体を得る
方法(特公昭49−25135号)等で水素吸蔵電極が製作さ
れていた。しかし、この方法では、組成が均一な合金を
得るために、高温で長時間反応させる必要があった。し
たがって、この方法は、水素吸蔵合金の粉末を用いて電
極を製作する方法と比べて量産性に劣っていた。
Conventionally, when a hydrogen storage alloy having such a particularly high hardness is used, instead of using the powder of the alloy, for example, a mixture of a powder of nickel metal and titanium hydride is reacted at a high temperature in a hydrogen atmosphere. Then, a hydrogen absorbing electrode has been manufactured by a method of obtaining the porous body (Japanese Patent Publication No. 49-25135). However, in this method, in order to obtain an alloy having a uniform composition, it was necessary to react at a high temperature for a long time. Therefore, this method was inferior in mass productivity as compared with a method of manufacturing an electrode using a powder of a hydrogen storage alloy.

以上述べたように、硬度が高い水素吸蔵合金を用いた
場合にも、安価で、量産性に優れていて、しかも放電容
量が大きい水素吸蔵電極が望まれていた。
As described above, even when a hydrogen storage alloy having high hardness is used, a hydrogen storage electrode that is inexpensive, has excellent mass productivity, and has a large discharge capacity has been desired.

課題を解決するための手段 本発明は電池電極用水素吸蔵合金としてガスアトマイ
ズ粉末を用いること、さらにはガスアトマイズ法によっ
て製作した水素吸蔵合金の粉末を耐アルカリ性高分子で
結合して水素吸蔵電極を製造することにより、上述の問
題点を解決しようとするものである。
Means for Solving the Problems The present invention uses a gas atomized powder as a hydrogen storage alloy for a battery electrode, and further manufactures a hydrogen storage electrode by bonding a hydrogen storage alloy powder produced by a gas atomization method with an alkali-resistant polymer. This aims to solve the above problem.

作用 本発明のガスアトマイズ粉末とは、次のようなガスア
トマイズ法という方法で製作したものである。すなわ
ち、水素吸蔵合金そのもの、あるいは水素吸蔵合金の構
成金属の混合物を、アルゴンガスやキセノンガス等の不
活性雰囲気中で、高周波誘導炉等を用いて溶解する。そ
して、その溶解した合金をこれらのガスで加圧して、上
述のガス中に噴霧する。このようにすると、液滴となっ
て飛散した水素吸蔵合金が、雰囲気のガス中で冷却され
て、水素吸蔵合金の粉末が得られる。
Action The gas atomized powder of the present invention is produced by the following method called gas atomization. That is, the hydrogen storage alloy itself or a mixture of constituent metals of the hydrogen storage alloy is melted in an inert atmosphere such as argon gas or xenon gas using a high-frequency induction furnace or the like. Then, the melted alloy is pressurized with these gases and sprayed into the above-mentioned gases. By doing so, the hydrogen storage alloy scattered as droplets is cooled in the gas of the atmosphere, and a powder of the hydrogen storage alloy is obtained.

この方法では、雰囲気のガスは、希ガスのように、水
素吸蔵合金と容易に反応することがない不活性な物が望
ましい。なぜなら、たとえば、酸素または窒素を含有す
る雰囲気の場合には、高温下ではそれぞれ水素吸蔵合金
の構成金属の酸化物または窒化物が生成して、水素の吸
蔵・放出反応に関与する合金の量が減少するという不都
合が発生するからである。
In this method, the gas in the atmosphere is desirably an inert gas such as a rare gas which does not easily react with the hydrogen storage alloy. This is because, for example, in an atmosphere containing oxygen or nitrogen, at high temperatures, oxides or nitrides of the constituent metals of the hydrogen storage alloy are generated, and the amount of the alloy involved in the hydrogen storage / release reaction is reduced. This is because there is a disadvantage of reduction.

このガスアトマイズ法によれば、次のような理由か
ら、機械的に粉砕して製作する場合よりも安価な水素吸
蔵合金の粉末が得られる。すなわち、ガスアトマイズ法
では、所望する組成の金属混合物を融解し、そのまま噴
霧して水素吸蔵合金の粉末が得られる。したがって、機
械的に粉砕して水素吸蔵合金の粉末を調製する方法のよ
うに、まず金属混合物の溶解および冷却という操作によ
って合金塊を製作し、次にこの合金塊を機械的に粉砕す
るという煩雑な工程を経ることなく、短時間で水素吸蔵
合金の粉末を調製することができる。
According to this gas atomizing method, a powder of the hydrogen storage alloy can be obtained at a lower cost than in the case of manufacturing by mechanical pulverization for the following reasons. That is, in the gas atomizing method, a metal mixture having a desired composition is melted and sprayed as it is to obtain a hydrogen storage alloy powder. Therefore, as in the method of preparing a powder of a hydrogen storage alloy by mechanically pulverizing, first, an alloy ingot is produced by an operation of melting and cooling a metal mixture, and then the complicated process of mechanically pulverizing this alloy ingot is performed. The powder of the hydrogen storage alloy can be prepared in a short time without going through a complicated process.

このように水素吸蔵合金粉末の製造工程が簡単になる
効果は、硬度が低い合金の場合にも得られるが、硬度が
高い合金の場合には、長時間にわたる機械的な粉砕工程
が省略できるので、その効果は一層顕著である。
The effect of simplifying the manufacturing process of the hydrogen storage alloy powder can be obtained in the case of an alloy having a low hardness, but in the case of an alloy having a high hardness, a long mechanical pulverizing process can be omitted. The effect is more remarkable.

また、本発明のガスアトマイズ粉末すなわちガスアト
マイズ法で製作した水素吸蔵合金を用いると、水素吸蔵
電極の放電容量は、機械的に粉砕して製作した水素吸蔵
合金の粉末を用いる場合よりも著しく大きい。
In addition, when the gas atomized powder of the present invention, that is, the hydrogen storage alloy manufactured by the gas atomization method is used, the discharge capacity of the hydrogen storage electrode is significantly larger than the case where the powder of the hydrogen storage alloy manufactured by mechanical pulverization is used.

その理由は明確ではないが、これらの粉末のX線回折
図形の顕著な相違から、次のように考えられる。すなわ
ち、ガスアトマイズ法で製作した水素吸蔵合金は、機械
的に粉砕して製作したものと比較して、X線回折ピーク
の形状が著しく明瞭である。このことはガスアトマイズ
法で製作した水素吸蔵合金粉末は、機械的に粉砕して製
作した粉末と比較して、結晶性が高いことを意味してい
る。そして、TiNi合金では、液体合金を急冷してアモル
ファス化すると、水素の平衡圧力−水素吸蔵量の等温線
(いわゆるP−C−T曲線)平坦部が認められなくな
り、可逆的に吸蔵・放出される水素ガスの量が減少する
ことが報告されている。これらのことから、ガスアトマ
イズ法で調製した水素吸蔵合金粉末は、機械的に粉砕し
て調製した水素吸蔵合金粉末よりも結晶性が高いので、
可逆的に吸蔵・放出される水素の量が多くなり、ガスア
トマイズ法で調製した合金粉末を用いる水素吸蔵電極の
放電容量が大きくなるものと推察される。
Although the reason is not clear, it is considered as follows from the remarkable difference in X-ray diffraction patterns of these powders. That is, the shape of the X-ray diffraction peak of the hydrogen storage alloy manufactured by the gas atomization method is remarkably clear as compared with the one manufactured by mechanical pulverization. This means that the hydrogen storage alloy powder produced by the gas atomization method has higher crystallinity than the powder produced by mechanical pulverization. In the case of a TiNi alloy, when a liquid alloy is rapidly cooled to become amorphous, a flat portion of an isothermal line of hydrogen equilibrium pressure-hydrogen storage amount (so-called PCT curve) is not recognized, and is reversibly stored and released. It has been reported that the amount of hydrogen gas reduced. From these facts, since the hydrogen storage alloy powder prepared by the gas atomization method has higher crystallinity than the hydrogen storage alloy powder prepared by mechanical pulverization,
It is assumed that the amount of hydrogen reversibly stored and released increases, and the discharge capacity of the hydrogen storage electrode using the alloy powder prepared by the gas atomization method increases.

本発明による水素吸蔵電極は、上述のように、水素吸
蔵合金をガスアトマイズ法によって粉末にしたガスアト
マイズ粉末を導電性芯体に保持させたり、発泡メタルや
金属繊維の焼結体に充填して、耐アルカリ性高分子で結
合したものである。したがって、この水素吸蔵電極は量
産性に優れている。特に、固体の状態で硬度が著しく高
く、機械的に粉砕することが困難な水素吸蔵合金の場合
に、この効果が著しい。
As described above, the hydrogen storage electrode according to the present invention is capable of holding a gas atomized powder obtained by turning a hydrogen storage alloy into a powder by a gas atomization method in a conductive core or filling a sintered body of a foamed metal or a metal fiber to withstand. These are linked by an alkaline polymer. Therefore, this hydrogen storage electrode is excellent in mass productivity. In particular, this effect is remarkable in the case of a hydrogen storage alloy having a very high hardness in a solid state and difficult to mechanically pulverize.

また、ガスアトマイズ法によって製作した水素吸蔵合
金のガスアトマイズ粉末は、上述のように、機械的に製
作した水素吸蔵合金の粉末よりも著しく安価である。し
たがって、この粉末を用いる水素吸蔵電極は、機械的に
製作した水素吸蔵合金の粉末を用いる電極と比較して安
価である。
Further, as described above, gas atomized powder of a hydrogen storage alloy manufactured by a gas atomization method is significantly less expensive than powder of a hydrogen storage alloy manufactured mechanically. Therefore, a hydrogen storage electrode using this powder is less expensive than an electrode using a powder of a hydrogen storage alloy manufactured mechanically.

なお、ガスアトマイズ法で製作したガスアトマイズ粉
末である水素吸蔵合金の粉末の形状は、球状であること
も特徴的である。一方、機械的に粉砕して製作した水素
吸蔵合金の粉末の形状は不定形である。したがって、ガ
スアトマイズ粉末である水素吸蔵合金の粉末は、機械的
に粉砕して製作した水素吸蔵合金よりも、粉末の流動性
が良好であるという点でも有利である。
It should be noted that the shape of the hydrogen storage alloy powder, which is a gas atomized powder produced by the gas atomization method, is also characteristically spherical. On the other hand, the shape of the powder of the hydrogen storage alloy manufactured by mechanical pulverization is irregular. Therefore, the hydrogen storage alloy powder, which is a gas atomized powder, is also advantageous in that the powder has better fluidity than a hydrogen storage alloy manufactured by mechanical pulverization.

実施例 以下、本発明を好適な実施例を用いて詳細に説明す
る。
Examples Hereinafter, the present invention will be described in detail using preferred examples.

この実施例では、本発明の特徴を明確にするために、
特に硬度が高い水素吸蔵合金である金属間化合物TiNi合
金を用いる場合について述べる。
In this example, in order to clarify the features of the present invention,
In particular, a case where an intermetallic compound TiNi alloy which is a hydrogen storage alloy having high hardness is used will be described.

[水素吸蔵電極A](本発明実施例) 本発明の水素吸蔵電極に用いるTiNi合金の粉末は、次
のようなアルゴンガスアトマイズ法で製作した。すなわ
ち、市販の電解ニッケルとスポンジチタンとを等モルに
なるように秤取して混合し、酸化カルシウムで内張りし
てアルゴン雰囲気に保った高周波誘導炉中で、この混合
物を融解させた。そして、この融解物を加圧してアルゴ
ンガス中に噴霧し、TiNi合金のガスアトマイズ粉末aを
得た。
[Hydrogen Storage Electrode A] (Example of the Present Invention) The TiNi alloy powder used for the hydrogen storage electrode of the present invention was manufactured by the following argon gas atomizing method. That is, commercially available electrolytic nickel and sponge titanium were weighed and mixed so as to be equimolar, and the mixture was melted in a high-frequency induction furnace lined with calcium oxide and maintained in an argon atmosphere. This melt was pressurized and sprayed into argon gas to obtain a gas atomized powder a of a TiNi alloy.

次に、上記の粉末aのうちでJIS Z8801に定められた
目の開き180μmの標準ふるいを通過した粉末100重量
部,導電助剤であるカーボニルニッケル粉末(INCO社
製,商品名:TYPE255)100重量部および補強剤である塩
化ビニル−アクリル共重合体製の短繊維1重量部とを混
合し、これを水で湿潤させてから、耐アルカリ性の高分
子結着剤であるアクリル−スチレン共重合体を分散させ
た高分子ラテックス(固形分で10重量部)を添加して、
ペースト状混合物を調製した。そして厚さ0.09mmの穿孔
鋼板にニッケルメッキした導電性芯体に、このペースト
状混合物を塗着し、80℃の熱風で乾燥し、室温のロール
でプレスして本発明による水素吸蔵電極Aを製作した。
この電極の寸法は、約40mm×20mm×1.4mmであり、この
電極1枚には、約3.4gの水素吸蔵合金が含まれていた。
Next, 100 parts by weight of the powder a passed through a standard sieve having an opening of 180 μm defined by JIS Z8801 and 100 parts of carbonyl nickel powder (manufactured by INCO, trade name: TYPE 255) 100 Parts by weight and 1 part by weight of a vinyl chloride-acrylic copolymer short fiber as a reinforcing agent were mixed and wetted with water, and then an acrylic-styrene copolymer as an alkali-resistant polymer binder was mixed. The polymer latex (10 parts by weight in solid content) in which the union was dispersed was added,
A paste-like mixture was prepared. Then, the paste-like mixture was applied to a conductive core body plated with nickel on a perforated steel sheet having a thickness of 0.09 mm, dried with hot air at 80 ° C., and pressed with a roll at room temperature to obtain a hydrogen storage electrode A according to the present invention. Made.
The dimensions of this electrode were about 40 mm × 20 mm × 1.4 mm, and one piece of this electrode contained about 3.4 g of a hydrogen storage alloy.

[水素吸蔵電極B](比較例) 一方、比較のために、水素吸蔵電極Aの水素吸蔵合金
aの代わりに、機械的に粉砕して調製したTiNi合金粉砕
粉末b(米国 ニューメタル エンド ケミカルス コ
ーポレーション製)のうち目の開き180μmの標準ふる
いを通過した粉末を用いた以外は全て水素吸蔵電極Aと
同様にして水素吸蔵電極Bを製作した。
[Hydrogen Storage Electrode B] (Comparative Example) On the other hand, for comparison, a TiNi alloy pulverized powder b prepared by mechanical pulverization instead of the hydrogen storage alloy a of the hydrogen storage electrode A (New Metal End Chemicals Corporation, USA) A hydrogen storage electrode B was produced in the same manner as the hydrogen storage electrode A except that powder passed through a standard sieve having an opening of 180 μm was used.

[水素吸蔵電極C](比較例) さらに、比較のために、先述の特公昭49−25135号記
載の処方に準じて、次の方法で水素吸蔵電極を製作し
た。すなわち、チタンとニッケルとが原子比で1:1にな
るように、水素化チタンおよび金属ニッケルの粉末を混
合した。そして、この混合物を、900℃における熱処理
までの工程における結着剤としての機能を果たすカルボ
キシメチルセルロースのナトリウム塩の水溶液に分散
し、これを電極Aと同じ導電性芯体に塗着してから80℃
の熱風で乾燥した。そして、水素雰囲気中で900℃で1
時間反応させてTiNi合金の多孔体を得た。そしてこの多
孔体を切断して、TiNiが約3.4g含まれる水素吸蔵電極C
を製作した。
[Hydrogen Storage Electrode C] (Comparative Example) Further, for comparison, a hydrogen storage electrode was manufactured by the following method according to the prescription described in JP-B-49-25135. That is, powders of titanium hydride and nickel metal were mixed such that the atomic ratio of titanium to nickel was 1: 1. Then, this mixture is dispersed in an aqueous solution of sodium salt of carboxymethylcellulose which functions as a binder in a process up to a heat treatment at 900 ° C., and the resultant is applied to the same conductive core as electrode A, and then dispersed. ° C
And dried with hot air. And at 900 ° C in a hydrogen atmosphere,
After reacting for a time, a porous body of TiNi alloy was obtained. Then, the porous body is cut to obtain a hydrogen storage electrode C containing about 3.4 g of TiNi.
Was made.

これらの電極に用いたTiNi合金粉末の性状の違いを明
確にするために、粉末aおよびbの走査線電子顕微鏡写
真を第1図に示す。倍率は100倍である。第1におい
て、(a)および(b)は、それぞれ水素吸蔵合金粉末
aおよびbを表す。本発明による水素吸蔵電極Aに用い
る水素吸蔵合金粉末aすなわちガスアトマイズ粉末の大
部分は球状であり、一方、従来法による水素吸蔵電極B
に用いる水素吸蔵合金粉末bすなわち粉砕粉末は不定形
であることがわかる。
In order to clarify the difference in the properties of the TiNi alloy powder used for these electrodes, scanning line electron micrographs of powders a and b are shown in FIG. Magnification is 100x. First, (a) and (b) represent hydrogen storage alloy powders a and b, respectively. Most of the hydrogen storage alloy powder a, that is, the gas atomized powder used for the hydrogen storage electrode A according to the present invention is spherical, while the conventional hydrogen storage electrode B
It can be seen that the hydrogen storage alloy powder b used in the above, that is, the pulverized powder is amorphous.

さらに、水素吸蔵合金粉末aおよびbのX線回折図形
を比較して第2図に示す。第2図において、(a)およ
び(b)は、それぞれ水素吸蔵合金粉末a(ガスアトマ
イズ粉末)およびb(粉砕粉末)を表す。これらのX線
回折分析には、銅のKα線を用いている。第2図の曲線
(a)には、TiNiの(110),(200)および(211)面
の明確な回折ピークが認められ、一方、曲線(b)に
は、小さくてブロードな回折ピークが、2θ=42.5deg.
付近に認められたにすぎない。したがって、ガスアトマ
イズ粉末の粉末aは粉砕粉末の粉末bよりも結晶性が著
しく高いことが明らかである。
FIG. 2 shows a comparison of X-ray diffraction patterns of the hydrogen storage alloy powders a and b. In FIG. 2, (a) and (b) represent hydrogen storage alloy powders a (gas atomized powder) and b (crushed powder), respectively. In these X-ray diffraction analyses, Kα radiation of copper is used. In FIG. 2, curve (a) shows clear diffraction peaks of (110), (200) and (211) planes of TiNi, while curve (b) shows small and broad diffraction peaks. , 2θ = 42.5deg.
It was only found nearby. Therefore, it is clear that the powder a of the gas atomized powder has significantly higher crystallinity than the powder b of the pulverized powder.

次に、水素吸蔵電極A,BおよびCをアルカリ蓄電池に
用いた場合の放電性能を明らかにするために、水素吸蔵
電極A,BおよびCを負極に用いて、電池の放電が負極の
放電容量で規制されるように構成した試験用の開放形ア
ルカリ蓄電池A,BおよびCを製作した。
Next, in order to clarify the discharge performance when the hydrogen storage electrodes A, B, and C were used in an alkaline storage battery, the discharge of the battery was performed using the hydrogen storage electrodes A, B, and C as the negative electrodes. Test open-type alkaline storage batteries A, B, and C, which were configured to be regulated by the above, were manufactured.

これらの電池は次のようにして製作した。すなわち、
水素吸蔵電極1枚を中央に置いて負極とし、その両側に
ナイロン製の不織布からなるセパレータを介して、焼結
式の水酸化ニッケル電極2枚を置いて正極とした。
These batteries were manufactured as follows. That is,
One hydrogen-absorbing electrode was placed at the center to form a negative electrode, and two sintered nickel hydroxide electrodes were placed on both sides of a separator made of a nonwoven fabric made of nylon to form a positive electrode.

そして、これらの電池に用いる水酸化ニッケル電極
は、次のようにして製作した。すなわち、多孔度が85%
の焼結ニッケル基板を用い、通常の減圧含浸法で減圧含
浸を6回繰り返して、水酸化ニッケルと水酸化コバルト
とをこの焼結基板の細孔中に共沈させて、焼結式ニッケ
ル電極を製作した。この電極の大きさは、40mm×40mm×
0.85mmであり、電極1枚に充填されている水酸化ニッケ
ルおよび水酸化コバルトの合計の量は、約2.4gであっ
た。水酸化コバルトの含有量は、水酸化ニッケルと水酸
化コバルトとの合計の量に対するモル比で約95%であっ
た。この水酸化ニッケル電極2枚の放電容量は、放電が
1電子反応過程に従う場合に、1.39Ahである。電解液は
5.8M KOH水溶液を用いた。電槽は、内寸が45mm×40mm×
3mmのアクリル樹脂製のものを用いた。
And the nickel hydroxide electrode used for these batteries was produced as follows. That is, the porosity is 85%
Using a sintered nickel substrate of the above, the vacuum impregnation is repeated six times by a normal vacuum impregnation method to cause nickel hydroxide and cobalt hydroxide to co-precipitate in the pores of the sintered substrate, thereby obtaining a sintered nickel electrode. Was made. The size of this electrode is 40mm × 40mm ×
0.85 mm, and the total amount of nickel hydroxide and cobalt hydroxide charged in one electrode was about 2.4 g. The content of cobalt hydroxide was about 95% by molar ratio based on the total amount of nickel hydroxide and cobalt hydroxide. The discharge capacity of the two nickel hydroxide electrodes is 1.39 Ah when the discharge follows a one-electron reaction process. The electrolyte is
A 5.8M KOH aqueous solution was used. Battery case is 45mm × 40mm ×
A 3 mm acrylic resin was used.

そして、これらの電池A,BおよびCを、25℃におい
て、0.25Aの電流で3時間充電し、0.25Aの電流で1.0Vま
で放電するという条件で充放電試験を行った場合の3サ
イクル目の電池の放電容量を第1表に示す。
Then, the batteries A, B and C were charged at 25 ° C. at a current of 0.25 A for 3 hours and discharged at a current of 0.25 A to 1.0 V in the third cycle in a charge / discharge test. Table 1 shows the discharge capacity of the battery.

これらの電池では、上述したように、正極板の放電容
量は水素吸蔵電極からなる負極板よりも著しく大きいの
で、電池の放電容量は水素吸蔵電極の放電容量に相当す
る。したがって、第1表から、アルゴンガスアトマイズ
法によって製作したすなわちガスアトマイズ粉末である
TiNi合金粉末を使用する水素吸蔵電極の放電容量は、機
械的に粉砕して製作したすなわち粉砕粉末であるTiNi合
金粉末を使用する水素吸蔵電極の放電容量よりも著しく
大きく、水素化チタンと金属ニッケルとを高温で反応さ
せて製作した電極とほぼ等しいことがわかる。
In these batteries, as described above, the discharge capacity of the positive electrode plate is significantly larger than that of the negative electrode plate including the hydrogen storage electrode, and thus the discharge capacity of the battery corresponds to the discharge capacity of the hydrogen storage electrode. Therefore, Table 1 shows that the powder was produced by the argon gas atomizing method, that is, the gas atomized powder.
The discharge capacity of the hydrogen storage electrode using TiNi alloy powder is significantly larger than the discharge capacity of the hydrogen storage electrode manufactured by mechanically pulverizing, that is, using the TiNi alloy powder that is a pulverized powder. It can be seen that these are almost the same as electrodes manufactured by reacting at a high temperature.

なお、水素吸蔵合金を含むペースト状混合物を導電性
芯体に塗着する代わりに、このペースト状混合物を発泡
ニッケル(住友電工(株)製,商品名:セルメット)に
充填するほかは、上述の実施例の電極AおよびBと同じ
方法で水素吸蔵電極を製作して、充放電試験を行った場
合にも、アルゴンガスアトマイズ法で製作したすなわち
ガスアトマイズ粉末であるTiNi合金粉末を用いる電極の
放電容量は、機械的に粉砕して製作したすなわち粉砕粉
末であるTiNi合金粉末を用いる電極の放電容量よりも著
しく大きかった。また、発泡ニッケルの代りに金属ニッ
ケル繊維の焼結体を用いた場合にも、同様の効果が得ら
れた。
Instead of applying the paste-like mixture containing the hydrogen storage alloy to the conductive core, the paste-like mixture was filled in foamed nickel (trade name: Celmet, manufactured by Sumitomo Electric Industries, Ltd.). Even when a hydrogen storage electrode was manufactured in the same manner as the electrodes A and B of the example and a charge / discharge test was performed, the discharge capacity of the electrode manufactured using the argon gas atomization method, that is, the electrode using a TiNi alloy powder that is a gas atomized powder was The discharge capacity of the electrode was significantly larger than the discharge capacity of the electrode manufactured using mechanically pulverized TiNi alloy powder. The same effect was obtained when a sintered body of metallic nickel fibers was used instead of foamed nickel.

また、水素吸蔵合金として、TiNi合金の代わりにLaNi
4Coの組成の合金を用いるほかは、上述の電極Aおよび
Bと同じ方法で水素吸蔵合金粉末および水素吸蔵合金電
極を製作して、充放電試験を行った場合には、TiNi合金
を用いる場合ほど顕著ではないものの、アルゴンガスア
トマイズ法で製作したすなわちガスアトマイズ粉末であ
る水素吸蔵合金粉末を用いる電極の放電容量は、機械的
に粉砕して製作した粉砕粉末である水素吸蔵合金粉末を
用いる電極の放電容量よりも大きかった。また、この合
金の場合にも、X線回折分析の結果、ガスアトマイズ法
で製作したガスアトマイズ粉末は、機械的に粉砕して製
作した粉砕粉末よりも、結晶性が高いことがわかった。
As a hydrogen storage alloy, LaNi is used instead of TiNi alloy.
4 addition using a Co alloy having a composition of, by fabricating a hydrogen absorbing alloy powder and the hydrogen storage alloy electrode in the same manner as described above for electrodes A and B, when performing the charge and discharge test, when using a TiNi alloy Although not so remarkable, the discharge capacity of an electrode manufactured using an argon gas atomizing method, that is, using a hydrogen storage alloy powder, which is a gas atomized powder, is the discharge capacity of an electrode using a hydrogen storage alloy powder, which is a crushed powder manufactured by mechanical pulverization. It was bigger than the capacity. Also in the case of this alloy, as a result of X-ray diffraction analysis, it was found that the gas atomized powder produced by the gas atomizing method had higher crystallinity than the pulverized powder produced by mechanical pulverization.

以上の結果から、ガスアトマイズ法で製作したすなわ
ちガスアトマイズ粉末である水素吸蔵合金の粉末を用い
る水素吸蔵電極は、機械的に粉砕して製作した水素吸蔵
合金の粉末を用いる場合よりも放電容量が著しく大き
く、しかも量産性に優れていることが明らかである。
From the above results, the hydrogen storage electrode manufactured using the gas atomizing method, that is, the hydrogen storage electrode using the hydrogen storage alloy powder that is a gas atomized powder has a significantly larger discharge capacity than the case where the hydrogen storage alloy powder manufactured by mechanical pulverization is used. Further, it is clear that the mass productivity is excellent.

発明の効果 本発明により、ガスアトマイズ粉末を電池電極用水素
吸蔵合金粉末として用いれば、放電容量が著しく大き
く、しかも量産性に優れた水素吸蔵電極を得ることがで
きる。
Effect of the Invention According to the present invention, when a gas atomized powder is used as a hydrogen storage alloy powder for a battery electrode, a hydrogen storage electrode having a remarkably large discharge capacity and excellent mass productivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A),(B)は、水素吸蔵合金TiNiの粉末の粒
子構造を示した図(走査線電子顕微鏡写真)である。第
2図は、水素吸蔵合金TiNiの粉末のX線折図形を示した
図である。
1 (A) and 1 (B) are diagrams (scanning electron micrograph) showing the particle structure of a powder of a hydrogen storage alloy TiNi. FIG. 2 is a view showing an X-ray folding figure of the powder of the hydrogen storage alloy TiNi.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスアトマイズ粉末であることを特徴とす
る電池電極用水素吸蔵合金粉末。
1. A hydrogen storage alloy powder for a battery electrode, which is a gas atomized powder.
【請求項2】ガスアトマイズ法によって製作した水素吸
蔵合金の粉末を耐アルカリ性高分子で結合させることを
特徴とする水素吸蔵電極の製造方法。
2. A method of manufacturing a hydrogen storage electrode, comprising bonding a hydrogen storage alloy powder produced by a gas atomization method with an alkali-resistant polymer.
JP1074451A 1989-03-27 1989-03-27 Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode Expired - Lifetime JP2719542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074451A JP2719542B2 (en) 1989-03-27 1989-03-27 Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074451A JP2719542B2 (en) 1989-03-27 1989-03-27 Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH02253558A JPH02253558A (en) 1990-10-12
JP2719542B2 true JP2719542B2 (en) 1998-02-25

Family

ID=13547616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074451A Expired - Lifetime JP2719542B2 (en) 1989-03-27 1989-03-27 Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2719542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980328B2 (en) * 1989-09-29 1999-11-22 株式会社東芝 Hydrogen storage alloy for battery, method for producing the same, and nickel-metal hydride secondary battery
JP2561200B2 (en) * 1992-04-23 1996-12-04 古河電池株式会社 Hydrogen storage electrode
JP3499924B2 (en) * 1994-07-22 2004-02-23 三洋電機株式会社 Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
WO1997009144A1 (en) * 1995-09-07 1997-03-13 Shanghai Shen-Jian Metallurgical & Machinery-Electrical Technology Engineering Corp. A method and an equipment for producing rapid condensation hydrogen storage alloy powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185362A (en) * 1984-02-17 1985-09-20 Sharp Corp Manufacture of hydrogen storage electrode
JPS62188702A (en) * 1986-02-15 1987-08-18 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Powder molding method

Also Published As

Publication number Publication date
JPH02253558A (en) 1990-10-12

Similar Documents

Publication Publication Date Title
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP2002105564A (en) Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
KR19990007186A (en) Hydrogen Storage Alloys and Secondary Batteries
CN111471894B (en) Doped A5B19 type samarium-containing hydrogen storage alloy, battery and preparation method
KR100355049B1 (en) Alkali Metal Oxide / Metal Hydride Batteries
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
KR0139379B1 (en) Production method of hydrogen absorbing alloy
WO2003054240A1 (en) Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
JP2719542B2 (en) Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode
JP4659936B2 (en) Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP3191270B2 (en) Method for producing hydrogen storage electrode
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2001126724A (en) Method for manufacturing hydrogen-occlusion alloy powder
JP2002231235A (en) Molding for carbon powder-containing nickel-hydrogen battery and method of manufacturing the same
JPH06187979A (en) Hydrogen storage alloy electrode
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3816138B6 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JP3360916B2 (en) Manufacturing method of hydrogen storage alloy
JP2000054042A (en) Production of hydrogen storage alloy
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12