JP4538599B2 - Hydrogen storage alloy sprayed coating - Google Patents

Hydrogen storage alloy sprayed coating Download PDF

Info

Publication number
JP4538599B2
JP4538599B2 JP2004136417A JP2004136417A JP4538599B2 JP 4538599 B2 JP4538599 B2 JP 4538599B2 JP 2004136417 A JP2004136417 A JP 2004136417A JP 2004136417 A JP2004136417 A JP 2004136417A JP 4538599 B2 JP4538599 B2 JP 4538599B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
spraying
hydrogen
sprayed coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004136417A
Other languages
Japanese (ja)
Other versions
JP2005314777A (en
Inventor
仁 川喜多
聖治 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004136417A priority Critical patent/JP4538599B2/en
Publication of JP2005314777A publication Critical patent/JP2005314777A/en
Application granted granted Critical
Publication of JP4538599B2 publication Critical patent/JP4538599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この出願の発明は、二次電池、ヒートポンプ、太陽や風力などの自然エネルギーの貯蔵、水素貯蔵、アクチュエータ等に利用されている水素吸蔵合金およびその製造方法に関する。   The invention of this application relates to a hydrogen storage alloy used for secondary batteries, heat pumps, storage of natural energy such as solar and wind power, hydrogen storage, actuators, and the like, and a method for producing the same.

さらに詳しくは、この出願の発明は良好な熱伝導性および/または電気伝導性の金属が添加された水素吸蔵合金粉末をHVOF(High Velocity Oxy−Fuel)溶射法として知られる高速フレーム(HVOF)溶射法により製造される水素吸蔵合金とその製造方法に関するものである。   More specifically, the invention of this application is directed to high-speed flame (HVOF) spraying known as HVOF (High Velocity Oxy-Fuel) spraying of a hydrogen storage alloy powder to which a metal having good thermal conductivity and / or electrical conductivity is added. The present invention relates to a hydrogen storage alloy manufactured by the method and a manufacturing method thereof.

先進工業国における化石燃料の大量消費による酸性雨や地球の温暖化等の環境問題が大きな社会問題になっていることはよく知られているが、近年ではこれまで発展途上国といわれていた国々も急速に工業化されており化石燃料の大量消費による環境問題は益々深刻化している。環境の悪化を防ぐため、最近では化石燃料の代替エネルギーとして太陽や地熱などのクリーンな自然エネルギーの開発および利用が注目されてきている。   It is well known that environmental problems such as acid rain and global warming caused by mass consumption of fossil fuels in industrialized countries have become major social problems. However, environmental problems due to the large consumption of fossil fuels are becoming increasingly serious. In order to prevent environmental degradation, the development and use of clean natural energy such as the sun and geothermal heat have recently attracted attention as alternative energy for fossil fuels.

これらのエネルギー資源は一般に熱エネルギーを電気エネルギーに変換して利用されているが、この電気エネルギーに変換する、いわゆる二次エネルギー燃料としての有力な候補として水素エネルギーがある。この水素エネルギーの原料である水素ガスは爆発性が高く輸送や貯蔵に難点がある。水素ガスを安定に輸送や貯蔵するための方法として水素吸蔵合金を利用する方法が注目されているが、この水素吸蔵合金とは水素と反応して金属水素化合物となる合金であり、水素ガス中でガス圧を上昇させるか温度を降下させると水素ガスを吸蔵して発熱し、反対にガス圧を降下させるか温度を上昇させると水素ガスを放出して吸熱するという可逆性の合金である。水素吸蔵合金は次世代のクリーンエネルギーとしての期待は大きく数多くの特許出願がなされている(たとえば、特許文献1〜4)。
特開2002−180229号公報 特開平07−41808号公報 特開2004−43866号公報 特開2004−27247号公報
These energy resources are generally used by converting thermal energy into electric energy, and hydrogen energy is a promising candidate as a so-called secondary energy fuel for converting into electric energy. Hydrogen gas, which is a raw material for hydrogen energy, is highly explosive and has difficulties in transportation and storage. As a method for stably transporting and storing hydrogen gas, a method using a hydrogen storage alloy is attracting attention. This hydrogen storage alloy is an alloy that reacts with hydrogen to form a metal hydride compound. When the gas pressure is raised or the temperature is lowered, hydrogen gas is occluded and heat is generated. Conversely, when the gas pressure is lowered or the temperature is raised, hydrogen gas is released and the heat is absorbed. Hydrogen storage alloys are highly expected as next-generation clean energy, and many patent applications have been filed (for example, Patent Documents 1 to 4).
JP 2002-180229 A JP 07-41808 A JP 2004-43866 A JP 2004-27247 A

しかしながら、水素吸蔵合金を水素貯蔵タンク、ヒートポンプ、ニッケル水素電池用電極材料等に使用するに際し、水素の貯蔵および放出における反応速度および反応効率向上のためには反応に伴い発生または吸収される熱量を反応系外と効率良く交換する必要があるが、水素吸蔵合金はそれ自身の熱伝導率や電気伝導率が銅や鉄などの金属に比べて低く、水素化反応や脱水素化反応が効率良く行なえないという欠点を有している。この出願の発明はこの欠点を解決することを課題とするものである。   However, when hydrogen storage alloys are used in hydrogen storage tanks, heat pumps, electrode materials for nickel metal hydride batteries, etc., the amount of heat generated or absorbed with the reaction is reduced in order to improve the reaction rate and reaction efficiency in hydrogen storage and release. Although it is necessary to exchange it efficiently with the outside of the reaction system, the hydrogen storage alloy itself has lower thermal conductivity and electrical conductivity than metals such as copper and iron, and hydrogenation and dehydrogenation reactions are efficient. It has the disadvantage that it cannot be done. The invention of this application is to solve this drawback.

この出願の発明は、上記の課題を解決するものとして、第1には、良好な熱伝導性を示す金属が添加された水素吸蔵合金粉末を燃焼ガスが不活性ガスで希釈された高速フレーム(HVOF)溶射により多孔質の水素吸蔵合金皮膜を提供する。
In order to solve the above-mentioned problems, the invention of this application is, firstly, a high-speed flame in which a combustion gas is diluted with an inert gas from a hydrogen storage alloy powder to which a metal exhibiting good thermal conductivity is added ( providing a hydrogen storage alloy skin layer of more porous HVOF) thermal spraying,.

上記第の水素吸蔵合金溶射皮膜によれば、水素吸蔵能力が向上した多孔質の水素吸蔵合金溶射皮膜を得ることができる。
According to the first hydrogen storage alloy sprayed coating, a porous hydrogen storage alloy sprayed coating with improved hydrogen storage capability can be obtained.

この出願の発明は良好な熱伝導性および/または電気伝導性の金属を添加した水素吸蔵合金粉末を燃焼ガス中に窒素ガスを混入して高速フレーム(HVOF)溶射することにより、熱伝導性や電気伝導性を併せ持つ水素吸蔵合金を製造することを特徴とするものである。しかも、この出願の発明で得られる水素吸蔵合金は、粒子の連続的な堆積により積層を行なう溶射法により得られるため堆積物は本質的に多孔質であり、水素の透過経路が保持されており水素吸蔵能力の高い合金が作製されるという優れた特徴をも有する。   In the invention of this application, a hydrogen storage alloy powder to which a metal having a good thermal conductivity and / or electrical conductivity is added is mixed with a nitrogen gas in a combustion gas and subjected to high-speed flame (HVOF) spraying, whereby thermal conductivity and It is characterized by producing a hydrogen storage alloy having both electrical conductivity. Moreover, since the hydrogen storage alloy obtained by the invention of this application is obtained by a thermal spraying method in which lamination is performed by continuous deposition of particles, the deposit is essentially porous, and the hydrogen permeation path is maintained. It also has an excellent feature that an alloy having a high hydrogen storage capacity is produced.

本願発明はこのような優れた特徴を有する水素吸蔵合金を製造するものであるが、その製造方法を具体的に説明すると、まず水素吸蔵合金に熱伝導率が100Wm-1K-1程度の良好な熱伝導性を示す金属を添加したものを比較的熱源の温度が低い高速フレーム(HVOF)溶射を選択して使用するものであり、本願発明における熱伝導性の良好な金属としては、Cu、Al、Ni、ステンレス鋼等が好ましい。
The present invention is for producing a hydrogen storage alloy having such excellent characteristics. The production method will be described in detail. First, the hydrogen storage alloy has a good thermal conductivity of about 100 Wm-1K-1. It is intended the temperature of relatively heat source obtained by adding a metal showing a heat conductivity is used to select a lower high-speed frame (HVOF) thermal spraying, the good thermal conductivity metal in the present invention, Cu, Al Ni, stainless steel and the like are preferable.

また、本願発明は、比較的熱源の温度が低い高速フレーム(HVOF)溶射を選択して使用するだけでなく、高速フレーム(HVOF)溶射における燃焼ガス中に窒素ガスを添加することで溶射皮膜の酸化を抑制するものである。   Further, the present invention not only selects and uses high-speed flame (HVOF) spraying with a relatively low temperature of the heat source, but also adds nitrogen gas to the combustion gas in high-speed flame (HVOF) spraying. It suppresses oxidation.

なお、本願発明で使用する水素吸蔵合金は特に制限はなく、カルシウム系(CaNi5
)、チタン系(TiFeなど)、マグネシウム系(Mg2Niなど)、バナジウム系(V
)、またはレアメタルの混合体であるミッシュメタル−Ni系等の使用が可能である。
The hydrogen storage alloy used in the present invention is not particularly limited, and is calcium-based (CaNi 5
), Titanium (TiFe, etc.), magnesium (Mg 2 Ni, etc.), vanadium (V
), Or a misch metal-Ni system, which is a mixture of rare metals, can be used.

この出願の発明ではミッシュメタル−Ni系の水素吸蔵合金を使用するが、このミッシ
ュメタル−Ni系の水素吸蔵合金とはLa−Ni系水素吸蔵合金のLa部分をミッシュメタル(Mm)で置換したものである。La−Ni系水素吸蔵合金は、水素吸蔵合金としては優れた特性を有しているが合金がやや高価であるという欠点を有する。
In the invention of this application, a Misch metal-Ni-based hydrogen storage alloy is used. In this Misch metal-Ni-based hydrogen storage alloy, the La portion of the La-Ni-based hydrogen storage alloy is replaced with Misch metal (Mm). Is. La-Ni-based hydrogen storage alloys have excellent properties as hydrogen storage alloys, but have the disadvantage that the alloys are somewhat expensive.

そこで、モナザイトあるいはバストネサイトなどの鉱石からLa、Ceなどの希土類塩を金属還元法で作ったミッシュメタルを用いたもので安価な実用性の高い水素吸蔵合金として知られている。表1は本願発明で使用するミッシュメタル−Ni系水素吸蔵合金の化学組成を示したものである。   Then, it is known as a cheap and highly practical hydrogen storage alloy using a misch metal made of ores such as monazite or bastonite using rare earth salts such as La and Ce by a metal reduction method. Table 1 shows the chemical composition of the misch metal-Ni-based hydrogen storage alloy used in the present invention.

本願発明では、このミッシュメタル−Ni系水素吸蔵合金を使用して、(1)燃焼ガスとして酸素だけを使用して高速フレーム(HVOF)溶射する場合と燃焼ガスとして酸素と窒素の混合気体にして高速フレーム(HVOF)溶射する場合の違い、および(2)溶射材料として水素吸蔵合金粉末だけを使用した場合と水素吸蔵合金と良好な熱伝導性の金属としてCuとの混合粉末を使用した場合における溶射された水素吸蔵合金膜の物性を調べて水素吸蔵合金を溶射する最適条件の範囲を特定した。
In the present invention, this misch metal-Ni-based hydrogen storage alloy is used to (1) high-speed flame (HVOF) spraying using only oxygen as the combustion gas and a mixed gas of oxygen and nitrogen as the combustion gas. Differences in high-speed flame (HVOF) spraying, and (2) when only hydrogen storage alloy powder is used as the thermal spray material and when mixed powder of hydrogen storage alloy and Cu is used as a metal with good thermal conductivity The properties of the sprayed hydrogen storage alloy film were investigated and the range of optimum conditions for spraying the hydrogen storage alloy was identified.

なお、高速フレーム(HVOF)溶射における水素吸蔵合金粉末とCuの混合量比や溶射条件については表2に従った。   The mixing ratio of the hydrogen storage alloy powder and Cu and the thermal spraying conditions in high-speed flame (HVOF) thermal spraying are in accordance with Table 2.

なお、実験の結果から良好な熱伝導性の金属としてCuを使用して連続的に成膜を行なうためにはCuを少なくとも5mass%を含有させることが必要であることが知得できた。
Incidentally, it was Chitoku be to perform a continuously formed by using the Cu as the good thermal conductivity of the metal from the results of experiments it is necessary to contain at least 5 mass% of Cu.

まず、この出願の発明を図1〜図6に従って説明すると、図1は水素吸蔵合金を溶射した時の飛行粒子を寒天ゲルで捕捉した時の断面写真である。図1の(a)は、高速フレーム(HVOF)溶射における燃焼ガスとして酸素だけを用いた場合であり、図1の(b)は、燃焼ガスとして酸素と窒素の混合ガスを用いた場合である。   First, the invention of this application will be described with reference to FIGS. 1 to 6. FIG. 1 is a cross-sectional photograph of flying particles captured by thermal spraying a hydrogen storage alloy with an agar gel. 1A shows a case where only oxygen is used as a combustion gas in high-speed flame (HVOF) spraying, and FIG. 1B shows a case where a mixed gas of oxygen and nitrogen is used as the combustion gas. .

図1の(a)および(b)からも明らかなように(a)は溶射方向に近い部分(左側)に黒色粒子が多いのに対し、(b)は溶射方向に遠い部分(右側)に黒色粒子が多くなっているが、これは窒素が混合されたことにより、溶射粒子の温度が低下して溶融することなく寒天深部まで到達したものであると考えられる。また、図2は水素吸蔵合金に対してCuが10%(wt%)含有された銅複合溶射粉末を燃焼ガスとして、酸素:窒素=70:30(体積比)を使用して高速フレーム(HVOF)溶射した溶射皮膜の断面の元素分布を示した写真である。そして、図3は水素吸蔵合金に対してCuが10%(wt%)含有された銅複合溶射粉末を燃焼ガスとして酸素:窒素=50:50(体積比)を使用して高速フレーム(HVOF)溶射した溶射皮膜の断面の元素分布を示した写真である。   As is clear from FIGS. 1 (a) and 1 (b), (a) has many black particles in the portion (left side) close to the spraying direction, whereas (b) is in the portion (right side) far from the spraying direction. The amount of black particles is increased. This is considered to be due to the temperature of the sprayed particles being lowered and reaching the deep agar without melting because of the mixing of nitrogen. FIG. 2 shows a high-speed flame (HVOF) using a copper composite spray powder containing 10% (wt%) of Cu as a combustion gas and oxygen: nitrogen = 70: 30 (volume ratio) with respect to the hydrogen storage alloy. ) A photograph showing the elemental distribution of the cross section of the sprayed coating. FIG. 3 shows a high-speed flame (HVOF) using oxygen: nitrogen = 50: 50 (volume ratio) as a combustion gas with a copper composite spray powder containing 10% (wt%) of Cu in the hydrogen storage alloy. It is the photograph which showed the element distribution of the cross section of the sprayed coating which sprayed.

図2では酸素元素(白い部分)が多く見られるのに対し、図3は燃焼ガス中の窒素ガス量が多いため酸素元素(白い部分)が少なくCuも皮膜断面中に局在化している。   In FIG. 2, a large amount of oxygen element (white portion) is seen, whereas in FIG. 3, the amount of nitrogen gas in the combustion gas is large, so there is little oxygen element (white portion) and Cu is localized in the film cross section.

図4は水素吸蔵合金とCuの複合溶射皮膜における熱拡散特性と銅含有率の関係を示したものであるがCuの含有率が高くなるにつれて熱拡散特性(熱伝導性)が向上している。また、図5は示差走査熱量(DSC)測定により得られる曲線を示したものである。
初回測定において約400Kにおいて観測される上向きのピークは水素吸蔵開始(活性化)反応に起因することが知られている。図5の高速フレーム(HVOF)溶射により作製した水素吸蔵合金皮膜(b)は原料粉末(a)と比較して、活性化ピークが低温度側にシフトしており活性化反応が起こりやすくなっている。
FIG. 4 shows the relationship between the thermal diffusion characteristics and the copper content in the composite thermal spray coating of hydrogen storage alloy and Cu, but the thermal diffusion characteristics (thermal conductivity) improve as the Cu content increases. . FIG. 5 shows a curve obtained by differential scanning calorimetry (DSC) measurement.
It is known that the upward peak observed at about 400 K in the initial measurement is caused by the hydrogen storage initiation (activation) reaction. Compared with the raw material powder (a), the hydrogen absorption alloy film (b) produced by high-speed flame (HVOF) spraying in FIG. Yes.

さらに図6は一定温度における水素吸蔵量と平衡水素圧の関係をプロットした圧力−組
成−温度(PCT)曲線を示したものである。図6における水素吸蔵合金皮膜(b)は原料粉末(a)に比べて任意の平衡圧力における水素吸蔵量は約半分になっているが、曲線の形状は類似しており、水素吸蔵・放出に関する反応機構は原料粉末と同様と推測される。
FIG. 6 shows a pressure-composition-temperature (PCT) curve in which the relationship between the hydrogen storage amount and the equilibrium hydrogen pressure at a constant temperature is plotted. The hydrogen storage alloy film (b) in FIG. 6 has about half the hydrogen storage amount at an arbitrary equilibrium pressure as compared with the raw material powder (a), but the shape of the curve is similar and relates to hydrogen storage / release. The reaction mechanism is assumed to be the same as that of the raw material powder.

もちろん、この出願の発明は以上の実施形態に限定されるものではなく、詳細については様々な態様が可能であることは言うまでもない。   Of course, the invention of this application is not limited to the above embodiment, and it goes without saying that various aspects are possible in detail.

この出願の発明は高速フレーム(HVOF)溶射における燃焼ガス中に不活性ガスを添加することで酸化しやすい材料を大気中で大面積に施工可能であるため他の水素吸蔵合金の皮膜作製プロセスに比べて安価である。しかも、水素吸蔵合金とCuの銅複合溶射粉末を高速フレーム(HVOF)溶射することにより水素吸蔵合金の多孔質皮膜は水素吸蔵特性と熱伝導性を併せ持った電極や水素貯蔵パネルとして利用可能である。 In the invention of this application, a material that easily oxidizes by adding an inert gas to the combustion gas in high-speed flame (HVOF) spraying can be applied in a large area in the atmosphere. It is cheaper than that. Moreover, the high-temperature flame (HVOF) spraying of the hydrogen storage alloy and Cu copper composite spray powder enables the porous film of the hydrogen storage alloy to be used as an electrode or a hydrogen storage panel having both hydrogen storage characteristics and thermal conductivity . .

溶射粒子を捕捉した寒天ゲルの断面写真である。(a)は燃焼ガスが酸素のみ、(b)は燃焼ガスにおける酸素:窒素が50:50(体積比)である。It is a cross-sectional photograph of the agar gel which trapped the thermal spray particle. (A) is combustion gas only oxygen, (b) is oxygen: nitrogen in combustion gas 50:50 (volume ratio). 水素吸蔵合金に対してCu(10wt%)が混合された銅複合溶射粉末の溶射皮膜の断面の元素分布を示す写真である〔酸素:窒素=70:30(体積比)〕。It is a photograph which shows the elemental distribution of the cross section of the sprayed coating of the copper composite spraying powder in which Cu (10 wt%) was mixed with the hydrogen storage alloy [oxygen: nitrogen = 70: 30 (volume ratio)]. 水素吸蔵合金に対してCu(10wt%)が混合された銅複合溶射粉末の溶射皮膜の断面の元素分布を示す写真である〔酸素:窒素=50:50(体積比)〕。It is a photograph which shows the element distribution of the cross section of the sprayed coating of the copper composite spraying powder in which Cu (10 wt%) was mixed with the hydrogen storage alloy [oxygen: nitrogen = 50: 50 (volume ratio)]. 水素吸蔵合金とCuの複合皮膜の熱拡散特性と銅混合率の関係を示す図である。It is a figure which shows the relationship between the thermal-diffusion characteristic of the composite film of a hydrogen storage alloy and Cu, and a copper mixing rate. 水素雰囲気下(0.6MPa)において初回の示差走査熱量(DSC)測定により得られる曲線である。(a)は水素吸蔵合金粉末であり、(b)は水素吸蔵合金とCuの(10wt%)である。It is a curve obtained by the first differential scanning calorimetry (DSC) measurement under a hydrogen atmosphere (0.6 MPa). (A) is hydrogen storage alloy powder, (b) is (10 wt%) of hydrogen storage alloy and Cu. 323K、3サイクル目において得られた圧力−組成−温度曲線である。(a)は水素吸蔵合金原料粉末であり、(b)は水素吸蔵合金とCu(10wt%)の複合溶射皮膜である。It is a pressure-composition-temperature curve obtained in 323K and the 3rd cycle. (A) is a hydrogen storage alloy raw material powder, (b) is a composite sprayed coating of a hydrogen storage alloy and Cu (10 wt%).

Claims (1)

ミッシュメタル―Ni系水素吸蔵合金粉末と前記水素吸蔵合金より熱伝導が良好な金属粉末とが、燃焼ガスが不活性ガスで希釈された高速フレームにより非溶融の状態で基板上に溶射され、形成されてなることを特徴とする熱伝導性が良好な多孔質の水素吸蔵合金溶射皮膜。Mish metal-Ni-based hydrogen storage alloy powder and metal powder with better thermal conductivity than the hydrogen storage alloy are sprayed and formed on the substrate in a non-molten state by a high-speed flame in which the combustion gas is diluted with an inert gas. A porous hydrogen-absorbing alloy sprayed coating having good thermal conductivity.
JP2004136417A 2004-04-30 2004-04-30 Hydrogen storage alloy sprayed coating Expired - Fee Related JP4538599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136417A JP4538599B2 (en) 2004-04-30 2004-04-30 Hydrogen storage alloy sprayed coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136417A JP4538599B2 (en) 2004-04-30 2004-04-30 Hydrogen storage alloy sprayed coating

Publications (2)

Publication Number Publication Date
JP2005314777A JP2005314777A (en) 2005-11-10
JP4538599B2 true JP4538599B2 (en) 2010-09-08

Family

ID=35442499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136417A Expired - Fee Related JP4538599B2 (en) 2004-04-30 2004-04-30 Hydrogen storage alloy sprayed coating

Country Status (1)

Country Link
JP (1) JP4538599B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357484C (en) * 2005-12-09 2007-12-26 北京工业大学 Nickle-base corrosion-resisting electric-arc spraying powdered core-wire material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246355A (en) * 1985-04-22 1986-11-01 Nippon Steel Corp Manufacture of hydrogen storage body
JPH0517840A (en) * 1991-05-28 1993-01-26 Sumitomo Metal Ind Ltd Thermal spraying powder and thermal spray coating method for roll
JPH0562671A (en) * 1991-09-02 1993-03-12 Japan Storage Battery Co Ltd Manufacture of hydrogen storage electrode
JPH0741808A (en) * 1993-07-30 1995-02-10 Mazda Motor Corp Composite hydrogen storage alloy and its production
JP2001214252A (en) * 1999-11-25 2001-08-07 Asahi:Kk High-speed thermal spray device for forming substance and method of coating or forming agglomerated material using the spray device
JP2002180229A (en) * 2000-12-07 2002-06-26 Seijiro Suda Hydrogen storage alloy compound material, its manufacturing method, and electrode using it
JP2002246039A (en) * 2001-02-16 2002-08-30 Seijiro Suda Liquid fuel cell
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246355A (en) * 1985-04-22 1986-11-01 Nippon Steel Corp Manufacture of hydrogen storage body
JPH0517840A (en) * 1991-05-28 1993-01-26 Sumitomo Metal Ind Ltd Thermal spraying powder and thermal spray coating method for roll
JPH0562671A (en) * 1991-09-02 1993-03-12 Japan Storage Battery Co Ltd Manufacture of hydrogen storage electrode
JPH0741808A (en) * 1993-07-30 1995-02-10 Mazda Motor Corp Composite hydrogen storage alloy and its production
JP2001214252A (en) * 1999-11-25 2001-08-07 Asahi:Kk High-speed thermal spray device for forming substance and method of coating or forming agglomerated material using the spray device
JP2002180229A (en) * 2000-12-07 2002-06-26 Seijiro Suda Hydrogen storage alloy compound material, its manufacturing method, and electrode using it
JP2002246039A (en) * 2001-02-16 2002-08-30 Seijiro Suda Liquid fuel cell
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus

Also Published As

Publication number Publication date
JP2005314777A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
Liu et al. Hydrogen generation from hydrolysis of activated Al-Bi, Al-Sn powders prepared by gas atomization method
Liu et al. High‐entropy alloys and compounds for electrocatalytic energy conversion applications
Mahmoodi et al. Enhancement of hydrogen generation rate in reaction of aluminum with water
Patel et al. Microstructure and first hydrogenation properties of TiFe alloy with Zr and Mn as additives
US6519951B2 (en) Hydrogen-based ecosystem
US6193929B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
US7132193B2 (en) Fuel cell
AU2004233114B2 (en) Hydrogen storage alloys having a high porosity surface layer
Singh et al. Material-based generation, storage, and utilisation of hydrogen
CA2438261A1 (en) Novel fuel cell cathodes and their fuel cells
CN101402115A (en) Synthesis in situ of intermetallic compound nano-particle
Alam et al. Surface characteristics and electrolysis efficiency of a Palladium-Nickel electrode
Zhang et al. Amorphous palladium-based alloy nanoparticles as highly active electrocatalysts for ethanol oxidation
US6790551B2 (en) Modified redox couple fuel cell cathodes and fuel cells employing same
JP4538599B2 (en) Hydrogen storage alloy sprayed coating
Yang et al. Thermogravimetric analysis of hydrogen production of Al–Mg–Li particles and water
US6593017B1 (en) High capacity calcium lithium based hydrogen storage material and method of making the same
JP6367477B2 (en) CaMg2 alloy hydride as a hydrogen generating material, its preparation method, and its application
Vojtěch et al. Hydrogen storage by direct electrochemical hydriding of Mg-based alloys
US6777125B2 (en) Fuel cell cathode with redox couple
CN113846345B (en) Electrocatalytic hydrogen evolution alloy and preparation method thereof
Giza et al. Influence of the synthesis route on hydrogen sorption properties of La2MgNi7Co2 alloy
US7033699B2 (en) Fuel cell cathodes and their fuel cells
Ji et al. Electrochemical N 2 fixation to NH 3 under ambient conditions: porous LiFe 5 O 8 nanoparticle–reduced graphene oxide as a highly efficient and selective catalyst
KR101044260B1 (en) Alloy design of Al alloys and their production method for fast hydrogen generation from hydrolysis reaction in alkaline water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees