JPH0815079B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH0815079B2
JPH0815079B2 JP61024355A JP2435586A JPH0815079B2 JP H0815079 B2 JPH0815079 B2 JP H0815079B2 JP 61024355 A JP61024355 A JP 61024355A JP 2435586 A JP2435586 A JP 2435586A JP H0815079 B2 JPH0815079 B2 JP H0815079B2
Authority
JP
Japan
Prior art keywords
electrode
alloy
hydrogen storage
hydrogen
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61024355A
Other languages
Japanese (ja)
Other versions
JPS62184765A (en
Inventor
良夫 森脇
明美 新谷
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61024355A priority Critical patent/JPH0815079B2/en
Publication of JPS62184765A publication Critical patent/JPS62184765A/en
Publication of JPH0815079B2 publication Critical patent/JPH0815079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリを電解液とする電池、とくに二次
電池の負極に関するものである。
TECHNICAL FIELD The present invention relates to a battery using an alkali as an electrolytic solution, particularly to a negative electrode of a secondary battery.

従来の技術 各種の電池が、ポータブル機器,メモリーバックアッ
プ用,移動用,据置用などの電源として広く使われてい
る。これらのうち、特にくり返し使用可能な二次電池
が、省資源,低価格化を主な理由にして広く使われてい
る。
Conventional technology Various batteries are widely used as power sources for portable devices, memory backup, mobile, stationary, etc. Of these, rechargeable batteries that can be used repeatedly are widely used mainly because of their resource saving and cost reduction.

その代表が鉛蓄電池であるが、最近では、高率放電可
能,長寿命,高信頼性,高エネルギー密度などの特長を
持たせたアルカリ蓄電池もかなりの用途に適用されるよ
うになった。
A typical example is a lead storage battery, but recently, an alkaline storage battery that has features such as high rate discharge, long life, high reliability, and high energy density has also been applied to considerable applications.

現在広く使われているアルカリ蓄電池の系は、よく知
られているように、ニッケル−カドミウム系である。正
極には、その他に酸化銀、さらには空気極がある。また
負極には、鉄,亜鉛,水素が用いられる。ニッケル−カ
ドミウム系は、アルカリ蓄電池として、とくに高率放電
や寿命を含めた信頼性の点ですぐれ、過放電や過充電に
も強い。しかし、さらに高エネルギー密度や低公害の点
から、最近では水素極が注目され、水素ガス拡散電極を
用いた電池は、高信頼性もあって宇宙用に使われてい
る。
As is well known, the alkaline storage battery system widely used at present is a nickel-cadmium system. The positive electrode includes silver oxide and an air electrode. Iron, zinc, and hydrogen are used for the negative electrode. As an alkaline storage battery, the nickel-cadmium system is excellent in reliability including high-rate discharge and life, and is resistant to overdischarge and overcharge. However, from the viewpoint of higher energy density and low pollution, the hydrogen electrode has recently been attracting attention, and the battery using the hydrogen gas diffusion electrode is also used for space with high reliability.

同じ水素極でも本発明のような金属水素化合物を用い
る電池は、水素ガス拡散電極に用いるようなガス容器を
必要とせず、従来の開放形や密閉形と同じ構造が採用で
きるので、それだけ多くの用途に対応できる。
A battery using a metal hydrogen compound such as the present invention even with the same hydrogen electrode does not need a gas container used for a hydrogen gas diffusion electrode, and can adopt the same structure as a conventional open type or closed type, so that many Can be used for various purposes.

発明が解決しようとする問題点 現在、金属水素化合物の負極としては、Ti2Ni,LaN
i5,CaNi5などが取り上げられている。これらのうち、T
i2Niは初期の充放電特性は比較的すぐれているが、充放
電のくり返しにより容量の低下が著しいのが現状であ
る。CaNi5もほぼ同じ挙動を示すとともに、Caがか性ア
ルカリへの耐久性の点で問題がある。またLaNi5は、こ
れらよりやや容量が小さく、高価であるとともに、温度
特性の点でも劣る。
Problems to be Solved by the Invention Currently, Ti 2 Ni, LaN are used as negative electrodes for metal hydrogen compounds.
i 5 , CaNi 5, etc. are taken up. Of these, T
Although i 2 Ni has relatively excellent initial charge and discharge characteristics, the current situation is that the capacity decreases significantly due to repeated charge and discharge. CaNi 5 shows almost the same behavior, and Ca has a problem in durability against caustic alkali. LaNi 5 has a slightly smaller capacity than these, is expensive, and is inferior in terms of temperature characteristics.

本発明は、このような従来の水素貯蔵合金負極の改良
を行なうことにより、現行のカドミウム極よりもとくに
体積当りの放電容量を大きくすることにより、エネルギ
ー密度を向上させるものである。また寿命,高率放電特
性などは、カドミウム極に劣らず、さらに低公害を目的
としたすぐれた水素吸蔵合金負極を提供するものであ
る。
The present invention improves the energy density by improving such a conventional hydrogen storage alloy negative electrode so as to increase the discharge capacity per volume in particular as compared with the current cadmium electrode. Further, the present invention provides a hydrogen storage alloy negative electrode excellent in life, high-rate discharge characteristics and the like, which is not inferior to that of a cadmium electrode and further aims at low pollution.

問題点を解決するための手段 この目的達成のために、本発明は、一般式がTi1-xZrx
Feα−y−zNiyMzで示される合金を負極とするもので
ある。この場合にMは、Mg,Ca,V,Nb,Cr,Mo,Mn,Co,Cu,Z
n,B,Al,C,Si,Snの中より選ばれ少なくとも一種を用い
る。
Means for Solving the Problems To achieve this object, the present invention has a general formula of Ti 1-x Zr x
An alloy represented by Fe α-yz Ni y Mz is used as the negative electrode. In this case, M is Mg, Ca, V, Nb, Cr, Mo, Mn, Co, Cu, Z.
At least one selected from n, B, Al, C, Si, and Sn is used.

また、この合金系において、その組成は勿論重要であ
り、x=0.01〜0.4,α=0.85〜1.15,y=0.1〜0.6,z=0
〜0.5,α−y−z≧0.4の範囲が本発明のすぐれた負極
を提供する範囲である。
Further, in this alloy system, its composition is of course important, x = 0.01 to 0.4, α = 0.85 to 1.15, y = 0.1 to 0.6, z = 0.
.About.0.5, .alpha.-yz.gtoreq.0.4 is a range which provides the excellent negative electrode of the present invention.

またMとしてCoを用いる場合には、z=0.05〜0.3が最
適な組成である。
When Co is used as M, z = 0.05 to 0.3 is the optimum composition.

作用 本発明の合金のベースとなるのは、TiFe合金であり、
TiFe合金は、アルカリに対する耐久性や価格の点などで
すぐれている。また、水素貯蔵合金としては、初期の活
性化に問題があるが、水素の吸蔵,放出特性も一応すぐ
れた合金である。しかしながら、電気化学的に水素を吸
蔵,放出する能力は極めて劣り、いわゆる電極の放電容
量としてはほとんど得られない。
The base of the alloy of the present invention is a TiFe alloy,
TiFe alloys are superior in terms of durability against alkali and price. Further, as a hydrogen storage alloy, although it has a problem in initial activation, it is an alloy having excellent storage and release characteristics of hydrogen. However, the ability to occlude and release hydrogen electrochemically is extremely inferior, and almost no discharge capacity of the so-called electrode is obtained.

ところが、TiFe合金に、ZrとNiを加えたTi−Zr−Fe−
Ni系にすることにより、大幅に負極としての特性が向上
し、たとえば5時間率での放電容量も200mAh/g以上を示
すことを明らかにして提案した。本発明では、これをさ
らに改良して、Ti−Zr−Fe−Ni系の電極よりもさらに耐
久性(寿命)が10−30%アップできるものであり、Ti−
Zr−Fe−Ni−M系とし、これを用いることにある。
However, Ti-Zr-Fe-
It was clarified and proposed that the characteristics of the negative electrode were significantly improved by using a Ni-based material, and that the discharge capacity at a 5-hour rate also showed 200 mAh / g or more. In the present invention, by further improving this, the durability (life) can be further increased by 10 to 30% as compared with the Ti-Zr-Fe-Ni-based electrode.
The Zr-Fe-Ni-M system is used and this is used.

つまり、Ti1-xZrxFey-zNizにすることにより、放電容
量,寿命とももとのTiFe合金よりも飛躍的に向上せし
め、これをさらに Ti1-xZrxFeα−y−zNiyMzにすることにより耐久性が
向上するものである。
In other words, by using Ti 1-x Zr x Fe yz Ni z , the discharge capacity and life are dramatically improved compared to the original TiFe alloy, and this is further improved by Ti 1-x Zr x Fe α-yz The durability is improved by using Ni y Mz.

またMとしてCoを用いる場合には、このような効果の
他に、密閉形で必要なガス吸収能(触媒作用)の向上に
役立つことを見出した。
Further, it has been found that, when Co is used as M, in addition to such an effect, it is useful for improving the gas absorption capacity (catalytic action) required in the closed type.

実施例 以下、本発明を実施例で詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples.

市販の純度99.5%以上のTi,Zr,Fe,Niそれに表1に示
す第5成分としての各金属を表1の各組成になるように
秤量し、アルゴンアーク溶解炉でそれぞれ加熱溶解し
て、試料No.1〜No.28の各組成の合金を得た。なお、こ
れらは本発明の有効な組成の1例である。比較のために
もとのTi1-xZrxFey-zNizの例として、試料No.29〜32を
加えた。
Commercially available Ti, Zr, Fe, Ni having a purity of 99.5% or more and each metal as the fifth component shown in Table 1 were weighed so as to have the respective compositions shown in Table 1, and each was melted by heating in an argon arc melting furnace. Alloys having respective compositions of samples No. 1 to No. 28 were obtained. These are just one example of the effective composition of the present invention. For comparison, sample Nos. 29-32 were added as an example of the original Ti 1-x Zr x Fe yz Ni z .

表1に示した各合金の放電容量は、以下のようにして求
めた。すなわち、各合金は、アーク溶解後に粉砕し、20
0メッシュ以下の微粉末とした。これに、導電剤として
ニッケル粉末を10重量%、結着剤としてポリ塩化ビニル
粉末を3重量%、それに濃度2.5重量%のカルボキシメ
チルセルローズ水溶液を用いてペースト状にし、これを
多孔度95%、平均孔径150μm、厚さ2.3mmの発泡状ニッ
ケルに充てんし、400kg/cm2で加圧後、130℃に加熱して
ポリ塩化ビニルを融解して電極とした。
The discharge capacity of each alloy shown in Table 1 was determined as follows. That is, each alloy is
It was a fine powder of 0 mesh or less. A nickel powder was used as a conductive agent in an amount of 10% by weight, a polyvinyl chloride powder was used as a binder in an amount of 3% by weight, and a carboxymethylcellulose aqueous solution having a concentration of 2.5% by weight was used to form a paste, which had a porosity of 95%, It was filled with foamed nickel having an average pore diameter of 150 μm and a thickness of 2.3 mm, pressurized at 400 kg / cm 2 , and heated to 130 ° C. to melt polyvinyl chloride to obtain an electrode.

このようにして得られた各電極を50×60mmに裁断し、
リード板を取りつけ、対極としてNiネットを用い、比重
1.24の苛性カリ中に20g/lの水酸化リチウムを溶解した
電解液を用いてセルを構成した。照合電極として、酸化
水銀電極を用い、照合電極に対して−0.6Vを放電の終了
とし、それまでの容量を合金1グラムあたりに換算して
示した。なお、充電は8時間率、放電は5時間率、測定
温度は25℃である。
Each electrode thus obtained was cut into 50 × 60 mm,
A lead plate is attached and Ni net is used as the counter electrode
A cell was constructed using an electrolytic solution in which 20 g / l of lithium hydroxide was dissolved in 1.24 caustic potash. A mercury oxide electrode was used as the reference electrode, and discharge to -0.6 V was made to the reference electrode, and the capacity up to that point was converted to 1 gram of the alloy. In addition, charge is 8 hours rate, discharge is 5 hours rate, and measurement temperature is 25 degreeC.

表1はこの放電容量を、100サイクル,300サイクル,50
0サイクル,1000サイクルについて示したものである。
Table 1 shows this discharge capacity as 100 cycles, 300 cycles, 50 cycles.
It shows 0 cycles and 1000 cycles.

このようにして調べた結果、表1の試料No.1〜No.29
に見られる様に、一般式 Ti1-xZrxFeα−y−zNiyMzにおいて、Mとして、Mg,C
a,V,Nb,Cr,Mo,Mn,Co,Cu,Zn,B,Al,C,Si,Snより選ばれた
少なくとも一種の金属が好ましいことがわかった。さら
に、より詳細な検討でxが0.01〜0.4,α=0.85〜1.15,y
=0.1〜0.6,z=0〜0.5,α−y−z≧0.4が好ましい特
性を有する合金組成であり、適当な範囲であることがわ
かった。
As a result of examination in this way, the samples No. 1 to No. 29 in Table 1
In the general formula Ti 1-x Zr x Fe α-yz Ni y Mz, M, Mg, C
It was found that at least one metal selected from a, V, Nb, Cr, Mo, Mn, Co, Cu, Zn, B, Al, C, Si and Sn is preferable. Furthermore, in a more detailed examination, x is 0.01 to 0.4, α = 0.85 to 1.15, y
= 0.1 to 0.6, z = 0 to 0.5, α-yz ≧ 0.4 is the alloy composition having the preferable characteristics, and it was found that the range is appropriate.

つまり、この範囲は、初期容量,寿命ともにすぐれて
いて、この組成範囲からはずれると一応の所望基準とし
た200mAh/gが得られないことがわかった。
That is, it was found that this range was excellent in both initial capacity and life, and if it deviated from this composition range, 200 mAh / g, which was a tentatively desired standard, could not be obtained.

これは、ベースとなるTiFeの有効合金相から組成的に
ずれることによる水素吸蔵,放出能力の低下によるもの
と考えられた。
This was considered to be due to the decrease in hydrogen storage and desorption abilities due to the compositional shift from the effective alloy phase of TiFe as the base.

また、試料No.29〜32に示した Ti1-xZrxFey-zNizと比較すると、本発明のTi1-xZrxFe
α−y−zNiyMz系合金は寿命特性が明らかに向上する
ことがわかる。
In comparison with the Ti 1-x Zr x Fe yz Ni z shown in the sample No.29~32, Ti 1-x Zr x Fe of the present invention
It can be seen that the life characteristics of the α-yz Ni y Mz-based alloy are clearly improved.

さらに、その中でも特にMがCoであり、zが0.05〜0.
3の組成を有する合金は、このような効果以外に、別の
評価方法である密閉形電池を構成した検討の結果、ガス
吸収能(触媒作用)の向上に効果があることが明らかに
なった。
Further, among them, M is Co and z is 0.05 to 0.
In addition to these effects, the alloy having the composition of 3 was found to be effective in improving the gas absorption capacity (catalytic activity) as a result of the evaluation of a sealed battery, which is another evaluation method. .

このガス吸収能に関しては、MがCoである場合に特に
顕著な効果が見られ、この効果は密閉形アルカリ二次電
池の電池内圧や内部抵抗などの電池寿命要因と密接な関
係があることがわかった。
With regard to this gas absorption capacity, a particularly remarkable effect is observed when M is Co, and this effect may be closely related to battery life factors such as battery internal pressure and internal resistance of the sealed alkaline secondary battery. all right.

発明の効果 このようにアルカリ電池用の負極として、Ti1-xZrxFe
α−y−zNiyMz系で、MがMg,Ca,V,Nb,Cr,Mo,Mn,Co,C
u,Zn,B,Al,C,Si,Snより選ばれた少なくとも一種の金属
で構成し、x=0.01〜0.4,α=0.85〜1.15,y=0.1〜0.
6,z=0〜0.5,α−y−z≧0.4である範囲の合金を用い
ると高容量で、長寿命の負極が得られる。
As described above, as a negative electrode for an alkaline battery, Ti 1-x Zr x Fe
α-yz Ni y Mz system in which M is Mg, Ca, V, Nb, Cr, Mo, Mn, Co, C
u, Zn, B, Al, C, Si, composed of at least one metal selected from Sn, x = 0.01 ~ 0.4, α = 0.85 ~ 1.15, y = 0.1 ~ 0.
When an alloy having a range of 6, z = 0 to 0.5 and α-yz ≧ 0.4 is used, a negative electrode having a high capacity and a long life can be obtained.

この電極は、アルカリ電池用の電極として、開放形,
密閉形のいずれにも有効であるが、密閉形の場合、特に
MがCoであり、z=0.05〜0.3の範囲の合金がガス吸収
能の点で良好である。本発明の負極は、相手極としてニ
ッケル極,酸化銀極,空気極などその種類を問わなく使
用できる。
This electrode is an open type electrode for alkaline batteries.
Although it is effective for any of the sealed types, in the case of the sealed type, an alloy in which M is Co and z = 0.05 to 0.3 is particularly preferable in terms of gas absorption capacity. The negative electrode of the present invention can be used as a counter electrode regardless of the type such as a nickel electrode, a silver oxide electrode and an air electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式が、Ti1-xZrxFeα−y−zNiyMzで
あり、Mは、Mg,Ca,V,Nb,Cr,Mo,Mn,Co,Cu,Zn,B,Al,C,S
i,Snの中より選ばれた少なくとも一種の金属であり、x
=0.01〜0.4,α=0.85〜1.15,y=0.1〜0.6,z=0〜0.5,
α−y−z≧0.4である合金を用いる水素吸蔵電極。
1. The general formula is Ti 1-x Zr x Fe α-yz Ni y Mz, where M is Mg, Ca, V, Nb, Cr, Mo, Mn, Co, Cu, Zn, B, Al, C, S
At least one metal selected from i and Sn, x
= 0.01 to 0.4, α = 0.85 to 1.15, y = 0.1 to 0.6, z = 0 to 0.5,
A hydrogen storage electrode using an alloy with α-yz ≧ 0.4.
【請求項2】一般式中のMがCoであり、z=0.05〜0.3
である合金を用いる特許請求の範囲第1項記載の水素吸
蔵電極。
2. M in the general formula is Co, and z = 0.05 to 0.3.
The hydrogen storage electrode according to claim 1, wherein the alloy is
JP61024355A 1986-02-06 1986-02-06 Hydrogen storage electrode Expired - Lifetime JPH0815079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024355A JPH0815079B2 (en) 1986-02-06 1986-02-06 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024355A JPH0815079B2 (en) 1986-02-06 1986-02-06 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS62184765A JPS62184765A (en) 1987-08-13
JPH0815079B2 true JPH0815079B2 (en) 1996-02-14

Family

ID=12135885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024355A Expired - Lifetime JPH0815079B2 (en) 1986-02-06 1986-02-06 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0815079B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131467A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
US4728586A (en) * 1986-12-29 1988-03-01 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
JP2627963B2 (en) * 1990-01-31 1997-07-09 古河電池株式会社 Hydrogen storage alloy electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241652A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Electrochemical electrode employing metal hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241652A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Electrochemical electrode employing metal hydride

Also Published As

Publication number Publication date
JPS62184765A (en) 1987-08-13

Similar Documents

Publication Publication Date Title
EP0293660B1 (en) Hydrogen storage electrodes
JPS60241652A (en) Electrochemical electrode employing metal hydride
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP3381264B2 (en) Hydrogen storage alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPH0815079B2 (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP3113891B2 (en) Metal hydride storage battery
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JPH0797497B2 (en) Hydrogen storage electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH08315852A (en) Nickel hydrogen storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH07103434B2 (en) Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode