JP3381264B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP3381264B2
JP3381264B2 JP32125191A JP32125191A JP3381264B2 JP 3381264 B2 JP3381264 B2 JP 3381264B2 JP 32125191 A JP32125191 A JP 32125191A JP 32125191 A JP32125191 A JP 32125191A JP 3381264 B2 JP3381264 B2 JP 3381264B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
type
electrode
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32125191A
Other languages
Japanese (ja)
Other versions
JPH06187983A (en
Inventor
良夫 森脇
康治 山村
庸一郎 辻
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32125191A priority Critical patent/JP3381264B2/en
Publication of JPH06187983A publication Critical patent/JPH06187983A/en
Application granted granted Critical
Publication of JP3381264B2 publication Critical patent/JP3381264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金電極に関す
るものであり、ニッケル・水素蓄電池などの電池用電極
として利用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode, which can be used as an electrode for batteries such as nickel-hydrogen storage batteries.

【0002】[0002]

【従来の技術】水素吸蔵合金は、水素の貯蔵、輸送、精
製材料、また熱や圧力などのエネルギー変換材料、さら
にはアルカリ蓄電池の電極材料などを中心に様々な応用
が図られている。
2. Description of the Related Art Hydrogen storage alloys have been used for various applications, mainly for hydrogen storage, transportation, refining materials, energy conversion materials such as heat and pressure, and electrode materials for alkaline storage batteries.

【0003】これらに用いる水素吸蔵合金材料として
は、これまで多くの合金材料が提案されているが、その
代表的なものとして、LaNi5,TiMn1.5,TiF
e,Mg2Niなどがよく知られている。そして近年こ
れらの材料をベースに第3、第4、第5などの新たな元
素を添加した多元系合金により、一層の水素吸蔵合金と
しての性能の向上が図られている。
Many alloy materials have been proposed as the hydrogen storage alloy materials used for these, and typical ones are LaNi 5 , TiMn 1.5 , and TiF.
e, Mg 2 Ni, etc. are well known. Further, in recent years, the performance as a hydrogen storage alloy has been further improved by using a multi-component alloy in which new elements such as third, fourth and fifth elements are added based on these materials.

【0004】一方、近年ポータブル機器の著しい発展に
より、これに使用する電池に対する要求も著しい。小型
軽量化を可能にするために一層の高エネルギー密度電池
が求められている。これらの要求は、電気自動車用や各
種移動用電源の分野でも同様である。これまで、各種電
源のうち蓄電池としては、鉛蓄電池とニッケルカドミウ
ム蓄電池に代表されるアルカリ蓄電池とが広く使われて
いる。最近注目されてきたのは水素を可逆的に吸蔵・放
出する水素吸蔵合金を電極材料に用いたニッケル・水素
蓄電池などのアルカリ蓄電池である。
On the other hand, with the recent remarkable development of portable equipment, the demand for batteries used in such equipment is also significant. Further high energy density batteries are required to enable reduction in size and weight. These requirements are the same in the fields of electric vehicles and various mobile power sources. Among various power sources, lead storage batteries and alkaline storage batteries represented by nickel-cadmium storage batteries have been widely used as storage batteries. Recently, attention has been paid to alkaline storage batteries such as nickel-hydrogen storage batteries that use a hydrogen storage alloy that reversibly stores and releases hydrogen as an electrode material.

【0005】これに用いる水素吸蔵合金電極は、カドミ
ウムや亜鉛などと同じ取り扱いで電池を構成でき、実際
の放電可能な容量密度をカドミウムより大きくできるこ
とや亜鉛のようなデンドライトの形成などがないことな
どから、高エネルギー密度で長寿命、無公害のアルカリ
蓄電池用電極として有望である。
The hydrogen storage alloy electrode used for this can constitute a battery in the same manner as cadmium, zinc, etc., and the actual dischargeable capacity density can be made larger than that of cadmium, and there is no formation of dendrite such as zinc. Therefore, it is promising as a high energy density, long-life, pollution-free electrode for alkaline storage batteries.

【0006】これらの電極用に使用する水素吸蔵合金
は、通常はアーク溶解法、高周波誘導加熱溶解法などで
合金が作成されていた。そして、溶解によって得られた
水素吸蔵合金は、通常粉末状に粉砕してペースト塗着式
や加圧式、あるいは焼結式などの方法で電極に構成され
ている。
The hydrogen storage alloys used for these electrodes are usually prepared by an arc melting method, a high frequency induction heating melting method or the like. The hydrogen storage alloy obtained by melting is usually pulverized into a powder and formed into an electrode by a method such as a paste coating method, a pressure method, or a sintering method.

【0007】この電極用の一例として、正極にニッケル
極、負極に水素吸蔵合金極をそれぞれ用い、電解液とし
て苛性カリ水溶液を用いた密閉形のニッケル・水素蓄電
池がある。この電池は公称電池電圧が1.2Vでニッケ
ル・カドミウム蓄電池と互換性があり、同様に扱える利
点があるとともに、電池サイズが同様であればエネルギ
ー密度はニッケル・カドミウム蓄電池の1.5倍程度高
く高エネルギー密度である特徴を有しており、除々に実
用化の段階を迎えつつある。
As an example for this electrode, there is a sealed nickel-hydrogen storage battery in which a nickel electrode is used for the positive electrode, a hydrogen storage alloy electrode is used for the negative electrode, and a caustic potash solution is used as the electrolytic solution. This battery has a nominal battery voltage of 1.2V and is compatible with nickel-cadmium storage batteries, and has the advantage that it can be handled in the same manner. If the battery size is similar, the energy density is about 1.5 times higher than that of nickel-cadmium storage batteries. It has a feature of high energy density, and is gradually approaching the stage of practical application.

【0008】これらの電極用に使用する水素吸蔵合金材
料としては、LaNi5やMmNi5をベースとするCa
Cu5構造を有する合金系がよく知られている。電極用
として、MmNi3.8Co0.5Mn0.4Al0.3合金などが
その一例である。これらCaCu5構造を有する合金系
を電気化学的に充放電する場合、得られる放電容量密度
は合金1g当り0.3Ah程度がほぼ限界である。電池
のエネルギー密度を向上するためには電極に使用する水
素吸蔵合金の高容量化が不可欠であり、高容量化の可能
性を有する合金系として、AB2タイプのLaves相
構造を有する合金系が期待される。具体的な電極用AB
2タイプのLaves相構造を有する合金として、Zr
Mn0.6Cr0.10.2Ni1.2合金などが挙げられ、これ
らの合金では放電容量密度は0.35〜0.4Ah/g
程度が得られる。
As the hydrogen storage alloy material used for these electrodes, Ca based on LaNi 5 or MmNi 5 is used.
Alloy systems having a Cu 5 structure are well known. An example is MmNi 3.8 Co 0.5 Mn 0.4 Al 0.3 alloy for electrodes. When these alloy systems having a CaCu 5 structure are electrochemically charged / discharged, the discharge capacity density obtained is about 0.3 Ah per 1 g of the alloy. In order to improve the energy density of the battery, it is essential to increase the capacity of the hydrogen storage alloy used for the electrode. As an alloy system having the possibility of increasing the capacity, an alloy system having the AB 2 type Laves phase structure is used. Be expected. AB for concrete electrode
Zr as an alloy with 2 types of Laves phase structure
Examples include Mn 0.6 Cr 0.1 V 0.2 Ni 1.2 alloys and the like, and the discharge capacity density of these alloys is 0.35 to 0.4 Ah / g.
The degree is obtained.

【0009】しかし、このように水素吸蔵合金を高容量
化することにより、電極のサイクル寿命特性が低下する
という新たな問題が発生する。
However, by increasing the capacity of the hydrogen storage alloy in this way, a new problem occurs that the cycle life characteristics of the electrode deteriorate.

【0010】[0010]

【発明が解決しようとする課題】水素吸蔵合金電極の高
容量化を図るために、ZrMn0.6Cr0.10.2Ni1.2
合金などのAB2タイプのLaves相構造を有する合
金系を電極に使用すると、これまでのCaCu5構造を
有する合金系よりも高容量化が可能である。しかし、こ
の場合に充電と放電の繰り返しにより電極としての性能
低下が大きく寿命特性に問題があった。
In order to increase the capacity of the hydrogen storage alloy electrode, ZrMn 0.6 Cr 0.1 V 0.2 Ni 1.2
When an alloy system having an AB 2 type Laves phase structure such as an alloy is used for the electrode, it is possible to achieve higher capacity than the conventional alloy system having a CaCu 5 structure. However, in this case, the performance as an electrode is largely deteriorated due to repeated charging and discharging, and there is a problem in the life characteristics.

【0011】本発明は、AB2タイプのLaves相構
造を有する合金系を用いた電極において、電極の高容量
化と寿命の両面に優れた特性を有する水素吸蔵合金電極
を提供することを目的とする。
An object of the present invention is to provide an electrode using an alloy system having an AB 2 type Laves phase structure, which has excellent characteristics in terms of both high capacity and long life of the electrode. To do.

【0012】[0012]

【課題を解決するための手段】本発明の水素吸蔵合金電
極は、水素吸蔵合金の主たる合金相がC14型もしくは
C15型のLaves相構造を有する合金であり、その
合金組織中に面積比で1〜40%のZrNiα(1≦α
≦1.8)を主とする相を部分的に形成した水素吸蔵合
金を用いて電極を構成したことを特徴とする。このと
き、合金組織中に存在するZrNiα(1≦α≦1.
8)を主とする相が、Zr(Ni+M)α(1≦α≦
1.8)、(ただしM=Mg,Ca,Ti,Hf,V,
Nb,Cr,Mo,Mn,Fe,Co,Pd,Cu,A
g,Zn,Cd,Al,Si,La,Ce,Pr,N
ら選ばれる1種もしくは2種以上)で示される3元素
以上の多元系合金であることが有効である。また、水素
吸蔵合金が一般式ABβ(1.5≦β≦2.5、AはZ
r単独もしくは30原子%以下のTi,Hf,Ta,
Y,Ca,Mg,La,Ce,Nd,Nb,Mo,A
l,Siを含むZr、BはNiおよびMg,Ca,T
i,Hf,V,Nb,Cr,Mo,Mn,Fe,Co,
Pd,Cu,Ag,Zn,Cd,Al,Si,La,C
e,Pr,Ndから選ばれる少なくとも1種の元素)で
示され、その主たる合金相がC14型もしくはC15型
のLaves相構造を有する合金であり、その結晶格子
定数はC14型の場合はa=4.8〜5.2Å(オング
ストローム)、c=7.9〜8.3Å(オングストロー
ム)、C15型の場合はa=6.92〜7.30Å(オ
ングストローム)であることが有効である。さらに、水
素吸蔵合金が一般式Zr(Mnx+My+Niz)β
(ただしx=0.1〜0.8、y=0.1〜0.8、z
=1.0〜1.5、x+y+z=β、 1.5≦β≦
2.5、M=Fe,Co,Cr,V,Ti,Nb,M
o,Cu,Alから選ばれる少なくとも1種の元素もし
くは2種以上)で示され、その主たる合金相がC14型
もしくはC15型のLaves相構造を有する合金であ
り、その結晶格子定数はC14型の場合はa=4.8〜
5.2Å(オングストローム)、c=7.9〜8.3Å
(オングストローム)、C15型の場合はa=6.92
〜7.30Å(オングストローム)であることが有効で
ある。
The hydrogen-absorbing alloy electrode of the present invention is an alloy having a Laves phase structure in which the main alloy phase of the hydrogen-absorbing alloy is C14 type or C15 type, and the area ratio in the alloy structure is 1 -40% ZrNiα (1 ≦ α
The electrode is constituted by using a hydrogen storage alloy in which a phase mainly having ≦ 1.8) is partially formed. At this time, ZrNiα (1 ≦ α ≦ 1.
The phase mainly composed of 8) is Zr (Ni + M) α (1 ≦ α ≦
1.8), (where M = Mg, Ca, Ti, Hf, V,
Nb, Cr, Mo, Mn, Fe, Co, Pd, Cu, A
g, Zn, Cd, Al, Si, La, Ce, Pr, Nd
It is effective that a pressurized et one or three or more elements of the multicomponent alloy represented by two or more) are selected. Further, the hydrogen storage alloy has a general formula ABβ (1.5 ≦ β ≦ 2.5, A is Z
r alone or Ti, Hf, Ta of 30 atomic% or less,
Y, Ca, Mg, La, Ce, Nd, Nb, Mo, A
Zr and B containing 1, Si are Ni and Mg, Ca, T
i, Hf, V, Nb, Cr, Mo, Mn, Fe, Co,
Pd, Cu, Ag, Zn, Cd, Al, Si, La, C
e, Pr, shown by at least one element) selected N d or et al., the main alloy phase is an alloy having a C14 type or C15-type Laves phase structure, the crystal lattice constant in the case of type C14 is It is effective that a = 4.8 to 5.2Å (angstrom), c = 7.9 to 8.3Å (angstrom), and in the case of C15 type, a = 6.92 to 7.30Å (angstrom). . Furthermore, the hydrogen storage alloy has the general formula Zr (Mnx + My + Niz) β.
(However, x = 0.1 to 0.8, y = 0.1 to 0.8, z
= 1.0 to 1.5, x + y + z = β, 1.5 ≦ β ≦
2.5, M = Fe, Co, Cr, V, Ti, Nb, M
o, Cu, A l or et indicated by selected at least one element or two or more kinds), and alloys thereof to which the main alloy phase has a C14-type or C15-type Laves phase structure, the crystal lattice constant C14 In the case of a mold, a = 4.8 ~
5.2Å (angstrom), c = 7.9 to 8.3Å
(Angstrom), a = 6.92 for C15 type
It is effective that the value is up to 7.30Å (angstrom).

【0013】この水素吸蔵合金は、一般式ABβ(1.
5≦β≦2.5、AはZr単独もしくは30原子%以下
のTi,Hf,Ta,Y,Ca,Mg,La,Ce,N
d,Nb,Mo,Al,Siを含むZr、BはNiおよ
びMg,Ca,Ti,Hf,V,Nb,Cr,Mo,M
n,Fe,Co,Pd,Cu,Ag,Zn,Cd,A
l,Si,La,Ce,Pr,Ndなどから選ばれる少
なくとも1種の元素)で示され、その主たる合金相がC
14型もしくはC15型のLaves相構造を有する合
金であり、その結晶格子定数はC14型の場合はa=
4.8〜5.2Å(オングストローム)、c=7.9〜
8.3Å(オングストローム)、C15型の場合はa=
6.92〜7.30Å(オングストローム)であるもの
が望ましい。
This hydrogen storage alloy has the general formula ABβ (1.
5 ≦ β ≦ 2.5, A is Zr alone or 30 atomic% or less of Ti, Hf, Ta, Y, Ca, Mg, La, Ce, N
Zr and B containing d, Nb, Mo, Al and Si are Ni and Mg, Ca, Ti, Hf, V, Nb, Cr, Mo and M.
n, Fe, Co, Pd, Cu, Ag, Zn, Cd, A
1, at least one element selected from Si, La, Ce, Pr, Nd, etc., and the main alloy phase is C
It is an alloy having a 14-type or C15-type Laves phase structure, and its crystal lattice constant is a =
4.8-5.2 Å (angstrom), c = 7.9-
8.3Å (Angstrom), a = for C15 type
It is preferably 6.92 to 7.30 Å (angstrom).

【0014】[0014]

【作用】水素吸蔵合金の主たる合金相がC14型もしく
はC15型のLaves相構造を有する合金で、その合
金組織中にZrNiα(1≦α≦1.8)を主とする相
を部分的に形成した水素吸蔵合金を用いて電極を構成す
ると、長寿命化が図られる。これは、主相であるLav
es相構造を有する合金は充放電の反応に対し活発に作
用するが、部分的に配置されたZrNiα(1≦α≦
1.8)を主とする相は、この充放電の反応に比較的不
活性である。活性なLaves相は充放電の繰り返しに
より、合金の微細化を伴ったり、ひどい場合には電極か
らの脱落を発生する。ZrNiα(1≦α≦1.8)を
主とするこの不活性な相の存在が活性なLaves相と
共存することにより、緩衝材として機能し性能低下を防
止して寿命特性を向上していると考えられる。
[Function] A main hydrogen absorbing alloy phase is an alloy having a C14 type or C15 type Laves phase structure, and a phase mainly containing ZrNiα (1 ≦ α ≦ 1.8) is partially formed in the alloy structure. If the electrode is formed by using the hydrogen storage alloy described above, the service life can be extended. This is the main phase Lav
The alloy having the es phase structure actively acts on the charge-discharge reaction, but the partially arranged ZrNiα (1 ≦ α ≦
The phase mainly composed of 1.8) is relatively inactive in this charge / discharge reaction. The active Laves phase is accompanied by miniaturization of the alloy due to repeated charging / discharging, and in the worst case, detachment from the electrode occurs. The presence of this inactive phase, which is mainly ZrNiα (1 ≦ α ≦ 1.8), coexists with the active Laves phase to function as a cushioning material, prevent performance deterioration, and improve life characteristics. it is conceivable that.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。水
素吸蔵合金として、(表1)に示す組成の合金をそれぞ
れ作成した。この合金は、99.5%以上の純度を有す
る市販のZr,Mn,V,Cr,Niの各金属材料を表
1に示す原子比の合金になるようにそれぞれ配合し、ア
ルゴンアーク溶解炉により反転させつつ各4回づつ溶解
した。そして、溶解によって得た合金塊を10-3Pa中
1100℃で12時間の真空熱処理を行った。
EXAMPLES Examples of the present invention will be described below. Alloys having the compositions shown in (Table 1) were prepared as hydrogen storage alloys. This alloy was prepared by mixing commercially available Zr, Mn, V, Cr, and Ni metallic materials having a purity of 99.5% or more so as to have alloys with the atomic ratios shown in Table 1 and using an argon arc melting furnace. It melt | dissolved 4 times each, reversing. Then, the alloy ingot obtained by melting was subjected to vacuum heat treatment at 1100 ° C. for 12 hours in 10 −3 Pa.

【0016】[0016]

【表1】 [Table 1]

【0017】このようにして得た合金塊を、電極評価お
よび合金解析用に供した。合金評価は400メッシュ以
下に粉砕した合金のX線回折測定、および合金塊の合金
組織観察である。
The alloy block thus obtained was used for electrode evaluation and alloy analysis. The alloy evaluation is the X-ray diffraction measurement of the alloy pulverized to 400 mesh or less, and the observation of the alloy structure of the alloy lump.

【0018】この(表1)に示した合金の合金解析結果
の一覧を(表2)に示す。(表2)に示すようにX線回
折の結果では、主たる合金相はいずれもC15型のLa
ves相構造を有する合金であり、唯一No.5の合金
はきれいな単一相であった。このX線回折から認められ
る他の合金相を合金塊の組織解析によって調べた。その
代表的な合金組織写真の一例を図1に示す。図1のよう
に黒色の素地に無数の白色の島状の析出物が認められ、
それぞれの組成を分析してみると、合金組織の素地(黒
色部)はC15型のLaves相、島状析出物(白色
部)はZrNiα(1≦α≦1.8)を主とする合金相
であることが確認できた。そして、この合金組織中にZ
rNiα(1≦α≦1.8)を主とする相を部分的に形
成した水素吸蔵合金のZrNiα相の存在量を図積分に
より求めたところ、(表2)に示すようにその合金組成
により変化した。
A list of alloy analysis results of the alloys shown in (Table 1) is shown in (Table 2). As shown in (Table 2), in the results of X-ray diffraction, the main alloy phases were all C15 type La.
It is an alloy having a ves phase structure, and only No. Alloy 5 was a clean single phase. Other alloy phases recognized from this X-ray diffraction were examined by the structure analysis of the alloy ingot. An example of a typical alloy structure photograph is shown in FIG. Innumerable white island-shaped precipitates were observed on the black substrate as shown in Fig. 1,
Analyzing each composition, the base of the alloy structure (black part) is the C15 type Laves phase, and the island-shaped precipitates (white part) are the alloy phases mainly composed of ZrNiα (1 ≦ α ≦ 1.8). It was confirmed that And in this alloy structure Z
The abundance of the ZrNiα phase in the hydrogen storage alloy in which the phase mainly consisting of rNiα (1 ≦ α ≦ 1.8) was partially formed was determined by graphical integration, and as shown in (Table 2), changed.

【0019】[0019]

【表2】 [Table 2]

【0020】つぎに表1に示した合金について電極特性
を評価した。この評価に用いた電極は以下のように作成
した。まず、それぞれの合金を機械的に200メッシュ
以下に粉砕し、その後この合金粉末にカルボキシメチル
セルロ−ス(CMC)1%水溶液とポリビニルアルコー
ル2%水溶液を加え混合しペースト状とした。このペー
スト状組成物を厚さ1mm、多孔度95%の発泡状のニ
ッケル多孔体にほぼ均一に充填し、乾燥し電極とした。
このようにして得たそれぞれの水素吸蔵合金電極は、そ
の後プレスにより加圧した後、合金量が2gになる大き
さに裁断しリ−ド板をスポット溶接により取り付けた。
Next, the electrode characteristics of the alloys shown in Table 1 were evaluated. The electrode used for this evaluation was prepared as follows. First, each alloy was mechanically pulverized to 200 mesh or less, and then a 1% aqueous solution of carboxymethyl cellulose (CMC) and a 2% aqueous solution of polyvinyl alcohol were added to and mixed with the alloy powder to form a paste. A foamed nickel porous body having a thickness of 1 mm and a porosity of 95% was filled almost uniformly with this paste composition and dried to obtain an electrode.
Each of the hydrogen storage alloy electrodes thus obtained was then pressed by a press, cut into pieces having an alloy amount of 2 g, and a lead plate was attached by spot welding.

【0021】これらの(表1)に示した合金で作成した
水素吸蔵合金電極を電解液が豊富な開放形で単板試験を
行った結果について説明する。
The results of performing a single plate test on the hydrogen storage alloy electrodes made of the alloys shown in (Table 1) in an open type rich in electrolytic solution will be described.

【0022】電解液として、比重が1.30の苛性カリ
水溶液を用い、過剰の容量を有する焼結式ニッケル極を
正極に、水素吸蔵合金電極を負極にして充放電サイクル
での放電容量の変化を調べた。充放電条件として、20
℃にて、充電は0.2Aで5.5時間、放電は0.1A
で電池電圧が0.8Vまでとした。その結果を図2に示
す。
A caustic potash aqueous solution having a specific gravity of 1.30 was used as an electrolytic solution, and a sintered nickel electrode having an excessive capacity was used as a positive electrode, and a hydrogen storage alloy electrode was used as a negative electrode to change the discharge capacity during charge / discharge cycles. Examined. Charge and discharge conditions are 20
At ℃, charge 0.2A for 5.5 hours, discharge 0.1A
The battery voltage was set to 0.8V. The result is shown in FIG.

【0023】図2において、縦軸は合金1g当たりの放
電容量を示している。試験した水素吸蔵合金電極の中で
放電容量の絶対値が大きいものは合金No.2,3,4で
あった。一方、充放電サイクルの経過とともにいずれの
水素吸蔵合金電極も放電容量は徐々に低下したが、その
容量低下の割合は、合金No.1<2<3<4<5の順に
大きくなり、No.5が最も大きな放電容量の低下を示し
た。この結果から合金組織中にZrNiα(1≦α≦
1.8)を主とする相を部分的に形成した水素吸蔵合金
で、かつ合金中にZrNiα相の存在量が多いものほ
ど、充放電サイクルで安定した放電容量を維持すること
がわかった。
In FIG. 2, the vertical axis represents the discharge capacity per gram of alloy. Among the hydrogen storage alloy electrodes tested, those having a large absolute value of discharge capacity were Alloy Nos. 2, 3 and 4. On the other hand, the discharge capacity of all hydrogen storage alloy electrodes gradually decreased with the progress of charge / discharge cycles, but the rate of capacity decrease increased in the order of Alloy No. 1 <2 <3 <4 <5, and No. No. 5 showed the largest decrease in discharge capacity. From this result, ZrNiα (1 ≦ α ≦
It has been found that a hydrogen storage alloy in which a phase mainly containing 1.8) is partially formed, and the more the amount of the ZrNiα phase present in the alloy, the more stable the discharge capacity is maintained in the charge / discharge cycle.

【0024】次に、(表1)に示した合金で作成した水
素吸蔵合金電極を用いて密閉形電池を構成し評価した結
果について説明する。
Next, a description will be given of the results of evaluation by constructing a sealed battery using the hydrogen storage alloy electrodes made of the alloys shown in (Table 1).

【0025】相手極として公知の発泡状ニッケル極、そ
れに親水処理ポリプロピレン不織布セパレ−タを用い
て、負極、セパレータ、正極の3層を電池ケース内で渦
巻状に構成した円筒密閉形ニッケル・水素蓄電池を作成
した。その後比重1.25の苛性カリ水溶液に25g/
lの水酸化リチウムを溶解した電解液を注入し封口し
た。この密閉形電池はsubC形であり、電池容量は
2.8Ahとした。
A cylindrical sealed nickel-hydrogen storage battery in which three layers of a negative electrode, a separator and a positive electrode are spirally formed in a battery case using a known foamed nickel electrode as a counter electrode and a hydrophilic polypropylene non-woven separator. It was created. Then 25g / in a caustic potash solution with a specific gravity of 1.25
An electrolytic solution in which 1 l of lithium hydroxide was dissolved was injected and sealed. This sealed battery was a sub C type and the battery capacity was 2.8 Ah.

【0026】(表1)の合金よりなる水素吸蔵合金電極
を用いて構成した密閉形電池を各5セルづつ作成し、ま
ず比較的緩やかな条件で5サイクル充放電した。そし
て、いずれの電池もほぼ2.8〜2.9Ahの標準放電
容量を有していることを確認した。その後、充放電時の
電池内圧を測定しながら、20℃で充電を2.8A(1
C)で1.5時間、放電を同様に2.8A(1C)で電
池電圧が0.9Vまで行う充放電サイクル試験を実施し
た。
Five sealed cells each made of a hydrogen storage alloy electrode made of the alloy shown in Table 1 were prepared and charged and discharged for 5 cycles under relatively mild conditions. It was confirmed that all the batteries had a standard discharge capacity of approximately 2.8 to 2.9 Ah. Then, while measuring the battery internal pressure during charging / discharging, charge at 2.8 A (1
A charging / discharging cycle test was carried out in which the battery was charged at 2.8 A (1 C) for 1.5 hours in C) up to a battery voltage of 0.9 V.

【0027】その充放電サイクル試験の結果である充放
電サイクルと電池の放電容量の比較を図3に示す。図3
から明らかなようにいずれの電池も約200サイクル付
近までは安定な性能を維持したが、合金No.5より作成
した電池は250サイクル前後で急激な容量低下を伴な
い電池の寿命を迎えた。一方合金No.1〜4は優れたサ
イクル寿命性能を示し400サイクル経過でも安定した
放電容量を維持した。
FIG. 3 shows a comparison between the charge / discharge cycle as a result of the charge / discharge cycle test and the discharge capacity of the battery. Figure 3
As is clear from the above, all the batteries maintained stable performance up to about 200 cycles, but the batteries prepared from alloy No. 5 reached the end of their life with a rapid decrease in capacity around 250 cycles. On the other hand, alloys Nos. 1 to 4 showed excellent cycle life performance and maintained a stable discharge capacity even after 400 cycles.

【0028】なお、この充放電サイクル試験での充電時
の充放電サイクルと充電時の最高電池内圧の関係を同時
に調べた。その結果、充放電サイクルの初期にはいずれ
の電池も最高の内圧に達する充電末期に4〜5kg/c
2程度の電池内圧であったが、合金No.5より作成した
電池は200サイクル付近から次第に電池内圧の上昇を
示した。この電池内圧の上昇が放電容量の低下を招いた
ものと考えられる。これらの結果から400サイクル経
過までの試験において、安定な電池内圧を維持するため
には合金中に存在するZrNiα相が多い方が好まし
く、この場合にも合金組織中にZrNiα(1≦α≦
1.8)を主とする相を部分的に形成することが、充放
電サイクルで安定した放電容量を維持することがわかっ
た。
In this charge / discharge cycle test, the relationship between the charge / discharge cycle during charging and the maximum battery internal pressure during charging was examined at the same time. As a result, at the beginning of the charging / discharging cycle, all batteries reach the maximum internal pressure, and at the end of charging, 4 to 5 kg / c.
Although the battery internal pressure was about m 2, the battery prepared from alloy No. 5 showed a gradual increase in the battery internal pressure from around 200 cycles. It is considered that this increase in battery internal pressure caused a decrease in discharge capacity. From these results, in the tests up to 400 cycles, it is preferable that the ZrNiα phase existing in the alloy is large in order to maintain a stable battery internal pressure. In this case as well, ZrNiα (1 ≦ α ≦
It was found that the partial formation of the phase mainly composed of 1.8) maintains a stable discharge capacity in the charge / discharge cycle.

【0029】以上が、本発明の一実施例であるが、この
実施例においては水素吸蔵合金として、ZrーMnーV
ーCrーNiの5成分系を取り上げた。
The above is one embodiment of the present invention. In this embodiment, the hydrogen storage alloy is Zr-Mn-V.
The five-component system of --Cr--Ni was taken up.

【0030】しかし、本発明はこの実施例に限定される
ものでなく、以下の要件を満たすものが有効である。す
なわち、水素吸蔵合金が一般式ABβ(1.5≦β≦
2.5、AはZr単独もしくは30原子%以下のTi,
Hf,Ta,Y,Ca,Mg,La,Ce,Nd,N
b,Mo,Al,Siを含むZr、BはNiおよびM
g,Ca,Ti,Hf,V,Nb,Cr,Mo,Mn,
Fe,Co,Pd,Cu,Ag,Zn,Cd,Al,S
i,La,Ce,Pr,Ndなどから選ばれる少なくと
も1種の元素)で示され、その主たる合金相がC14型
もしくはC15型のLaves相構造を有する合金であ
り、その結晶格子定数はC14型の場合はa=4.8〜
5.2Å(オングストローム)、c=7.9〜8.3Å
(オングストローム)、C15型の場合はa=6.92
〜7.30Å(オングストローム)である。
However, the present invention is not limited to this embodiment, and those satisfying the following requirements are effective. That is, the hydrogen storage alloy has the general formula ABβ (1.5 ≦ β ≦
2.5, A is Zr alone or Ti of 30 atomic% or less,
Hf, Ta, Y, Ca, Mg, La, Ce, Nd, N
Zr containing b, Mo, Al and Si, B is Ni and M
g, Ca, Ti, Hf, V, Nb, Cr, Mo, Mn,
Fe, Co, Pd, Cu, Ag, Zn, Cd, Al, S
i, La, Ce, Pr, Nd, etc.), whose main alloy phase is a C14-type or C15-type Laves phase structure, and whose crystal lattice constant is C14-type. In the case of a = 4.8-
5.2Å (angstrom), c = 7.9 to 8.3Å
(Angstrom), a = 6.92 for C15 type
~ 7.30Å (Angstrom).

【0031】そしてさらに好ましくは、水素吸蔵合金が
特に一般式Zr(Mnx+My+Niz)β (ただし
x=0.1〜0.8、y=0.1〜0.8、z=1.0
〜1.5、x+y+z=β、 1.5≦β≦2.5、M
=Fe,Co,Cr,V,Ti,Nb,Mo,Cu,A
lなどから選ばれる少なくとも1種の元素もしくは2種
以上)で示され、その主たる合金相がC14型もしくは
C15型のLaves相構造を有する合金であり、その
結晶格子定数はC14型の場合はa=4.8〜5.2Å
(オングストローム)、c=7.9〜8.3Å(オング
ストローム)、C15型の場合はa=6.92〜7.3
0Å(オングストローム)である。
More preferably, the hydrogen storage alloy is particularly Zr (Mnx + My + Niz) β (where x = 0.1 to 0.8, y = 0.1 to 0.8 and z = 1.0).
~ 1.5, x + y + z = β, 1.5 ≦ β ≦ 2.5, M
= Fe, Co, Cr, V, Ti, Nb, Mo, Cu, A
at least one element selected from 1 or two or more kinds), the main alloy phase is an alloy having a C14 type or C15 type Laves phase structure, and the crystal lattice constant is C14 type, a = 4.8-5.2Å
(Angstrom), c = 7.9 to 8.3Å (angstrom), in the case of C15 type, a = 6.92 to 7.3.
It is 0Å (angstrom).

【0032】なお、有効合金であるC14型もしくはC
15型のLaves相構造の合金組織中に存在するZr
Niα(1≦α≦1.8)を主とする相は、存在量が多
いほど寿命特性に効果があるが、本来の有効合金相の割
合が減少すると放電容量自体の低下を招く結果となる。
したがって、ZrNiα(1≦α≦1.8)を主とする
相は組織面積比で1〜40%であることが好ましい。
C14 type or C which is an effective alloy
Zr present in alloy structure of type 15 Laves phase structure
The phase mainly composed of Niα (1 ≦ α ≦ 1.8) is more effective in the life characteristics as the abundance is larger, but if the ratio of the original effective alloy phase is decreased, the discharge capacity itself is decreased. .
Therefore, the phase mainly composed of ZrNiα (1 ≦ α ≦ 1.8) is preferably 1 to 40% in terms of the structure area ratio.

【0033】また、合金組織中に存在するZrNiα
(1≦α≦1.8)を主とする相は、これまでの分析結
果からZrとNiの二成分の可能性が高いが、Zr(N
i+M)α(1≦α≦1.8)で示される三成分以上の
合金の場合も有り得ると思われる。この場合、M=M
g,Ca,Ti,Hf,V,Nb,Cr,Mo,Mn,
Fe,Co,Pd,Cu,Ag,Zn,Cd,Al,S
i,La,Ce,Pr,Ndなどから選ばれる1種もし
くは2種以上である。
In addition, ZrNiα existing in the alloy structure
The phase mainly composed of (1 ≦ α ≦ 1.8) is highly likely to be a binary component of Zr and Ni based on the analysis results so far, but Zr (N
i + M) α (1 ≦ α ≦ 1.8) It is considered possible that the alloy has three or more components. In this case, M = M
g, Ca, Ti, Hf, V, Nb, Cr, Mo, Mn,
Fe, Co, Pd, Cu, Ag, Zn, Cd, Al, S
One or more selected from i, La, Ce, Pr, Nd and the like.

【0034】[0034]

【発明の効果】以上のように本発明は、水素吸蔵合金の
主たる合金相がC14型もしくはC15型のLaves
相構造を有する合金であり、その合金組織中にZrNi
α(1≦α≦1.8)を主とする相を部分的に形成した
水素吸蔵合金を用いて電極を構成したことを特徴とする
水素吸蔵合金電極である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the main alloy phase of the hydrogen storage alloy is Laves of C14 type or C15 type.
It is an alloy with a phase structure, and ZrNi is contained in the alloy structure.
The hydrogen storage alloy electrode is characterized in that the electrode is formed by using a hydrogen storage alloy in which a phase mainly having α (1 ≦ α ≦ 1.8) is partially formed.

【0035】このことにより、電極の長寿命化が図られ
る効果を発揮でき、寿命特性に優れた高性能の水素吸蔵
合金電極およびこれを用いた電池を提供できる。
As a result, it is possible to provide a high-performance hydrogen storage alloy electrode having an effect of prolonging the life of the electrode and excellent in life characteristics, and a battery using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるZrーMnーVーCr
ーNi系水素吸蔵合金の金属組織写真
1 is an embodiment of the present invention Zr-Mn-V-Cr
-Photograph of metal structure of Ni-based hydrogen storage alloy

【図2】本発明の一実施例である(表1)に示した合金
で作成した水素吸蔵合金電極の電解液が豊富な開放形で
単板試験での充放電サイクルと放電容量の関係図
FIG. 2 is a relational diagram of charge / discharge cycles and discharge capacities in a single plate test in an open type rich in electrolyte solution of a hydrogen storage alloy electrode made of the alloy shown in (Table 1) which is an example of the present invention.

【図3】本発明の一実施例である(表1)に示した合金
で作成した水素吸蔵合金電極の円筒密閉形電池での充放
電サイクルと電池の放電容量の関係図
FIG. 3 is a diagram showing the relationship between the charge / discharge cycle and the discharge capacity of a battery of a hydrogen-occlusion alloy electrode made of the alloy shown in Table 1 which is an example of the present invention in a cylindrical sealed battery.

フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−65060(JP,A) 特開 平1−102855(JP,A) 特開 昭60−241652(JP,A) 特許2563638(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 C22C 1/00 - 49/14 Front page continuation (72) Inventor Tsutomu Iwaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-65060 (JP, A) JP-A-1-102855 (JP , A) JP-A-60-241652 (JP, A) Patent 2563638 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/38 C22C 1/00-49/14

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金の主たる合金相がC14型
もしくはC15型のLaves相構造を有する合金であ
り、その合金組織中に面積比で1〜40%のZrNiα
(1≦α≦1.8)を主とする相を部分的に形成した水
素吸蔵合金を用いて電極を構成したことを特徴とする水
素吸蔵合金電極。
1. An alloy having a C14 type or C15 type Laves phase structure as a main alloy phase of a hydrogen storage alloy, and having an area ratio of 1 to 40% ZrNiα in the alloy structure.
A hydrogen storage alloy electrode, characterized in that the electrode is formed by using a hydrogen storage alloy in which a phase mainly having (1 ≦ α ≦ 1.8) is partially formed.
【請求項2】 合金組織中に存在するZrNiα(1≦
α≦1.8)を主とする相が、Zr(Ni+M)α(1
≦α≦1.8)、(ただしM=Mg,Ca,Ti,H
f,V,Nb,Cr,Mo,Mn,Fe,Co,Pd,
Cu,Ag,Zn,Cd,Al,Si,La,Ce,P
r,Ndから選ばれる1種もしくは2種以上)で示され
る3元素以上の多元系合金である請求項1記載の水素吸
蔵合金電極。
2. ZrNiα (1 ≦ 1 present in the alloy structure)
The phase mainly having α ≦ 1.8) is Zr (Ni + M) α (1
≤α≤1.8), where M = Mg, Ca, Ti, H
f, V, Nb, Cr, Mo, Mn, Fe, Co, Pd,
Cu, Ag, Zn, Cd, Al, Si, La, Ce, P
r, N d or al one or more) of 3 elements or more multicomponent alloy is claim 1 hydrogen storage alloy electrode according represented by selected.
【請求項3】 水素吸蔵合金が一般式ABβ(1.5≦
β≦2.5、AはZr単独もしくは30原子%以下のT
i,Hf,Ta,Y,Ca,Mg,La,Ce,Nd,
Nb,Mo,Al,Siを含むZr、BはNiおよびM
g,Ca,Ti,Hf,V,Nb,Cr,Mo,Mn,
Fe,Co,Pd,Cu,Ag,Zn,Cd,Al,S
i,La,Ce,Pr,Ndから選ばれる少なくとも1
種の元素)で示され、その主たる合金相がC14型もし
くはC15型のLaves相構造を有する合金であり、
その結晶格子定数はC14型の場合はa=4.8〜5.
2Å(オングストローム)、c=7.9〜8.3Å(オ
ングストローム)、C15型の場合はa=6.92〜
7.30Å(オングストローム)である請求項1または
2記載の水素吸蔵合金電極。
3. A hydrogen storage alloy having a general formula ABβ (1.5 ≦
β ≦ 2.5, A is Zr alone or T of 30 atomic% or less
i, Hf, Ta, Y, Ca, Mg, La, Ce, Nd,
Zr containing Nb, Mo, Al and Si, B is Ni and M
g, Ca, Ti, Hf, V, Nb, Cr, Mo, Mn,
Fe, Co, Pd, Cu, Ag, Zn, Cd, Al, S
i at least 1, La, Ce, Pr, selected N d or al
Is an alloy having a C14-type or C15-type Laves phase structure,
The crystal lattice constant of the C14 type is a = 4.8 to 5.
2Å (angstrom), c = 7.9 to 8.3Å (angstrom), a = 6.92 to C15 type
The hydrogen storage alloy electrode according to claim 1 or 2, which has a thickness of 7.30Å (angstrom).
【請求項4】 水素吸蔵合金が一般式Zr(Mnx+M
y+Niz)β (ただしx=0.1〜0.8、y=
0.1〜0.8、z=1.0〜1.5、x+y+z=
β、 1.5≦β≦2.5、M=Fe,Co,Cr,
V,Ti,Nb,Mo,Cu,Alから選ばれる少なく
とも1種の元素もしくは2種以上)で示され、その主た
る合金相がC14型もしくはC15型のLaves相構
造を有する合金であり、その結晶格子定数はC14型の
場合はa=4.8〜5.2Å(オングストローム)、c
=7.9〜8.3Å(オングストローム)、C15型の
場合はa=6.92〜7.30Å(オングストローム)
である請求項1または2記載の水素吸蔵合金電極。
4. The hydrogen storage alloy has the general formula Zr (Mnx + M
y + Niz) β (where x = 0.1 to 0.8, y =
0.1-0.8, z = 1.0-1.5, x + y + z =
β, 1.5 ≦ β ≦ 2.5, M = Fe, Co, Cr,
V, Ti, Nb, Mo, Cu, indicated by A l or al least one element or more selected), its main alloy phase is an alloy having a C14 type or C15-type Laves phase structure, The crystal lattice constant is a = 4.8 to 5.2Å (angstrom) in the case of C14 type, c
= 7.9 to 8.3Å (Angstrom), a = 6.92 to 7.30Å (Angstrom) for C15 type
The hydrogen storage alloy electrode according to claim 1 or 2.
JP32125191A 1991-11-08 1991-11-08 Hydrogen storage alloy electrode Expired - Lifetime JP3381264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32125191A JP3381264B2 (en) 1991-11-08 1991-11-08 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32125191A JP3381264B2 (en) 1991-11-08 1991-11-08 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH06187983A JPH06187983A (en) 1994-07-08
JP3381264B2 true JP3381264B2 (en) 2003-02-24

Family

ID=18130494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32125191A Expired - Lifetime JP3381264B2 (en) 1991-11-08 1991-11-08 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3381264B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148414A (en) * 1995-03-09 1997-04-23 三菱麻铁里亚尔株式会社 hydrogen occluding alloy and electrode made of the alloy
US5951945A (en) * 1995-06-13 1999-09-14 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5885378A (en) * 1995-07-12 1999-03-23 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5800639A (en) * 1995-10-10 1998-09-01 Mobius Green Energy, Inc. Hydrogen storage electrode composed of alloy with dendrite-free laves phase structure
JP4828986B2 (en) * 2006-03-30 2011-11-30 株式会社東芝 Hydrogen storage alloy, hydrogen storage membrane and hydrogen storage tank
CN102260807B (en) * 2011-06-15 2013-07-03 燕山大学 Zirconium alloy and preparation method thereof
CN104195372B (en) * 2014-05-23 2016-09-28 四会市达博文实业有限公司 One uses for nickel-hydrogen battery many phase hydrogen storage alloys of RE-Mg-Ni system and preparation method thereof
CN106086569B (en) * 2016-08-22 2017-11-14 河南理工大学 Multiphase Mg-RE-Ni hydrogen storage alloy and its application
WO2022250093A1 (en) * 2021-05-27 2022-12-01 愛知製鋼株式会社 High-entropy hydrogen storage alloy, negative electrode for alkaline storage batteries, and alkaline storage battery

Also Published As

Publication number Publication date
JPH06187983A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
EP1253654B1 (en) Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0514017B2 (en)
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH0821379B2 (en) Hydrogen storage electrode
JPH0719599B2 (en) Storage battery electrode
US5532076A (en) Hydrogen storage alloy and electrode therefrom
JP2595967B2 (en) Hydrogen storage electrode
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPH0650634B2 (en) Hydrogen storage electrode
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPH04301045A (en) Hydrogen storage alloy electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JPS62184765A (en) Hydrogen absorbing electrode
JPH0650633B2 (en) Hydrogen storage electrode
JPH08236111A (en) Nickel-hydrogen storage battery
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0598374A (en) Hydrogen storage alloy for ni-hydrogen battery and hydrogen storage alloy electrode
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

EXPY Cancellation because of completion of term