JP3113891B2 - Metal hydride storage battery - Google Patents

Metal hydride storage battery

Info

Publication number
JP3113891B2
JP3113891B2 JP03185117A JP18511791A JP3113891B2 JP 3113891 B2 JP3113891 B2 JP 3113891B2 JP 03185117 A JP03185117 A JP 03185117A JP 18511791 A JP18511791 A JP 18511791A JP 3113891 B2 JP3113891 B2 JP 3113891B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
battery
discharge
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03185117A
Other languages
Japanese (ja)
Other versions
JPH0513096A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP03185117A priority Critical patent/JP3113891B2/en
Publication of JPH0513096A publication Critical patent/JPH0513096A/en
Application granted granted Critical
Publication of JP3113891B2 publication Critical patent/JP3113891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を負極に
用い、水酸化ニッケルや2酸化マンガンなどを正極の主
活物質とし、アルカリ水溶液を電解液に用いる金属水素
化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal hydride storage battery using a hydrogen storage alloy as a negative electrode, nickel hydroxide or manganese dioxide as a main active material of a positive electrode, and an aqueous alkaline solution as an electrolyte. .

【0002】[0002]

【従来の技術】金属水素化物蓄電池の負極である水素吸
蔵電極には、水素吸蔵合金が用いられる。この水素吸蔵
合金は、金属間化合物LaNi5 、ZrNi2 などの成分元素
を、そのほかの種種の金属元素で置換して、アルカリ蓄
電池に用いた場合の充放電サイクル寿命特性、平衡水素
圧、水素の吸蔵放出量等の種種の特性を改良したもので
ある。
2. Description of the Related Art A hydrogen storage alloy is used for a hydrogen storage electrode which is a negative electrode of a metal hydride storage battery. This hydrogen storage alloy replaces component elements such as the intermetallic compounds LaNi 5 and ZrNi 2 with other various metal elements, and when used in an alkaline storage battery, has a charge / discharge cycle life characteristic, equilibrium hydrogen pressure, hydrogen Various characteristics such as the amount of occlusion and release are improved.

【0003】そして、この電池の正極には、従来のニッ
ケル・カドミウム電池などに用いられてきた焼結式や、
発泡メタル式の水酸化ニッケル電極、あるいは2酸化マ
ンガンや酸化銀などが用いられる。
[0003] The positive electrode of this battery includes a sintering method used in conventional nickel-cadmium batteries and the like,
A foamed metal nickel hydroxide electrode, manganese dioxide, silver oxide, or the like is used.

【0004】また、この電池の電解液には、水酸化カリ
ウムや水酸化ナトリウムなどを主体とするアルカリ水溶
液が用いられる。
Further, an alkaline aqueous solution mainly composed of potassium hydroxide, sodium hydroxide or the like is used as an electrolyte for this battery.

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵合金を負極に
用いるアルカリ蓄電池を充電状態で放置すると、水素吸
蔵合金からの水素発生を伴う自己放電が起こるので、こ
の電池の自己放電速度は、負極にカドミウムを用いるア
ルカリ蓄電池よりも大きいという問題点があり、この問
題点を解決することが望まれていた。
When an alkaline storage battery using a hydrogen storage alloy as a negative electrode is left in a charged state, self-discharge accompanied by the generation of hydrogen from the hydrogen storage alloy occurs. There is a problem that it is larger than an alkaline storage battery using cadmium, and it has been desired to solve this problem.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、負極が水素吸蔵合金を主体とし、アル
カリ電解液を有する金属水素化物蓄電池において、その
電解液に、0.00001M以上の濃度のナフタリン、よう化
物、シアン化物、セレン化物、2酸化セレン、亜セレン
酸、セレン酸、セレン酸塩、3酸化テルル、テルル酸、
亜テルル酸、テルル酸塩、亜テルル酸塩、硫化物、2酸
化硫黄、1酸化炭素、2硫化炭素、もしくはチオ尿素か
ら選ばれた少なくとも1つを含有する金属水素化物蓄電
池を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a metal hydride storage battery in which a negative electrode is mainly composed of a hydrogen storage alloy and has an alkaline electrolyte. Concentration of naphthalene, iodide, cyanide, selenide, selenium dioxide, selenite, selenate, selenate, tellurium oxide, telluric acid,
Provided is a metal hydride storage battery containing at least one selected from tellurous acid, tellurite, tellurite, sulfide, sulfur dioxide, carbon monoxide, carbon disulfide, or thiourea.

【0007】[0007]

【作用】本発明では、上記の構成を採用することによっ
て、水素吸蔵合金からの水素の放出が抑制されて、金属
水素化物蓄電池の自己放電が抑制される作用を奏する。
According to the present invention, by employing the above structure, the release of hydrogen from the hydrogen storage alloy is suppressed, and the self-discharge of the metal hydride storage battery is suppressed.

【0008】この作用を、この蓄電池に特有の自己放電
の機構を論じながら説明する。
[0008] This operation will be described while discussing the self-discharge mechanism peculiar to this storage battery.

【0009】水素吸蔵合金を負極に用いる場合に、カド
ミウムを負極に用いる場合と比較して、自己放電速度が
大きい主たる原因は、次のように考えられる。
The main reason why the self-discharge rate is higher when the hydrogen storage alloy is used for the negative electrode than when cadmium is used for the negative electrode is considered as follows.

【0010】アルカリ電解液中における水素発生を伴う
自己放電の機構は次のように考えられる。
The mechanism of the self-discharge accompanied by the generation of hydrogen in the alkaline electrolyte is considered as follows.

【0011】すなわち、アルカリ電解液中における金属
電極や水素吸蔵電極の水素発生を伴う自己放電の速度を
決定する第1の因子に、その電極の平衡電位とその電極
の表面の水素分圧によって決まる水素の電極反応の平衡
電位との関係があり、第2の因子に、その電極の水素発
生反応の速度や水素の消失速度がある。
That is, the first factor that determines the rate of self-discharge accompanying the generation of hydrogen at a metal electrode or a hydrogen storage electrode in an alkaline electrolyte is determined by the equilibrium potential of the electrode and the partial pressure of hydrogen on the surface of the electrode. There is a relationship with the equilibrium potential of the electrode reaction of hydrogen, and the second factor is the rate of the hydrogen generation reaction of the electrode or the rate of disappearance of hydrogen.

【0012】まず、第1の因子により、電極表面の水素
電極反応の平衡電位は、Nernstの式によって求めること
ができ、その電極の平衡電位が水素電極反応の平衡電位
よりも卑であれば、水素ガスの発生を伴う自己放電反応
が自発的に起こり、その電極の平衡電位が水素電極反応
の平衡電位よりも貴であれば、水素ガスの発生を伴う自
己放電反応が自発的に起こらない。このことは、熱力学
の原理によって決定されることである。
First, according to the first factor, the equilibrium potential of the hydrogen electrode reaction on the electrode surface can be obtained by the Nernst equation. If the equilibrium potential of the electrode is lower than the equilibrium potential of the hydrogen electrode reaction, If the self-discharge reaction accompanied by the generation of hydrogen gas occurs spontaneously, and the equilibrium potential of the electrode is higher than the equilibrium potential of the hydrogen electrode reaction, the self-discharge reaction accompanied by the generation of hydrogen gas does not occur spontaneously. This is determined by the principles of thermodynamics.

【0013】次に、電極の平衡電位が水素電極反応の平
衡電位よりも卑である場合の自己放電速度は、その電極
上の水素発生反応の速度や放出された水素の消失速度に
よって決定される。
Next, the self-discharge rate when the equilibrium potential of the electrode is lower than the equilibrium potential of the hydrogen electrode reaction is determined by the rate of the hydrogen generation reaction on the electrode and the rate of disappearance of released hydrogen. .

【0014】ここで、アルカリ蓄電池内における水素吸
蔵電極およびカドミウム電極の水素発生を伴う自己放電
について次の事実がある。
Here, there are the following facts about self-discharge involving hydrogen generation of the hydrogen storage electrode and the cadmium electrode in the alkaline storage battery.

【0015】すなわち、25℃において、アルカリ電解
液中におけるカドミウムの平衡電位は、標準水素電極電
位を基準として-0.809V であるから、水素電極反応の平
衡電位がカドミウム電極の平衡電位に等しくなるのは、
水素の分圧が約0.2気圧であることがNernstの式から
計算できる。従って、水素分圧が約0.2気圧よりも低
くなれば、カドミウム電極の平衡電位は、水素電極反応
の平衡電位よりも卑になって、水素発生を伴うカドミウ
ム電極の自己放電が起こるはずである。
That is, at 25 ° C., the equilibrium potential of cadmium in the alkaline electrolyte is -0.809 V with respect to the standard hydrogen electrode potential, so that the equilibrium potential of the hydrogen electrode reaction becomes equal to the equilibrium potential of the cadmium electrode. Is
It can be calculated from the Nernst equation that the partial pressure of hydrogen is about 0.2 atm. Therefore, if the hydrogen partial pressure is lower than about 0.2 atm, the equilibrium potential of the cadmium electrode becomes lower than the equilibrium potential of the hydrogen electrode reaction, and self-discharge of the cadmium electrode accompanied by hydrogen generation should occur. is there.

【0016】また、水素吸蔵電極の平衡電位は、その吸
蔵水素量に対応する平衡水素圧によってNernstの式によ
って求めることができ、水素分圧が水素吸蔵合金の平衡
水素圧よりも低い場合には、水素発生を伴う水素吸蔵電
極の自己放電が起こるはずである。
Further, the equilibrium potential of the hydrogen storage electrode can be obtained by the Nernst equation using the equilibrium hydrogen pressure corresponding to the amount of hydrogen stored. When the hydrogen partial pressure is lower than the equilibrium hydrogen pressure of the hydrogen storage alloy, Then, self-discharge of the hydrogen storage electrode accompanied by hydrogen generation should occur.

【0017】そして、電池が開放系の場合には、電池内
の水素は大気中へ拡散して失われ、電池が密閉系の場合
には、電池内の水素は充電状態(すなわち酸化剤の状
態)の正極活物質によって酸化されて消費される。それ
ゆえ、放置中の電池内の水素ガスの分圧は、電池が開放
形および密閉形のいずれであっても、負極の平衡電位に
等しい水素電極反応の平衡電位に相当する水素分圧より
も必ず低くなり、水素ガスの発生を伴う負極の自己放電
が進むはずである。この場合に、密閉形電池では、負極
から自己放電にともなって放出された水素は正極の充電
生成物を還元するので、正極および負極が同じ速度で自
己放電する。一方、開放形電池の場合には、負極の自己
放電にともなって放出された水素のうち大気に放出され
たものは正極の充電生成物を還元しないので、負極の自
己放電速度が正極よりも大きくなる。
When the battery is an open system, the hydrogen in the battery diffuses into the atmosphere and is lost. When the battery is a closed system, the hydrogen in the battery is charged (ie, the state of the oxidant). ) Is oxidized and consumed by the positive electrode active material. Therefore, the partial pressure of the hydrogen gas in the battery during standing is lower than the hydrogen partial pressure corresponding to the equilibrium potential of the hydrogen electrode reaction equal to the equilibrium potential of the negative electrode, regardless of whether the battery is open or closed. The temperature should always drop, and self-discharge of the negative electrode accompanied by generation of hydrogen gas should proceed. In this case, in the sealed battery, the hydrogen released by the self-discharge from the negative electrode reduces the charge product of the positive electrode, so that the positive electrode and the negative electrode self-discharge at the same rate. On the other hand, in the case of an open-type battery, the self-discharge rate of the negative electrode is higher than that of the positive electrode because hydrogen released to the atmosphere among the hydrogen released due to the self-discharge of the negative electrode does not reduce the charge product of the positive electrode. Become.

【0018】熱力学的にはこのように予想されるのであ
るが、実際の電池では、水素吸蔵電極の平衡水素圧が
0.2気圧よりも低くて、その平衡電位がカドミウム電
極の平衡電位よりも貴である場合であっても、水素吸蔵
電極の自己放電速度は、カドミウム電極よりも著しく大
きく、カドミウム電極では、水素の発生を伴う自己放電
はほとんど起こらない。
Although this is expected thermodynamically, in an actual battery, the equilibrium hydrogen pressure of the hydrogen storage electrode is lower than 0.2 atm, and the equilibrium potential of the hydrogen storage electrode is lower than the equilibrium potential of the cadmium electrode. Even when the cadmium electrode is noble, the self-discharge rate of the hydrogen storage electrode is significantly higher than that of the cadmium electrode, and the cadmium electrode hardly causes self-discharge accompanied by generation of hydrogen.

【0019】このように、水素吸蔵電極とカドミウム電
極との水素発生を伴う自己放電速度に著しい差異がある
主たる原因は、カドミウムの水素過電圧が著しく高く、
一方水素吸蔵合金の水素過電圧が著しく低いことにあ
る。
As described above, the main cause of the remarkable difference in the self-discharge rate accompanying the hydrogen generation between the hydrogen storage electrode and the cadmium electrode is that the hydrogen overvoltage of cadmium is extremely high,
On the other hand, the hydrogen overpotential of the hydrogen storage alloy is extremely low.

【0020】すなわち、水素吸蔵合金は、水素過電圧が
著しく低いので、水素分圧が水素吸蔵電極の平衡水素圧
よりも低くなると容易に水素発生反応が起こるのであ
る。
That is, since the hydrogen storage alloy has a remarkably low hydrogen overvoltage, the hydrogen generation reaction easily occurs when the hydrogen partial pressure becomes lower than the equilibrium hydrogen pressure of the hydrogen storage electrode.

【0021】そこで、本発明では、水素吸蔵合金を主体
とし、アルカリ電解液を有する金属水素化物蓄電池にお
いて、その電解液に、0.00001M以上の濃度のナフタリ
ン、よう化物、シアン化物、セレン化物、2酸化セレ
ン、亜セレン酸、セレン酸、亜セレン酸塩、セレン酸
塩、3酸化テルル、テルル酸、亜テルル酸、テルル酸
塩、亜テルル酸塩、硫化物、2酸化硫黄、1酸化炭素、
2硫化炭素、もしくはチオ尿素から選ばれた少なくとも
1つを含有させる。
Therefore, according to the present invention, in a metal hydride storage battery mainly composed of a hydrogen storage alloy and having an alkaline electrolyte, the electrolyte contains a naphthalene, iodide, cyanide, selenide, and a concentration of 0.00001 M or more. Selenium oxide, selenous acid, selenic acid, selenite, selenate, tellurium oxide, telluric acid, tellurite, tellurite, tellurite, sulfide, sulfur dioxide, carbon monoxide,
At least one selected from carbon disulfide and thiourea is contained.

【0022】これらの添加物は、水素発生反応の触媒毒
として作用する。したがって、水素過電圧が低くて水素
を発生しやすい水素吸蔵合金を用いる場合にも、これら
の触媒毒が存在すると、負極からの水素発生の速度が小
さくなって、自己放電速度が小さくなるのである。
These additives act as catalyst poisons for the hydrogen generation reaction. Therefore, even when a hydrogen storage alloy having a low hydrogen overvoltage and easily generating hydrogen is used, if these catalyst poisons are present, the rate of hydrogen generation from the negative electrode decreases, and the rate of self-discharge decreases.

【0023】[0023]

【実施例】本発明を好適な実施例によって説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described by way of preferred embodiments.

【0024】負極が水素吸蔵合金を主体とし、アルカリ
電解液を有する金属水素化物蓄電池を次のようにして製
作した。
A metal hydride storage battery having a negative electrode mainly composed of a hydrogen storage alloy and having an alkaline electrolyte was manufactured as follows.

【0025】負極板は、ペースト式のものを5枚用い
た。この電極は次のようにして製作した。
As the negative electrode plate, five paste type plates were used. This electrode was manufactured as follows.

【0026】水素吸蔵合金は、その組成が原子比でLmNi
3.8 Co0.7 Al0.5 になるように、その構成元素を金属の
状態で真空にした高周波誘導炉中で溶解し、鋳造してか
ら粉砕した。ここでLmは、Laを約90重量% 含有する稀土
類金属の混合物であるランタンリッチミッシュメタルで
ある。この合金粉末を、増粘剤かつ結着剤の機能を果た
すポリビニルアルコールの水溶液に分散してペースト状
にした。そしてニッケルメッキを施した鉄製のパンチン
グメタルの両面にこのペーストを塗着し、乾燥し、プレ
スし、切断して水素吸蔵電極を製作した。
The composition of the hydrogen storage alloy is LmNi in atomic ratio.
The constituent elements were melted in a vacuum in a high-frequency induction furnace in a metal state so as to obtain 3.8 Co 0.7 Al 0.5 , cast, and then pulverized. Here, Lm is a lanthanum-rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La. This alloy powder was dispersed in an aqueous solution of polyvinyl alcohol which functions as a thickener and a binder to form a paste. The paste was applied to both surfaces of a nickel-plated iron punching metal, dried, pressed, and cut to produce a hydrogen storage electrode.

【0027】この電池1個の負極板5枚に含まれる水素
吸蔵合金の重量は、約5.3gである。
The weight of the hydrogen storage alloy contained in the five negative electrodes of one battery is about 5.3 g.

【0028】正極には、公知の焼結式水酸化ニッケル電
極4枚を用いた。
As the positive electrode, four known sintered nickel hydroxide electrodes were used.

【0029】正極の水酸化ニッケル電極の4枚に含まれ
る水酸化ニッケルの合計の重量は、1セル当たり3.9
gである。従って、水酸化ニッケルが1電子反応に従う
ことを仮定すると、電池1個の正極の理論容量は約1.
1Ahである。この電極には、水酸化ニッケル1グラム
当たり水酸化コバルト0.04グラムを添加してある。
The total weight of nickel hydroxide contained in the four positive nickel hydroxide electrodes was 3.9 per cell.
g. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of one battery positive electrode is about 1.
1 Ah. To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide.

【0030】試験用の電池は、ポリプロピレンとポリス
チレンとの混合物の繊維からなる不織布のポリスチレン
をスルフォン化して親水性を賦与したセパレータを介し
て、これらの負極および正極を、交互に積層し、この極
板群を角形の密閉式金属電槽に収納して製作した。
The battery for the test was prepared by alternately laminating these negative electrodes and positive electrodes through a separator provided with hydrophilicity by sulfonating non-woven polystyrene made of a fiber of a mixture of polypropylene and polystyrene. The plate group was housed in a rectangular sealed metal battery case and manufactured.

【0031】電解液は、従来の電池Aには、20g/l
のLiOHを溶解した6MのKOH水溶液を用い、本発明の
電池B,C,D,E,F,G,H,I,J,K,L,
M,N,O,P,Q,R,SおよびTには、このアルカ
リ水溶液に、それぞれ 0.00005M の濃度のナフタリン、
よう化カリウム、シアン化カリウム、セレン化亜鉛、2
酸化セレン、亜セレン酸、セレン酸、亜セレン酸ナトリ
ウム、セレン酸ナトリウム、3酸化テルル、テルル酸、
亜テルル酸、テルル酸カリウム、亜テルル酸カリウム、
硫化カリウム、2酸化硫黄、1酸化炭素、2硫化炭素、
およびチオ尿素を溶解したものを電解液に用いた。
The electrolyte used in the conventional battery A is 20 g / l.
Using a 6 M aqueous KOH solution in which LiOH was dissolved, the batteries B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, and T were each added to this aqueous alkali solution at a concentration of 0.00005 M naphthalene,
Potassium iodide, potassium cyanide, zinc selenide, 2
Selenium oxide, selenous acid, selenic acid, sodium selenite, sodium selenite, tellurium oxide, telluric acid,
Tellurous acid, potassium tellurite, potassium tellurite,
Potassium sulfide, sulfur dioxide, carbon dioxide, carbon dioxide,
And the thing which melt | dissolved thiourea was used for electrolyte solution.

【0032】これらの電池を、正極の理論容量を基準と
して10時間率の電流で15時間充電し、5時間率の電
流で端子電圧が1Vになるまで放電するという条件で化
成充放電をおこなった。次に、10時間率の電流で15
時間充電し、5時間率の電流で端子電圧が1Vになるま
で放電するという条件で、放置の前の放電容量を測定し
た。そして、10時間率の電流で15時間充電し、20
日間放置してから、5時間率の電流で端子電圧が1Vに
なるまで放電するという条件で放置後の放電容量を測定
した。これらの充放電および充電後の放置は、全て25
℃の周囲温度においておこなった。
These batteries were charged and discharged under the condition that they were charged at a 10-hour rate current for 15 hours based on the theoretical capacity of the positive electrode and discharged at a 5-hour rate current until the terminal voltage became 1 V. . Next, at a current of 10 hour rate, 15
Under the condition that the battery was charged for 5 hours and discharged at a current of 5 hours until the terminal voltage became 1 V, the discharge capacity before leaving was measured. The battery is charged for 15 hours at a current rate of 10 hours,
The discharge capacity after standing was measured under the condition that the battery was discharged at a current rate of 5 hours until the terminal voltage became 1 V after standing for 5 days. Leaving these batteries after charging / discharging and charging were all 25
Performed at an ambient temperature of ° C.

【0033】この試験において、放置による容量保持率
を、放置の前の放電容量に対する放置の後の放電容量と
定義し、上記の試験で得られた各電池の容量保持率の値
を表1に示す。
In this test, the capacity retention after standing was defined as the discharge capacity after standing relative to the discharging capacity before standing, and the value of the capacity retention of each battery obtained in the above test is shown in Table 1. Show.

【0034】[0034]

【表1】 表1から、本発明の電池B,C,D,E,F,G,H,
I,J,K,L,M,N,O,P,Q,R,S,および
Tの容量保持率は、従来の電池Aと比較して著しく高
く、従って、自己放電速度が著しく小さいことが明かで
ある。
[Table 1] From Table 1, the batteries B, C, D, E, F, G, H,
The capacity retention of I, J, K, L, M, N, O, P, Q, R, S, and T is significantly higher than that of the conventional battery A, and therefore, the self-discharge rate is significantly lower. Is clear.

【0035】なお、上記の実施例では、本発明の電池の
電解液中の添加物の濃度が0.00005M の場合について説
明したが、これらの添加物の濃度が0.00001 M 以上の範
囲で、同様に自己放電が抑制されることを確かめた。
In the above embodiment, the case where the concentration of additives in the electrolytic solution of the battery of the present invention is 0.00005 M has been described. However, when the concentration of these additives is 0.00001 M or more, the same applies. It was confirmed that self-discharge was suppressed.

【0036】さらに、上記の実施例では、よう化物、シ
アン化物、硫化物として、カリウムとの化合物を用いる
場合を説明したが、触媒毒として作用するのは、よう化
物イオン、シアン化物イオン、硫化物イオンであるか
ら、カリウムとの化合物のほかにナトリウム等の化合物
を用いても同様の作用効果が得られる。また、セレン化
亜鉛の場合にもセレン化物イオンが本発明の作用効果を
有するので、亜鉛のほかの元素のセレン化物でも同様の
作用効果が得られる。そして、セレン酸ナトリウム、亜
セレン酸ナトリウム、テルル酸カリウム、亜テルル酸カ
リウムの場合にも、それぞれ、セレン酸イオン、亜セレ
ン酸イオン、テルル酸イオン、亜テルル酸イオンが本発
明の作用効果を奏するのであるから、特定のアルカリ金
属との塩だけではなくそのほかのカチオンとの塩も、同
様の作用効果を奏する。
Further, in the above embodiment, the case where a compound with potassium is used as iodide, cyanide and sulfide is described. However, iodide ion, cyanide ion and sulfide are used as catalyst poisons. Since it is a compound ion, a similar effect can be obtained by using a compound such as sodium in addition to the compound with potassium. Also, in the case of zinc selenide, since selenide ions have the function and effect of the present invention, the same function and effect can be obtained with selenide of other elements than zinc. In the case of sodium selenate, sodium selenite, potassium tellurite, and potassium tellurite, selenate ion, selenite ion, tellurite ion, and tellurite ion respectively show the effect of the present invention. Therefore, not only a salt with a specific alkali metal but also a salt with another cation has the same effect.

【0037】また、上記の実施例では、負極の水素吸蔵
合金として、特定の組成のものを用いた場合について説
明したが、アルカリ蓄電池においては、水素吸蔵合金の
中でもニッケルを含有するものが水素吸蔵電極として作
動するのであり、それら合金の表面のニッケルが水素の
反応の触媒作用を有するのである。そして、本発明の電
池で用いている触媒毒は、このニッケル成分の触媒活性
に作用して自己放電を抑制するのであるから、本発明の
作用効果は、単に上記の実施例の電池の合金だけではな
く、LaNi5 、ZrNi2 、TiNi、Ti2 Ni等の水素吸蔵合金の
構成金属をほかの元素で置換したものについても、上記
の実施例と同様の作用効果が得られる。
In the above embodiment, the case where a specific composition was used as the hydrogen storage alloy for the negative electrode was described. However, in an alkaline storage battery, among the hydrogen storage alloys, those containing nickel were the hydrogen storage alloys. Acting as an electrode, the nickel on the surface of these alloys catalyzes the reaction of hydrogen. Since the catalyst poison used in the battery of the present invention acts on the catalytic activity of the nickel component to suppress self-discharge, the function and effect of the present invention is merely the alloy of the battery of the above embodiment. Instead, the same operation and effect as those of the above embodiment can be obtained also in the case where the constituent metals of the hydrogen storage alloy such as LaNi 5 , ZrNi 2 , TiNi, and Ti 2 Ni are replaced with other elements.

【0038】また、上記の実施例では、正極に焼結式の
水酸化ニッケル電極を用いる場合について説明したが、
発泡メタル式の水酸化ニッケル電極や、2酸化マンガン
電極、酸化銀電極を正極に用いる場合も同様の作用効果
がある。
In the above embodiment, the case where a sintered nickel hydroxide electrode is used for the positive electrode has been described.
Similar effects can be obtained when a foamed metal nickel hydroxide electrode, manganese dioxide electrode, or silver oxide electrode is used as the positive electrode.

【0039】また、上記の実施例では、密閉形の電池に
ついて説明したが、開放形電池の場合にも、水素発生を
伴う負極の自己放電が、同様に効果的に抑制される。
In the above embodiment, the sealed type battery is described. However, in the case of the open type battery, the self-discharge of the negative electrode accompanying the generation of hydrogen is similarly effectively suppressed.

【0040】[0040]

【発明の効果】以上に述べたように、本発明の金属水素
化物蓄電池は、自己放電速度が小さいという効果を奏す
る。
As described above, the metal hydride storage battery of the present invention has an effect that the self-discharge rate is low.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/30 H01M 10/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/24-10/30 H01M 10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極が水素吸蔵合金を主体とし、アルカリ
電解液を有する金属水素化物蓄電池において、 その電解液に、0.00001M以上の濃度のナフタリン、よう
化物、シアン化物、セレン化物、2酸化セレン、亜セレ
ン酸、セレン酸、亜セレン酸塩、セレン酸塩、3酸化テ
ルル、テルル酸、亜テルル酸、テルル酸塩、亜テルル酸
塩、硫化物、2酸化硫黄、1酸化炭素、2硫化炭素もし
くはチオ尿素から選ばれた少なくとも1つを含有するこ
とを特徴とする金属水素化物蓄電池。
1. A metal hydride storage battery having a negative electrode mainly composed of a hydrogen storage alloy and having an alkaline electrolyte, wherein the electrolyte contains naphthalene, iodide, cyanide, selenide, and selenium dioxide having a concentration of 0.00001M or more. , Selenite, selenite, selenite, selenate, tellurium trioxide, telluric acid, tellurite, tellurite, tellurite, sulfide, sulfur dioxide, carbon monoxide, disulfide A metal hydride storage battery containing at least one selected from carbon and thiourea.
JP03185117A 1991-06-28 1991-06-28 Metal hydride storage battery Expired - Fee Related JP3113891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03185117A JP3113891B2 (en) 1991-06-28 1991-06-28 Metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03185117A JP3113891B2 (en) 1991-06-28 1991-06-28 Metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH0513096A JPH0513096A (en) 1993-01-22
JP3113891B2 true JP3113891B2 (en) 2000-12-04

Family

ID=16165165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03185117A Expired - Fee Related JP3113891B2 (en) 1991-06-28 1991-06-28 Metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3113891B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492057B1 (en) * 1999-04-14 2002-12-10 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
KR100395818B1 (en) * 2001-10-26 2003-08-27 삼성에스디아이 주식회사 Organic electrolyte solution and lithium batteries adopting the same
JP6057369B2 (en) * 2013-01-30 2017-01-11 Fdk株式会社 Nickel metal hydride secondary battery
JP6779874B2 (en) * 2014-11-13 2020-11-04 ビーエーエスエフ コーポレーション Electrolytes and metal hydride batteries

Also Published As

Publication number Publication date
JPH0513096A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4004943A (en) Rechargeable electrochemical cell
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
US5132177A (en) Alkaline storage cell
US4621034A (en) Sealed metal oxide-hydrogen storage cell
US4702978A (en) Electrochemical cell
JP3113891B2 (en) Metal hydride storage battery
JP2604282B2 (en) Alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPH01102855A (en) Hydrogen storing alloy electrode
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3314611B2 (en) Nickel electrode for alkaline storage battery
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
JP2680623B2 (en) Hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2962814B2 (en) Hydrogen storage alloy electrode
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP2680650B2 (en) Sealed alkaline storage battery and manufacturing method thereof
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
EP0567132B1 (en) Sealed type nickel/hydrogen alkaline storage battery
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JPH06145849A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees