JPS62294143A - Manufacture of metallic alloy for hydrogen storage - Google Patents

Manufacture of metallic alloy for hydrogen storage

Info

Publication number
JPS62294143A
JPS62294143A JP13849986A JP13849986A JPS62294143A JP S62294143 A JPS62294143 A JP S62294143A JP 13849986 A JP13849986 A JP 13849986A JP 13849986 A JP13849986 A JP 13849986A JP S62294143 A JPS62294143 A JP S62294143A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
ferrozirconium
melting
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13849986A
Other languages
Japanese (ja)
Inventor
Kimiaki Mori
毛利 公昭
Hideyuki Sasaki
英行 佐々木
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP13849986A priority Critical patent/JPS62294143A/en
Publication of JPS62294143A publication Critical patent/JPS62294143A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and inexpensively manufacture a metallic alloy for hydrogen storage represented by a specific rational formula, by heating specific proportions of ferrozirconium, iron, and chromium in a melting furnace to melt them and then by cooling the above down to room temp. CONSTITUTION:In manufacturing a metallic alloy for hydrogen storage represented by a rational formula Zr(CrxFe1-x)2, ferrozirconium, iron, and chromium are weighed so that they come into weight ratios suited to the above (x) value preferably of about >0.2-0.8, which are formed into small lumps or small pieces, respectively, and alternately laminated into plural layers in a heat-resisting crucible. Subsequently, the above crucible is placed into a high vacuum-type high-frequency induction melting furnace to undergo heating so as to melt the alloy and single-phase substance of the above starting materials. After the above melting, the above molten alloy is cooled slowly in the air down to room., so that above-mentioned metallic alloy for hydrogen storage can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は水素吸蔵合金の製造方法に関し、特にZ、(C
,XF=r−x)2の示性式で表わされる水素吸蔵合金
の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a hydrogen storage alloy, in particular Z, (C
, XF=r-x)2.

(従来技術) 水素吸蔵合金は温度・圧力の制御下に水素を吸収し金属
水素化合物として貯蔵したり或いは貯蔵していた水素を
放出したりする特性を有するものであり、自動車に搭載
される水素エンジンや燃料電池などの為の水素貯蔵手段
としてまたヒートポンプとして有望視されており、最近
では多種の水素吸蔵合金が提案され実用化されつつある
(Prior art) Hydrogen storage alloys have the property of absorbing hydrogen under temperature and pressure control and storing it as a metal hydride compound or releasing the stored hydrogen. It is seen as a promising hydrogen storage means for engines, fuel cells, etc., and as a heat pump, and recently, various hydrogen storage alloys have been proposed and are being put into practical use.

現在のところ、水素吸蔵合金の代表的なものとしては、
稀土類系合金とT、系合金とM9系合金の3種がある。
At present, the typical hydrogen storage alloys are:
There are three types: rare earth alloys and T-based alloys, and M9-based alloys.

L、Ni、など稀土類系合金は吸蔵量、反応速度等の優
秀性に対して、コストが非常に高価であり、この改良の
為、ミツシュメタル系が研究されている。F、T、など
Ti系合金はコスト的には大きな長所を有し、吸蔵量・
解離温度もそれ程劣っていないが、初期の反応(初期活
性化)に困難がある。更にMg系合金は吸蔵量・重量の
点で優秀であるが、解離温度が大変高く、制御が困難と
いう短所がある。
Although rare earth alloys such as L and Ni have excellent storage capacity and reaction speed, they are very expensive, and to improve this, Mitsushi metal alloys are being researched. Ti-based alloys such as F, T, etc. have great advantages in terms of cost, and have low storage capacity and
Although the dissociation temperature is not so inferior, there are difficulties in the initial reaction (initial activation). Furthermore, although Mg-based alloys are excellent in terms of storage capacity and weight, they have the disadvantage of having a very high dissociation temperature that is difficult to control.

上記の他にアルカリ系、アルミニウム系、ジルコニウム
系、アモルファス等の材料開発、研究が国内外の研究機
関、民間企業において成されているが、前記3種の合金
を総合的に凌駕するものは未だ知られていない。
In addition to the above, research and development of materials such as alkali-based, aluminum-based, zirconium-based, and amorphous materials are being carried out at domestic and overseas research institutes and private companies, but there is still no material that comprehensively surpasses the above three types of alloys. unknown.

一般に水素吸蔵合金の利用に際して要求される項目は、
吸蔵能力、解離圧温度、吸蔵放出反応速度、活性化難易
性、重量、コスト等があるが、これらについて、上記の
合金群をそれぞれ検討してみると、各々一長一短である
Generally, the items required when using hydrogen storage alloys are:
There are storage capacity, dissociation pressure temperature, storage-release reaction rate, activation difficulty, weight, cost, etc., and when considering each of the above alloy groups, each has its advantages and disadvantages.

一方、本願出願人は先の出願(特願昭60−23511
8号)において、Z−(C−F−1−X)2の示性式で
表わされる0、15≦X≦0.8の範囲の組成を有する
ジルコニウム系水素吸蔵合金を従業した。
On the other hand, the applicant has filed an earlier application (Japanese Patent Application No. 60-23511).
In No. 8), a zirconium-based hydrogen storage alloy having a composition in the range of 0, 15≦X≦0.8 expressed by the characteristic formula Z-(C-F-1-X)2 was used.

このジルコニウム系水素吸蔵合金は、吸蔵能力、解離圧
温度、吸蔵放出反応速度、活性化難易性などの面で良好
な特性を発揮するものである。
This zirconium-based hydrogen storage alloy exhibits good properties in terms of storage capacity, dissociation pressure temperature, storage/release reaction rate, and activation difficulty.

上記出願の明細書にも記載したように、上記ジルコニウ
ム系水素吸蔵合金を製造する場合、Z。
As described in the specification of the above-mentioned application, when producing the above-mentioned zirconium-based hydrogen storage alloy, Z.

、C,、F、の原料金属の単相体(純金属)を用い、そ
れらを前記Xの値に応じた所定の配合比となるように秤
量し、この秤量したZ、、とC,、とF。とを不活性ガ
ス雰囲気中で通常の合金製造方法(例えば、アークメル
ト法など)により溶融させてから低温まで冷却させるこ
とで製造していた。
, C,,F, are used as a single-phase material (pure metal), and weighed so as to have a predetermined mixing ratio according to the value of X, and the weighed Z, , and C, , and F. It has been manufactured by melting and cooling to a low temperature in an inert gas atmosphere using a normal alloy manufacturing method (for example, arc melting method, etc.).

(発明が解決しようとする問題点) 上記のように、Z−(CrXF−1−X)2の示性式で
表わされるジルコニウム系水素吸蔵合金をZrとC1と
F、の原料金属の単相体を用いて製造する場合、高純度
の2.の単相体が非常に高価であることから水6素吸蔵
合金の原料コストが高価になり、水素吸蔵合金を安価に
製造することが困難になるという問題がある。
(Problems to be Solved by the Invention) As mentioned above, a zirconium-based hydrogen storage alloy represented by the characteristic formula Z-(CrXF-1-X)2 is a single-phase raw material metal of Zr, C1, and F. In the case of manufacturing using a high-purity 2. Since the single-phase material is very expensive, the raw material cost of the hydrogen storage alloy becomes expensive, and there is a problem that it becomes difficult to manufacture the hydrogen storage alloy at a low cost.

また、Z、の融点(1856℃)がC,、の融点(18
75℃)と同程度に高いことから、溶解時の溶湯温度が
約1900℃もの高温になり、溶解炉の溶湯容器(ルツ
ボなど)として1900℃以上の耐熱温度のものを上記
ルツボとして比較的小容量の水冷銅ルツボなどを用いる
ことも可能ではあるが、一般に広く使用されるマグネシ
ア系ルツボやカルシア系ルツボなどを用いる場合には純
Zrは加熱時激しく酸化反応を起すので、ルツボ材料の
酸化物中の酸素等と反応して不純物を生成し易いという
問題がある。
Also, the melting point of Z, (1856°C) is the melting point of C,, (18
75℃), the temperature of the molten metal during melting reaches a high temperature of approximately 1900℃, and the molten metal container (crucible, etc.) of the melting furnace has a heat resistance temperature of 1900℃ or higher. Although it is possible to use a high-volume water-cooled copper crucible, when using the widely used magnesia-based crucible or calcia-based crucible, pure Zr undergoes a violent oxidation reaction when heated, so the oxides of the crucible material are There is a problem in that it tends to react with oxygen, etc. inside and generate impurities.

加えて、水素吸蔵合金を製造する際に、原料の偏在を防
ぐとともに溶解を促進するため予め原料を小塊状に細分
化しなければならないが、この小塊状に細分化するのに
多大の労力を必要とするだけでなく、そのときに発生す
る純Z1の微粉末は空気中で自然発火するなど取扱いの
面でも種々配慮しなければならないという問題がある。
In addition, when producing hydrogen storage alloys, the raw materials must be divided into small lumps in order to prevent uneven distribution of the raw materials and promote dissolution, but it takes a lot of effort to break them into small lumps. In addition to this, there are problems in that the fine powder of pure Z1 generated at that time spontaneously ignites in the air, and various considerations must be taken in handling.

(問題点を解決するための手段) 本発明に係る水素吸蔵合金の製造方法は、Zl(C,、
F、、−、)zの示性式で表わされる水素吸蔵合金を製
造するに当り、フェロジルコニウムと、Crの単相体と
、F、の単相体とを用い、上記C1の組成比Xの値に応
じた重量比率となるようにフェロジルコニウムとCrと
F8とを秤量し、この秤量したフェロジルコニウムとC
トとF、とを溶解炉内で加熱して溶解させ、溶M後室温
まで冷却させるものである。
(Means for Solving the Problems) The method for producing a hydrogen storage alloy according to the present invention includes Zl(C,...
In manufacturing a hydrogen storage alloy represented by the characteristic formula F, -, )z, a single phase body of ferrozirconium, Cr, and a single phase body of F are used, and the composition ratio of C1 is Weigh ferrozirconium, Cr, and F8 so that the weight ratio corresponds to the value of
and F are heated and melted in a melting furnace, and after the molten M is cooled to room temperature.

上記フェロジルコニウム(ジルコニウム鉄合金)は、脱
酸、脱窒剤、特殊畑添加剤として工業的に使用されてい
る安価なジルコニウム合金であって、一般にフェロジル
コニウムには約75〜80%のジルコニウムが合金の形
で含まれている。
The above ferrozirconium (zirconium iron alloy) is an inexpensive zirconium alloy that is used industrially as a deoxidizer, denitrifier, and special field additive. Contains in alloy form.

上記Crの単相体としては電解クロム(純度99.2%
以上)を用い、上記F。の単相体としては電解鉄(純度
99.9%以上)を用いることが出来る。
The single-phase Cr mentioned above is electrolytic chromium (purity 99.2%).
above), and the above F. Electrolytic iron (purity of 99.9% or more) can be used as the single-phase material.

上記C1組成比Xの値としては0.2 < x≦0.8
の範囲が望ましく、X≦0.2の範囲のものは初期活性
化が難しくなりx > 0.8の範囲のもは実用性のあ
る温度条件の下で十分なプラトー特性が得られなくなる
The value of the above C1 composition ratio X is 0.2 < x≦0.8
A range of x is desirable; when x≦0.2, initial activation becomes difficult, and when x>0.8, sufficient plateau characteristics cannot be obtained under practical temperature conditions.

上記溶解炉としては、真空型高周波誘導溶解炉と例えば
マグネシア系或いはカルシア系の1700℃以上の耐熱
性溶解ルツボとを用いて溶解することが出来る。そして
、上記溶解ルツボに小塊状に粉砕したフェロジルコニウ
ムと小片状に細分化したC、単相体と同じく小片状に細
分化したF8単相体とを複数層に交互に積層することが
望ましい。
As the melting furnace, a vacuum type high frequency induction melting furnace and a heat-resistant melting crucible of 1700° C. or higher, such as a magnesia-based or calcia-based melting crucible, can be used. Then, in the melting crucible, ferrozirconium crushed into small lumps, C fragmented into small pieces, and F8 single phase material fragmented into small pieces in the same manner as the single phase material can be alternately laminated in multiple layers. desirable.

上記溶解炉で溶解後には、室温まで冷却するときには大
気中で徐冷することが望ましい。
After melting in the melting furnace, it is desirable to slowly cool the material to room temperature in the atmosphere.

(作用) 本発明に係る水素吸蔵合金の製造方法においては、Zr
単相体と比較して融点の低いフェロジルコニウム(融点
1600〜1700℃)を用いるので、この場合、F、
→フェロジルコニウム−C1の順に溶解が進行し、局所
的にはCrの融点に達するけれども全体的には約170
0−1750℃程度の比較的低い温度で溶解させること
が出来る。
(Function) In the method for manufacturing a hydrogen storage alloy according to the present invention, Zr
Since ferrozirconium, which has a lower melting point than a single phase material (melting point 1600 to 1700°C), is used, in this case, F,
→Dissolution progresses in the order of ferrozirconium-C1, and although it locally reaches the melting point of Cr, the overall melting point is about 170%.
It can be melted at a relatively low temperature of about 0-1750°C.

また、フェロジルコニウムは75〜80%のZ、を含ん
でいるにも拘わず、F、との化合物になっている関係上
、Zr単相体の如(加熱時激しく酸化されるという特性
を失なっているので、加熱時ルツボ材料中の酸化物に含
まれる酸素で酸化されにくく不純物が生成されることも
ない。
In addition, although ferrozirconium contains 75 to 80% Z, it is a compound with F, so it is similar to a Zr single phase (it has the property of being violently oxidized when heated). Therefore, when heated, it is difficult to be oxidized by oxygen contained in the oxide in the crucible material, and no impurities are generated.

(発明の効果) 本発明に係る水素吸蔵合金の製造方法によれば、以上説
明したように水素吸蔵合金の原料として純Z、よりも格
段に安価なフェロジルコニウムと、C,、とFoとを用
いるので、従来方法で製造する場合の約1/3の価格の
水素吸蔵合金を製造することが出来る。
(Effects of the Invention) According to the method for producing a hydrogen storage alloy according to the present invention, as explained above, ferrozirconium, which is much cheaper than pure Z, C, , and Fo are used as raw materials for the hydrogen storage alloy. As a result, it is possible to produce a hydrogen storage alloy at about ⅓ the cost of production using conventional methods.

フェロジルコニウムの融点が低く、フェロジルコニウム
はルツボ材料中の酸素原子等と反応して不純物を生成す
ることもないので、マグネシア系ルツボ等と高周波誘導
型溶解炉を用いて水素吸蔵合金を量産することが出来る
The melting point of ferrozirconium is low, and ferrozirconium does not react with oxygen atoms in the crucible material to produce impurities, so hydrogen storage alloys can be mass-produced using magnesia-based crucibles and high-frequency induction melting furnaces. I can do it.

フェロジルコニウムは安定な化合物であるので取扱上も
また溶解に供する上でも特別の配慮を必要とせず、また
簡単に破砕されるので水素吸蔵合金の量産に適している
Since ferrozirconium is a stable compound, it does not require special care when handling or melting, and is easily crushed, making it suitable for mass production of hydrogen storage alloys.

(実施例) 以下、本発明に係る水素吸蔵合金の製造方法及びその製
造方法で製造した水素吸蔵合金の実施例について図面を
引用して説明する。
(Examples) Hereinafter, examples of the method for manufacturing a hydrogen storage alloy according to the present invention and the hydrogen storage alloy manufactured by the method will be described with reference to the drawings.

最初に、Z、(C,、F、、□)2の示性式で表わされ
る0、 2 < x≦0.8の範囲の組成のジルコニウ
ム系水素吸蔵合金の製造方法について説明する。
First, a method for manufacturing a zirconium-based hydrogen storage alloy having a composition in the range of 0, 2 < x≦0.8, which is expressed by the characteristic formula Z, (C,, F,, □) 2, will be described.

第1工程においては、上記水素吸蔵合金を製造する為の
原料として、本実施例では78.2%のZ、を含有した
フェロジルコニウムと、1度99.9%の電解鉄と、純
度99.2%の電解クロムとを用い、上記フェロジルコ
ニウムを0.5〜1.0a!1程度の小塊に粉砕すると
ともに、電解鉄及び電解クロムも同様に小塊状或いは板
状に細かく分断した。
In the first step, as raw materials for manufacturing the hydrogen storage alloy, in this example, ferrozirconium containing 78.2% Z, electrolytic iron with a purity of 99.9%, and 99.9% purity. Using 2% electrolytic chromium, the above ferrozirconium is 0.5 to 1.0a! In addition to pulverizing the electrolytic iron and electrolytic chromium into small lumps of about 100 ml, the electrolytic iron and electrolytic chromium were also finely divided into small lumps or plates.

上記小塊状にしたフェロジルコニウムと電解鉄と電解ク
ロムとを前記示性式のXの値に応じた重量比率となるよ
うに秤量した。
The small lumps of ferrozirconium, electrolytic iron, and electrolytic chromium were weighed so that the weight ratio corresponded to the value of X in the above-mentioned formula.

第2工程においては、高周波電力20KW、周波数3 
KHz、最大溶解量5 kgの定格の真空型高周波誘渾
型溶解炉を用い、この溶解炉の炉槽内の円筒形マダネシ
アルツボ(壁厚10tm)にフェロジルコニウム、鉄、
クロムを数層交互に、電流を誘導した時全体的に溶解し
易い様に積層し、総量3 kg装填した。但しルツボは
1700℃以上の耐熱性があれば使用可能で、ルツボは
事前の熱処理を行なわなかった。
In the second step, high frequency power 20KW, frequency 3
Using a vacuum-type high-frequency induction melting furnace rated at KHz and a maximum melting amount of 5 kg, ferrozirconium, iron,
Several layers of chromium were laminated alternately in such a way that they were easily dissolved as a whole when a current was induced, and a total amount of 3 kg was loaded. However, the crucible can be used as long as it has a heat resistance of 1700° C. or higher, and the crucible was not heat-treated in advance.

第3工程においては、溶解炉の炉槽内の酸素や窒素除去
のため、炉槽内を10−3〜10−’torrに真空排
気してから、高周波電源を投入した。
In the third step, in order to remove oxygen and nitrogen from the furnace tank of the melting furnace, the inside of the furnace tank was evacuated to 10-3 to 10-'torr, and then a high frequency power source was turned on.

このときの初期設定電力は、高周波電圧が150■、直
流電流が45 Aであった。
The initial power settings at this time were a high frequency voltage of 150 cm and a direct current of 45 A.

第4工程においては、上記電源投入により原料に誘導電
流を発生させて加熱していくと、原料中からガスが発生
して来たので、このときA、やN2などの不活性ガスで
上記ガスを置換した。この場合不活性ガスのガス圧力0
.5気圧の負圧に調整した。そして、ガスの発生状況に
応じて必要ならば炉槽内のガスを脱気して再度不活性ガ
スを封入することが望ましい。
In the fourth step, when the power is turned on to generate an induced current in the raw material and heat it, gas is generated from the raw material, so at this time, inert gas such as A or N2 is used to was replaced. In this case, the gas pressure of the inert gas is 0
.. The negative pressure was adjusted to 5 atmospheres. If necessary depending on the gas generation situation, it is desirable to evacuate the gas in the furnace vessel and refill it with inert gas.

第5工程においては、原料の溶解が開始し熔解が進行し
始めたが、このとき溶解状態と供給電力と溶湯の温度と
を監視し乍ら、沸騰しないようにまた?8融したフェロ
ジルコニウムとクロムと1夫とが均一に混り合うように
溶湯を攪拌した。このときの撹拌が十分でないと所定の
組成の合金が得られないことになる。
In the fifth step, the melting of the raw materials started and the melting progressed, but at this time, the melting state, the supplied power, and the temperature of the molten metal were monitored while making sure not to boil. The molten metal was stirred so that the molten ferrozirconium, chromium, and zirconium were uniformly mixed. If stirring at this time is not sufficient, an alloy having a predetermined composition cannot be obtained.

上記溶解中の最大供給電力は高周波電圧が300■で、
誘導電流が13OAであった。
The maximum power supplied during the above melting is a high frequency voltage of 300μ,
The induced current was 13OA.

第6エ程においては、炉槽内を不活性ガス雰囲気に保持
したまま、溶湯を室温までゆっくり冷却した。
In the sixth step, the molten metal was slowly cooled to room temperature while the inside of the furnace tank was maintained in an inert gas atmosphere.

上記第2工程において、マグネシアルツボ内にフェロジ
ルコニウムとクロムと鉄とを数層交互に積層したが、こ
のように交互に積層することによってその後の溶解を促
進することが出来る。即ち、鉄の8点(1536℃)と
フェロジルコニウムの融点(約1600〜1700℃)
はクロムの融点(1875℃)よりも低いので、溶解時
鉄から溶解が起り、次にその周囲のフェロジルコニウム
が溶解し、それに続いてその周囲のクロムが溶解するこ
とになる。この溶解時、C,、は誘導電流で局所的に加
熱されると同時に、その周囲の溶湯で加熱されて溶解す
るので、溶湯全体としては約1700〜1750℃程度
の比較的低温で溶解することになる。
In the second step, several layers of ferrozirconium, chromium, and iron were alternately laminated in the magnesia crucible, and by laminating them alternately in this way, subsequent dissolution can be promoted. That is, the 8 points of iron (1536℃) and the melting point of ferrozirconium (about 1600-1700℃)
is lower than the melting point of chromium (1875° C.), so when melting, iron first dissolves, then the surrounding ferrozirconium melts, followed by the surrounding chromium. During this melting, C, is heated locally by the induced current and at the same time is heated and melted by the surrounding molten metal, so the molten metal as a whole melts at a relatively low temperature of about 1700 to 1750°C. become.

尚、上記実施例では高周波誘導型溶解炉を用いてルツボ
内の原料を加熱溶融させたが、プラズマアーク炉や電子
ビーム炉などの溶解炉を用いてもよい。
In the above embodiment, the raw material in the crucible was heated and melted using a high-frequency induction melting furnace, but a melting furnace such as a plasma arc furnace or an electron beam furnace may also be used.

次に、上記の製造方法によって製造した水素吸蔵合金の
特性について説明する。
Next, the characteristics of the hydrogen storage alloy manufactured by the above manufacturing method will be explained.

Tl)  分析・基本的物性他 1)試作した合金Z、(C,XF、I−X )2は0.
2〈X≦0.8の範囲で、大方晶の結晶構造を示し、基
本構造はラーベス(Laves)相のMgZfi□型で
あった。その格子定数はa=4.98〜5.04人、c
=8.14〜8624人であり、クロム組成Xの増加に
伴ない格子定数が大きくなる。これらは純金属のZ、、
C,、F、を原料として製造したものと殆ど同じ結果を
得た。
Tl) Analysis, basic physical properties, etc. 1) The prototype alloy Z, (C, XF, I-X)2 is 0.
In the range of 2<X≦0.8, it exhibited an orthogonal crystal structure, and the basic structure was an MgZfi□ type of Laves phase. Its lattice constants are a=4.98~5.04, c
=8.14 to 8624 people, and the lattice constant increases as the chromium composition X increases. These are pure metal Z,,
Almost the same results as those produced using C,,F, as raw materials were obtained.

2)フェロジルコニウム中に含まれるS、 、M、、T
、等の微量成分及びルツボ材のM9は合金中には極く微
量しか存在せず、水素吸蔵・放出特性等を阻害する影響
は認められなかった。
2) S, , M, , T contained in ferrozirconium
, etc. and the crucible material M9 were present in very small amounts in the alloy, and no influence on the hydrogen absorption/release properties was observed.

3)上記のように製造された水素吸蔵合金そのものと、
1100℃で15時間の熱処理(アニーリング)を施し
たものとについて比較したところ、水素吸蔵・放出特性
は殆ど同等であったので、この製造方法で製造した水素
吸蔵合金については熱処理を施す必要がないことが判っ
た。
3) The hydrogen storage alloy itself produced as described above,
A comparison was made between the alloys that had been heat treated (annealed) at 1100°C for 15 hours and the hydrogen storage and release properties were almost the same, so there is no need to heat treat the hydrogen storage alloys produced using this manufacturing method. It turned out that.

4)フェロジルコニウム中にはHfが約1%含まれてお
り、上記合金中には示性式において原子比でHf0.0
04存在する。この影響により純金属によって製造され
たものと比べて、吸蔵・放出の水素平衡圧温度が下降し
、平衡圧の平坦性形状が変化したものと考えられる。
4) Ferrozirconium contains approximately 1% Hf, and the above alloy contains Hf0.0 in atomic ratio in the indicated formula.
04 exists. It is thought that due to this influence, the hydrogen equilibrium pressure temperature for occlusion and desorption decreased compared to those manufactured using pure metal, and the flatness shape of the equilibrium pressure changed.

(2)初期活性化 合金が水素を吸蔵する機能を得るためには、初期活性化
の処理が必要である。これは数鶴程度に粉砕した水素吸
蔵会合材料を適量耐圧容器に入れ、その容器を真空排気
(〜IQ−3torr)L、次いで水素ガス30気圧程
度封圧放置する。この操作を室温にて繰り返すことによ
り水素吸蔵能を得た。Cr組成比Xが0.4以上では数
回の繰り返しで水素を吸蔵するが、Xが0.4より小さ
くなると、この回数が増加し、活性化がやや難しくなる
。更にX≦0.2のものでは簡単に水素吸蔵能を得るこ
とが出来ず、高圧及び温度制御等が必要となる。
(2) Initial activation In order for the alloy to acquire the function of storing hydrogen, an initial activation process is necessary. This involves putting an appropriate amount of the hydrogen-absorbing association material pulverized into several pieces into a pressure-resistant container, evacuation of the container (~IQ-3 torr), and then leaving the container sealed with hydrogen gas at a pressure of about 30 atm. Hydrogen storage capacity was obtained by repeating this operation at room temperature. When the Cr composition ratio X is 0.4 or more, hydrogen is occluded by repeating several times, but when X is less than 0.4, this number of times increases and activation becomes somewhat difficult. Further, in the case of X≦0.2, hydrogen storage capacity cannot be easily obtained, and high pressure and temperature control are required.

(3)水素吸蔵能力 表1に代表的な組成の実用温度・圧力域での水素吸蔵量
を示す。表中H/Mは原子比を表わし、合金1モル原子
数に対する水素原子の数で与え、H2wt%は合金の水
素化物における水素の重量パーセントを表わす。この表
より、優れた水素吸蔵能を持っているのがわかる。この
水素吸蔵能力は同一の組成合金では温度上昇に伴ない絶
対吸蔵量は減少する。また、この性能は純金属により作
成した合金−はぼ同等の値を実現した。
(3) Hydrogen storage capacity Table 1 shows the hydrogen storage capacity of typical compositions in the practical temperature and pressure range. In the table, H/M represents the atomic ratio, which is given as the number of hydrogen atoms per mole of atoms of the alloy, and H2wt% represents the weight percent of hydrogen in the hydride of the alloy. From this table, it can be seen that it has excellent hydrogen storage capacity. With respect to this hydrogen storage capacity, the absolute amount of hydrogen storage decreases as the temperature rises for alloys with the same composition. Moreover, this performance was almost equivalent to that of an alloy made from pure metal.

(4)水素吸蔵・放出平衡圧カー組成−等温度特性x 
= 0.3.0.4.0.6についての等温度の吸蔵・
放出特性曲線を第1図・第2図・第3図に示す。
(4) Hydrogen absorption/desorption equilibrium pressure Kerr composition - isothermal characteristics x
Isothermal occlusion for = 0.3.0.4.0.6
The release characteristic curves are shown in FIGS. 1, 2, and 3.

横軸は原子比(合金1モル原子数に対する水素原手数)
であり、縦軸は平衡圧力(気圧)を対数スケールで与え
る。これらの図かられかる様にXの値を適当に変化させ
ることにより、水素平衡圧力として10気圧、その温度
を0℃〜200℃の温度範囲で目的に応じて実用に適し
た吸蔵・放出特性を制御・調整することが可能である。
The horizontal axis is the atomic ratio (the number of hydrogen atoms per mole of alloy atoms)
The vertical axis gives the equilibrium pressure (atmospheric pressure) on a logarithmic scale. As shown in these figures, by appropriately changing the value of It is possible to control and adjust.

x > 0.7ではプラトーの幅が減少し、或いは無く
なる。
For x > 0.7, the width of the plateau decreases or disappears.

上記プラトーとは、原子比の増加に対しても圧力変化が
余りない領域の圧力的に平坦性を有する部分のことであ
り、実用上はある程度のプラトーの幅を有することが必
要である。
The above-mentioned plateau is a region where the pressure does not change much even when the atomic ratio increases, and has flatness in terms of pressure, and for practical purposes, it is necessary to have a certain width of the plateau.

尚、図中各温度毎に、上側の曲線が吸蔵、下側の曲線が
放出を示すものである。
In the figure, the upper curve shows occlusion and the lower curve shows release at each temperature.

(5)  ヒステリシス特性 第1図〜第3図に示した様にF8に対してCrの組成の
割合の大きいほど、即ちXが大きくなるほど、ヒステリ
シスは小さくなる傾向があり、実用可能な良特性を有す
る。x = 0.4〜0.6では利用温度域を100〜
200℃にとれば、ヒステリシスは小さく、ヒートポン
プ・システムの応用に適している。
(5) Hysteresis characteristics As shown in Figures 1 to 3, the larger the ratio of Cr to F8, that is, the larger have For x = 0.4~0.6, use temperature range 100~
At 200°C, hysteresis is small and suitable for heat pump system applications.

(6)吸蔵・放出反応速度 水素の吸蔵・放出の反応速度は平衡圧力、温度によって
変化するが、この水素吸蔵合金は有効な反応速度を実用
圧力、温度域で有している。X=0.6における吸蔵・
放出速度を第4図と第5図にそれぞれ示す。横軸は反応
開始よりの時間(秒)を、縦軸は反f:)fi(吸蔵量
・放出N)に相当する圧力変化(実際には死容積部と試
料容器部とを導通した時の圧力変化)を与えている。第
4図では吸蔵反応に関して、試料容器部Okg/cnl
(吸蔵量0)、死容積部10kg/cniの初期状態か
らの反応の様子を、第5図の放出反応では試料容器部1
0kg/ci(吸蔵量H/M=1.8、重量%=0.9
%)、死容積部Okg/co!の初期状態からの変化を
表わしている。図中に示しである様に水素吸蔵・放出量
(平衡に達した時の反応量)の80%、90%反応につ
いて吸蔵では27秒、68秒を、また放出では53秒、
125秒の値を得た。
(6) Storage/desorption reaction rate The reaction rate of hydrogen storage/desorption changes depending on the equilibrium pressure and temperature, but this hydrogen storage alloy has an effective reaction rate in the practical pressure and temperature range. Occlusion at X=0.6
The release rates are shown in Figures 4 and 5, respectively. The horizontal axis represents the time (seconds) from the start of the reaction, and the vertical axis represents the pressure change corresponding to f: pressure change). In Figure 4, regarding the occlusion reaction, the sample container part Okg/cnl
(Occluded amount 0), dead volume part 10 kg/cni The release reaction shown in Figure 5 shows the reaction from the initial state of sample container part 1.
0kg/ci (storage amount H/M=1.8, weight%=0.9
%), dead volume Okg/co! represents the change from the initial state. As shown in the figure, for 80% and 90% of hydrogen absorption/release amount (reaction amount when equilibrium is reached), absorption takes 27 seconds and 68 seconds, and release takes 53 seconds.
A value of 125 seconds was obtained.

(7)熱力学データ ヴプント・ホップの定圧平衡式 %式%(0) から標準エンタルピー変化ΔHO1標準エントロピー変
化ΔS0を計算して求めると x=o、2:ΔH0=−25KJ/mole、ΔS’ 
= −94J/deg−molex=o、7:ΔH0=
−40KJ/mole、ΔS’ = −110J/de
g−moleの値を得て、他の水素吸蔵合金に比較して
同等の性能であり、排熱利用にも適した水素吸蔵合金で
あることを示した。
(7) Thermodynamic data Calculating the standard enthalpy change ΔHO1 standard entropy change ΔS0 from Vupunt-Hopf's constant pressure equilibrium equation % formula % (0) x = o, 2: ΔH0 = -25KJ/mole, ΔS'
= −94J/deg-molex=o, 7:ΔH0=
-40KJ/mole, ΔS' = -110J/de
The g-mole value was obtained, and it was shown that the hydrogen storage alloy has performance equivalent to that of other hydrogen storage alloys and is suitable for utilizing waste heat.

【図面の簡単な説明】 図面は本発明の製造方法で製造した水素吸蔵合金の特性
を示すもので、第1図〜第3図は夫々等温度の吸蔵・放
出特性曲線図、第・1図は水素吸蔵速度の特性線図、第
5図は水素放出速度の特性線図である。 第4図             (kq/d)時間
[Brief Description of the Drawings] The drawings show the characteristics of the hydrogen storage alloy manufactured by the manufacturing method of the present invention, and Figures 1 to 3 are occlusion and desorption characteristic curves at constant temperature, respectively. is a characteristic diagram of the hydrogen absorption rate, and FIG. 5 is a characteristic diagram of the hydrogen release rate. Figure 4 (kq/d) time

Claims (1)

【特許請求の範囲】[Claims] (1)Zr(C_r_xF_e_1_−_x)_2の示
性式で表わされる水素吸蔵合金を製造するに当り、上記
xの値に応じた重量比率となるようにフェロジルコニウ
ムと鉄とクロムとを秤量し、上記秤量したフェロジルコ
ニウムと鉄とクロムとを溶解炉内で加熱して溶解させ、
溶解後室温まで冷却させることを特徴とする水素吸蔵合
金の製造方法。
(1) In producing a hydrogen storage alloy expressed by the formula Zr(C_r_xF_e_1_-_x)_2, ferrozirconium, iron, and chromium are weighed so that the weight ratio corresponds to the value of x above, The above weighed ferrozirconium, iron and chromium are heated and melted in a melting furnace,
A method for producing a hydrogen storage alloy, which comprises cooling to room temperature after melting.
JP13849986A 1986-06-13 1986-06-13 Manufacture of metallic alloy for hydrogen storage Pending JPS62294143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13849986A JPS62294143A (en) 1986-06-13 1986-06-13 Manufacture of metallic alloy for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13849986A JPS62294143A (en) 1986-06-13 1986-06-13 Manufacture of metallic alloy for hydrogen storage

Publications (1)

Publication Number Publication Date
JPS62294143A true JPS62294143A (en) 1987-12-21

Family

ID=15223546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13849986A Pending JPS62294143A (en) 1986-06-13 1986-06-13 Manufacture of metallic alloy for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS62294143A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179836A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy and electrode
WO1990007585A1 (en) * 1988-12-29 1990-07-12 Matsushita Electric Industrial Co., Ltd. Method of producing hydrogen-occlusion alloy and electrode using the alloy
US5490970A (en) * 1988-06-28 1996-02-13 Matsushita Electric Industrial Co., Ltd. Method of producing hydrogen-storing alloy and electrode making use of the alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831050A (en) * 1981-08-18 1983-02-23 Japan Metals & Chem Co Ltd Manufacture of alloy for storing hydrogen
JPS60218458A (en) * 1984-03-22 1985-11-01 コツパ−ス コムパニ− インコ−ポレ−テツド Hydrogen storage substance comprising zrcr2-stoichiometrically characterized zirconium-chromium-iron and optional titanium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831050A (en) * 1981-08-18 1983-02-23 Japan Metals & Chem Co Ltd Manufacture of alloy for storing hydrogen
JPS60218458A (en) * 1984-03-22 1985-11-01 コツパ−ス コムパニ− インコ−ポレ−テツド Hydrogen storage substance comprising zrcr2-stoichiometrically characterized zirconium-chromium-iron and optional titanium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490970A (en) * 1988-06-28 1996-02-13 Matsushita Electric Industrial Co., Ltd. Method of producing hydrogen-storing alloy and electrode making use of the alloy
JPH02179836A (en) * 1988-12-29 1990-07-12 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy and electrode
WO1990007585A1 (en) * 1988-12-29 1990-07-12 Matsushita Electric Industrial Co., Ltd. Method of producing hydrogen-occlusion alloy and electrode using the alloy

Similar Documents

Publication Publication Date Title
Pickering et al. Induction melted AB2-type metal hydrides for hydrogen storage and compression applications
JPH03207826A (en) Manufacture of hydrogen- occluded alloy
JP4805816B2 (en) Method for producing Mg-REM-Ni-based hydrogen storage alloy
Tian et al. Preparation and electrochemical properties of La0. 70MgxNi2. 45Co0. 75Al0. 30 (x= 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys
CN105695828A (en) Mg-based high-capacity hydrogen storage alloy and preparation method thereof
JPS62294143A (en) Manufacture of metallic alloy for hydrogen storage
US5900334A (en) Hydrogen occluding alloy
CN111485165A (en) Yttrium-scandium-iron alloy material, yttrium-titanium-scandium-iron alloy material, preparation method and application
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
CN114000030A (en) Titanium-chromium-manganese hydrogen storage alloy and preparation method and application thereof
US5100615A (en) Alloys of Ti-Cr-Cu for occluding hydrogen
US4421718A (en) Alloy for occlusion of hydrogen
WO2002042507A1 (en) Hydrogen-occluding alloy and method for production thereof
CN114672740B (en) Yttrium-iron-based hydrogen storage alloy, battery and preparation method
JPH09125172A (en) Production of magnesium-yttrium hydrogen storage alloy
TW511313B (en) AB5-type rare earth transition intermetallic compounds for the negative electrodes of rechargeable batteries
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
JPH0570693B2 (en)
JPH039175B2 (en)
Liu et al. Microstructure and gas-solid hydrogen storage properties of La1-xCexY2Ni10. 95Mn0. 45 (x= 0–0.75) alloys
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS59136440A (en) Hydrogen occlusion alloy
JPS59208037A (en) Alloy for storing hydrogen
JPH0689434B2 (en) Hydrogen storage alloy