JPH02179837A - Manufacture of hydrogen storage alloy and electrode - Google Patents

Manufacture of hydrogen storage alloy and electrode

Info

Publication number
JPH02179837A
JPH02179837A JP63333228A JP33322888A JPH02179837A JP H02179837 A JPH02179837 A JP H02179837A JP 63333228 A JP63333228 A JP 63333228A JP 33322888 A JP33322888 A JP 33322888A JP H02179837 A JPH02179837 A JP H02179837A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
type
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63333228A
Other languages
Japanese (ja)
Inventor
Koji Gamo
孝治 蒲生
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63333228A priority Critical patent/JPH02179837A/en
Priority to PCT/JP1989/001319 priority patent/WO1990007585A1/en
Priority to US07/870,224 priority patent/US5281390A/en
Priority to EP90901007A priority patent/EP0413029B1/en
Priority to DE68924346T priority patent/DE68924346T2/en
Publication of JPH02179837A publication Critical patent/JPH02179837A/en
Priority to US07/796,819 priority patent/US5268143A/en
Priority to US08/261,305 priority patent/US5490970A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To manufacture the alloy which is homogeneous and has good characteristics such as the amt. of hydrogen to be stored with good reproducibility by utilizing at least zircalloy as a starting material. CONSTITUTION:At least zircalloy (Zn-Sn alloy) is used as a starting material, which is melted by a high frequency furnace, an arc furnace or the like to manufacture the hydrogen storage alloy. Preferably, the alloy expressed by general formula ABalpha or its hydride is manufactured. In the formula, A denotes Zr, Ti, Hf, Ta, Y, etc., B denotes Sn or a mixture of Sn and Fe, V, Ni, Cr, Mn or the like, alpha=1.5 to 2.5 and A and B are regulated as different kinds of elements. The alloy phase substantially belongs to a Laves phase of intermetallic compounds and its crystal structure is regulated as the C14 type of hexagonal symmetry or the C15 type of cubic symmetry. The alloy is used to the storage, holding and transportation of hydrogen, a heat pump, material for the negative electrode of an alkali storage battery, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
の製造法に関するもので、特に水素の貯蔵・保持・輸送
、ヒートポンプおよびアルカリ蓄電池の負極用材料など
に用いられる水素吸蔵合金の製造法に間する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a hydrogen storage alloy that reversibly absorbs and releases hydrogen, and in particular for hydrogen storage, retention, and transportation, heat pumps, and negative electrodes of alkaline storage batteries. This research focuses on the manufacturing method of hydrogen storage alloys used in industrial materials, etc.

従来の技術 水素の貯蔵・保持・輸送、ヒートポンプおよびアルカリ
蓄電池の負極用材料などとして用いられる水素吸蔵合金
としては、これまでに希土類系、Zr(T:)系、M9
系などがある。これらの中で、水素吸蔵量、空気中での
発火性や水素解離平衡圧などから評価される安全性、お
よび電気化学的に水素吸蔵・放出可能などの点から、特
にz、(”r:)−Ni系、 Zr(Ti)−V系、 
Zr(Ti)−Mn系もしくは、これらの合金をベース
とし、他の元素で置換あるいは添加した合金が注目され
ている。
Conventional technology Hydrogen storage alloys used for storing, retaining, and transporting hydrogen, and as negative electrode materials for heat pumps and alkaline storage batteries, include rare earth alloys, Zr(T:) series, and M9.
There are systems etc. Among these, z, ("r: )-Ni series, Zr(Ti)-V series,
Zr(Ti)-Mn-based alloys or alloys based on these alloys and substituted with or added with other elements are attracting attention.

中でもZrを必須成分とするラーバス相合金は多量の水
素を安全に吸蔵させることができ実用的な水素吸蔵合金
として良好である。
Among them, a larvous phase alloy containing Zr as an essential component can safely store a large amount of hydrogen and is suitable as a practical hydrogen storage alloy.

従来から一般に、この合金の製造法は、Zrの出発原材
料として、単体のZrを用いていた。すなわち、例えば
多孔質アルミナ坩堝等の中に成分原材料の各単体金属を
所定の原子比で配合して準備し、高周波誘導加熱炉、高
温抵抗加熱炉やアーク炉等を用いて坩堝内で直接溶解し
、合成するものである。
Conventionally, the manufacturing method for this alloy has generally used simple Zr as a starting material for Zr. That is, for example, a porous alumina crucible or the like is prepared by mixing each of the component raw materials at a predetermined atomic ratio, and then melted directly in the crucible using a high-frequency induction heating furnace, high-temperature resistance heating furnace, arc furnace, etc. and synthesize it.

発明が解決しようとする課題 しかしながら、Zr単体金属を原料の一つとして用いて
溶解する際、溶液状態で坩堝と反応したり、高温で、他
元素との蒸気圧の違いから組成ずれを起こしやすく、望
ましい組成の均質な合金を得ることがむずかしい。また
、Zr単体金属は、その製造において煩雑な精製工程を
必要とするため、Z。
Problems to be Solved by the Invention However, when using Zr as a single metal as one of the raw materials and melting it, it tends to react with the crucible in a solution state, and at high temperatures, tends to cause compositional deviations due to differences in vapor pressure with other elements. , it is difficult to obtain a homogeneous alloy with the desired composition. In addition, since Zr single metal requires a complicated purification process in its manufacture, Zr.

金属の材料価格は比較的高い。従って、実用性、経済性
、安全性の点からZr含有合金の製造には、Zr単体金
属を用いない方法が望まれている。
Metal material prices are relatively high. Therefore, from the viewpoints of practicality, economy, and safety, a method that does not use Zr alone is desired for manufacturing Zr-containing alloys.

本発明は、Zr含有水素吸蔵合金の製造における上述の
問題点に鑑みてなされたもので、原材料コストおよび製
造コストが安く、信頼性、再現性が高い水素吸蔵合金の
製造法とこれを使った電極を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned problems in manufacturing Zr-containing hydrogen storage alloys, and provides a method for manufacturing hydrogen storage alloys that is low in raw material cost and manufacturing cost, and has high reliability and reproducibility, and a method using the same. The purpose is to provide an electrode.

課題を解決するための手段 本発明の製造法は、成分原材料である単体Zrを市販の
ジルカロイ(Zr−Sn合金)に置き換えることにより
、原材料コストおよび製造コストが安く、信頼性が高く
、均質で、従って、水素吸蔵量などの特性が良好な水素
吸蔵合金を得ることができるものである。なお、ジルカ
ロイを用いた際に、所望の組成の合金を得るために不足
する場合は単体金属で補えば同様の効果が添加量に応じ
て得られる。
Means for Solving the Problems The manufacturing method of the present invention replaces elemental Zr, which is a component raw material, with commercially available Zircaloy (Zr-Sn alloy), thereby achieving low raw material and manufacturing costs, high reliability, and uniform production. Therefore, it is possible to obtain a hydrogen storage alloy with good properties such as hydrogen storage capacity. Note that when Zircaloy is used, if it is insufficient to obtain an alloy with a desired composition, the same effect can be obtained depending on the amount added by supplementing with a single metal.

作用 この方法に係る合金は、ロット間のバラツキが少ないた
め合金の均質性がよく9品質が安定で、信頼性が高く、
そのうえ安価で、しかも耐酸化性に優れている。
Function: The alloy produced using this method has good homogeneity due to little variation between lots,9 and its quality is stable and reliable.
Moreover, it is inexpensive and has excellent oxidation resistance.

その結果9本発明は少なくともZrと80を含有する水
素吸蔵合金、特に、一般式ABα(ただし、Aは、 Z
r、  Ti、  H+、  T、、  Y、  C,
、Mg、  L、。
As a result, the present invention provides a hydrogen storage alloy containing at least Zr and 80, particularly a hydrogen storage alloy of the general formula ABα (where A is Z
r, Ti, H+, T,, Y, C,
, Mg, L,.

C,、P、、  Mm、  Nb、  Nd、 Mo、
 AI、  S;から選んだ1種または2種以上の元素
、BはSn単独あるいはS、及びV、 Ni、  C,
、Mm、  C,、C,、Zr。
C,,P,, Mm, Nb, Nd, Mo,
One or more elements selected from AI, S; B is Sn alone or S, and V, Ni, C,
,Mm,C,,C,,Zr.

AI、  S:、  Nb、  Mo、  W、  M
m、  ca、  y、  T、。
AI, S:, Nb, Mo, W, M
m, ca, y, T,.

P dHAI1  Aup’ Cd、  Inp  B
+J  La)  Ce、Pr。
P dHAI1 Aup' Cd, Inp B
+J La) Ce, Pr.

Nd、  Th、  Sヨ、Mm(Mmは希土類元素の
混合物を示す)から選んだ1種または2種以上の元素、
α=1.5〜2.5、またAとBは異種元素)で表され
、合金相が実質的に金属間化合物のラーバス相に属し、
その結晶構造が6方対称のC14型または立方対称のC
15型で、特に6方対称のC14型については結晶格子
定数a、  Cがそれぞれa=4.8〜5.2A (オ
ングストローム)、C=7.9〜8.3A(オングスト
ローム)また、立方対称のC15型については結晶格子
定数aが6.92〜7.70A(オングストローム)の
合金相に適用したときに効果を発揮するものである。
One or more elements selected from Nd, Th, S, Mm (Mm indicates a mixture of rare earth elements),
α = 1.5 to 2.5, and A and B are different elements), and the alloy phase substantially belongs to the ravas phase of the intermetallic compound,
C14 type whose crystal structure is hexagonal symmetry or C whose crystal structure is cubic symmetry
15 type, especially for the C14 type with hexagonal symmetry, the crystal lattice constants a and C are respectively a = 4.8 to 5.2 A (Angstrom) and C = 7.9 to 8.3 A (Angstrom), and cubic symmetry. The C15 type is effective when applied to an alloy phase having a crystal lattice constant a of 6.92 to 7.70A (angstroms).

また、上記方法による合金を水素吸蔵電極として使用し
たとき、特に効果が著しい。
Further, when the alloy prepared by the above method is used as a hydrogen storage electrode, the effect is particularly remarkable.

実施例 以下に、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 第1表は、本発明を実施するために使用する原材料とし
てのジルコニウム(Zr)単体金属およびジルカロイ合
金の組成と価格比の一例を比較して示したものである。
Example 1 Table 1 compares an example of the composition and price ratio of zirconium (Zr) single metal and Zircaloy alloy as raw materials used to carry out the present invention.

第1表のごとく、単体ジルコニウム金属は単位重量当り
の価格がジルカロイに比べて約3〜8倍も高い。
As shown in Table 1, the price of elemental zirconium metal per unit weight is about 3 to 8 times higher than that of zircaloy.

例えば、品種欄のジルカロイlではZr割合が98%も
の高率にもかかわらず、価格は従来品の約1/7である
。またジルカロイl 、ジルカロイ2の均質性を調べた
ところ、共にきわめて良好であった。またこれらを溶解
したときの蒸気圧は単体Z。
For example, Zircaloy I in the product category has a high Zr ratio of 98%, but the price is about 1/7 of the conventional product. Furthermore, when the homogeneity of Zircaloy I and Zircaloy 2 was examined, both were found to be extremely good. Also, the vapor pressure when these are dissolved is Z.

金属より低く、組成ずれが少ないことがわかフた。It was found that it was lower than that of metals, and that there was less compositional deviation.

従来のZrおよびSnを含む合金(特にラーベス相のA
Ba系合金)の製造法では、この高価なジルコニウムに
電解鉄、モンドニッケルや錫単体金属等を所望の配合比
だけ加えて調製し、合金を製造していた。従って、原材
料の価格的不利に加えて、製造工程が複雑になり、ざら
に単体ジルコニウムの酸化容易性や合金の不均一性など
の問題が発生していたが、第1表に示した実施例のよう
なジルカロイを用いることによって、これらの欠点を除
去できる。
Conventional alloys containing Zr and Sn (especially Laves phase A
In the manufacturing method of Ba-based alloys, alloys are manufactured by adding electrolytic iron, monochrome nickel, elemental tin metal, etc. to this expensive zirconium at a desired mixing ratio. Therefore, in addition to the cost disadvantage of raw materials, the manufacturing process became complicated, and problems such as the ease of oxidation of elemental zirconium and non-uniformity of the alloy occurred, but the examples shown in Table 1 These drawbacks can be eliminated by using Zircaloys such as.

原材料として、ジルカロイを用いる本発明の製造手順は
、従来の高周波炉やアーク炉を用いる溶解法と同様の操
作方法でよい。第2表、No、1〜5に示したZr(T
i)−M系合金(ここでMは、SnおよびFe、 V、
 Ma、  Ca、  Y、  Hf、  Nb。
The manufacturing procedure of the present invention using Zircaloy as a raw material may be similar to a conventional melting method using a high frequency furnace or an arc furnace. Zr(T
i) -M-based alloy (here M is Sn and Fe, V,
Ma, Ca, Y, Hf, Nb.

Ta、Cr、  Mo、  W、  Mo、  C0,
Pd、  Cu、  Ag、Au+  Zn、Cd、 
 A++  Si+  Inn  B:、  La+ 
 calM−、Pr、  N、i、  Th、  S−
から選んだ1種以上の元素)を所望の組成比で配合し、
溶解したところ、溶解後の合金は、従来のものより均質
性が優れ、第2表 組成ずれがほとんどなく、ロット間のバラツキが少なか
った。次いで、水素吸蔵合金としての特性(水素吸蔵量
、反応速度、空気中での発火性など)を調べたところ、
同表に示したように水素吸蔵量は大きく、反応速度など
の他の特性も非常に良好であった。
Ta, Cr, Mo, W, Mo, C0,
Pd, Cu, Ag, Au+ Zn, Cd,
A++ Si+ Inn B:, La+
calM-, Pr, N, i, Th, S-
one or more elements selected from ) in a desired composition ratio,
When melted, the alloy after melting had better homogeneity than the conventional one, had almost no compositional deviation in Table 2, and had little variation between lots. Next, we investigated its properties as a hydrogen storage alloy (hydrogen storage capacity, reaction rate, ignitability in air, etc.) and found that
As shown in the table, the hydrogen storage capacity was large, and other properties such as reaction rate were also very good.

実施例2 実施例1と同様の方法で、市販のジルカロイおよび Z
−、N、、  Ti、  Hf、  Ta、Y、  C
−、N9゜L a)  C+ly  Mal  Nbl
  NdI  S#+  Mo、A++  si。
Example 2 Commercially available Zircaloy and Z
-, N, Ti, Hf, Ta, Y, C
-, N9゜L a) C+ly Mal Nbl
NdI S#+ Mo, A++ si.

V、  C,、Mn、  F−、C−、C,、Zn、 
 S:、  Nb。
V, C,, Mn, F-, C-, C,, Zn,
S:, Nb.

Mm、  W 、  Caなどを原材料とい ABa系
合金の中から、一般式ZrαN、γMδ(ただ駅 α。
Mm, W, Ca, etc. are used as raw materials. Among the ABa alloys, the general formulas ZrαN, γMδ (Tadashi α.

γ、δは、それぞれZ7、N5、M元素の原子比で、α
= 0.5〜1.5、γ=0.4〜2,5、δ=0.0
1〜1.8で、かつγ+δ=1.2〜3.7、M:S、
l単独またはS、およびFe、 V、  N9.  C
a。
γ and δ are the atomic ratios of Z7, N5, and M elements, respectively, and α
= 0.5~1.5, γ=0.4~2,5, δ=0.0
1 to 1.8, and γ+δ=1.2 to 3.7, M:S,
l alone or S, and Fe, V, N9. C
a.

Y、  Hf、  Nb、  T、、  C,、Mm、
  W、  Mn、  Co、P 61  Cgp  
Agp  Au、  Zn)  CdHA++  S;
、  [n。
Y, Hf, Nb, T,, C,, Mm,
W, Mn, Co, P 61 Cgp
Agp Au, Zn) CdHA++ S;
, [n.

B+、  L−、C−、M−、P−、Na、  T?、
、  S、から選んだ1種以上の元素)で表される合金
系を選び、その中から第2表中、N016〜11の組成
の合金を合成した。
B+, L-, C-, M-, P-, Na, T? ,
, S,) were selected, and alloys having compositions N016 to 11 in Table 2 were synthesized from among them.

具体的な手順は、まず同表の組成になるようにジルカロ
イ等の原材料を秤量し、アルゴンアーク溶解炉(または
アルゴン不活性ガス中での高周波誘導加熱炉)で直接溶
解した。溶解した合金試料の一部は、原子組成、結晶構
造、結晶格子定数、均質性等の合金分析用に使用し、残
りは水素ガス中での水素吸蔵、放出量測定用(主として
P(圧力)−C(組成)−T(温度)測定)および電気
化学的性能評価用に用いた。
Specifically, raw materials such as Zircaloy were first weighed to have the composition shown in the table, and directly melted in an argon arc melting furnace (or a high frequency induction heating furnace in argon inert gas). A part of the melted alloy sample is used for alloy analysis such as atomic composition, crystal structure, crystal lattice constant, homogeneity, etc., and the rest is used for measuring hydrogen absorption and release in hydrogen gas (mainly P (pressure)). -C (composition) -T (temperature) measurement) and electrochemical performance evaluation.

分析の結果から、第2表の合金、No、6〜11は、均
質で、主たる合金相が014型またはC15型ラーベス
相であり、その結晶格子定数は、6方対称のC14型の
場合はa、  Cがそれぞれa=4.8〜5.2A(オ
ングストローム)、c=7.9〜8.3A(オングスト
ローム)また、立方対称のC15型の場合は結晶格子定
数aが、6.92〜7.70A(オングストローム)で
あるあることな確認した。また組成ずれもほとんど無か
った。これらの合金の水素ガスでの通常のP−C−T特
性結果から得られた水素吸蔵量を第2表に示す。これら
は、従来の値より大きく、反応速度などの特性も良好で
あった。
From the analysis results, alloys Nos. 6 to 11 in Table 2 are homogeneous, and the main alloy phase is the 014 type or C15 type Laves phase, and the crystal lattice constant is a and C are respectively a=4.8~5.2A (angstrom) and c=7.9~8.3A (angstrom).In addition, in the case of cubic symmetric C15 type, the crystal lattice constant a is 6.92~ I confirmed that it was 7.70A (angstrom). Furthermore, there was almost no compositional deviation. Table 2 shows the hydrogen storage capacity of these alloys obtained from ordinary P-C-T characteristic results with hydrogen gas. These values were larger than conventional values, and characteristics such as reaction rate were also good.

一方、第2表の合金No、12〜15は比較のために示
した従来の製造法によるものの代表例である。これらは
、均質性や組成ずれが発生し、表の如く同様の系にもか
かわらず、水素吸蔵量はかなり少なかった。
On the other hand, Alloy Nos. 12 to 15 in Table 2 are representative examples of alloys made by conventional manufacturing methods, shown for comparison. In these cases, homogeneity and compositional deviation occurred, and the amount of hydrogen storage was quite small, even though the systems were similar as shown in the table.

なお、本発明の製造法を適用できる合金は第2表に示す
もの以外に、多くの合金組成がある。これらの中で、合
金相が実質的に金属間化合物のラーベス相に属し、その
結晶構造が6万対称の014型または(および)立方対
称のC15型で、その結晶格子定数は、6方対称のC1
4型の場合はa、  Cがそれぞれa=4.8〜5.2
A (オングストローム)、c =7.9〜8.3A 
(オングストローム)また、特に立方対称のC15型に
ついては結晶格子定数aが6.92〜7.70A(オン
グストローム)である合金は、中でも特に効果が大きか
った。
In addition, there are many alloy compositions other than those shown in Table 2 to which the manufacturing method of the present invention can be applied. Among these, the alloy phase substantially belongs to the Laves phase of an intermetallic compound, and its crystal structure is the 014 type with 60,000 symmetry or (and) the C15 type with cubic symmetry, and its crystal lattice constant is 6-way symmetric. C1 of
For type 4, a and C are each a=4.8 to 5.2
A (angstrom), c = 7.9~8.3A
(Angstrom) In addition, particularly for the cubic symmetric C15 type, alloys with a crystal lattice constant a of 6.92 to 7.70A (Angstrom) were particularly effective.

このように水素吸蔵合金の出発原材料として。In this way, it is used as a starting material for hydrogen storage alloys.

Zrと80からなるジルカロイを用いて水素吸蔵合金を
合成する製造法によると、合金は均質性が極めて良く、
水素吸蔵・保持・輸送用合金としての性能もJZrとS
n金属単独を原材料とするものよりも優れ、プロセスも
簡便であった。
According to the manufacturing method of synthesizing a hydrogen storage alloy using Zircaloy consisting of Zr and 80, the alloy has extremely good homogeneity.
JZr and S also have excellent performance as hydrogen storage, retention, and transport alloys.
It was superior to those using n-metal alone as a raw material, and the process was simpler.

ここで、本製造法で得られた合金を水素吸蔵・放出量の
点から厳密に比較評価し、各元素による本発明の効果を
調べ、本発明が最も効果を発揮する最適組成例を得る。
Here, the alloys obtained by the present manufacturing method are strictly compared and evaluated in terms of the amount of hydrogen absorption and release, and the effects of the present invention due to each element are investigated to obtain an optimal composition example in which the present invention exhibits the most effect.

一般式ZrαN、γMδ(ただし、α、γ、δは、それ
ぞれZl、N1、M元素の原子比で、α=0.5〜1.
5、γ=0.4〜2,5、δ=0.01〜1.8で、か
つγ+δ=1.2〜3.7、M: S、単独またはS、
およびF−、V、 Ma、  Ca、  Y、  Hr
General formula ZrαN, γMδ (where α, γ, and δ are the atomic ratios of Zl, N1, and M elements, respectively, and α=0.5 to 1.
5, γ = 0.4 to 2.5, δ = 0.01 to 1.8, and γ + δ = 1.2 to 3.7, M: S, alone or S,
and F-, V, Ma, Ca, Y, Hr
.

Nb、  Ta、C−、Mm、  W、  Mll、 
 C0,Pd、  Cu。
Nb, Ta, C-, Mm, W, Mll,
C0, Pd, Cu.

A gp  Aug  Znp  Cd)  A+5 
 si、  Inp  B+$  L8?C,、M−、
P、、  Na、  Th、  S、から選んだ1種以
上の元素)で表される合金系で、原子比δがo、。
A gp Aug Znp Cd) A+5
si, Inp B+$ L8? C,,M-,
An alloy system represented by one or more elements selected from P, Na, Th, S, and the atomic ratio δ is o.

1より小さいか、または1.8より大きい合金も同様に
水素放出量が若干小さかった。また原子比αが0.5よ
り小さい合金は水素吸蔵量がやや不十分で、1.5より
大きい合金は水素放出量が比較的小さい。更に原子比γ
が0.4より小さい合金は水素吸蔵・放出のサイクル耐
久性の点で不十分であり、また2、5より大きい合金は
水素吸蔵量が若干小さかった。そして(γ+δ)の値が
1.2より小さい合金は水素放出量が、また3、7より
大きい合金は水素吸蔵量が比較的小さかった。これらの
理由はZrの含有量αは、特に水素吸蔵量に関与し、Z
lが多い程、水素吸蔵量は大きいが、安定な水素化物を
形成するため水素放出率が小さく、結果的に水素放出量
が少なくなる。またN1量は、特に吸蔵・放出サイクル
特性(耐久性)に関係し、N1量多いほど、長寿命だが
、水素吸蔵量が少なくなる傾向がある。モしてM元素の
含有量δは特に吸蔵・放出サイクル特性と放出圧力に関
与し、Mが多いほどこれらの特性は向上するが、水素吸
R責が減少した。また、Snを必須元素とする効果は9
合金の溶解性、均質性に優れ、低価格であることから、
工業的、経済的に利点が大きい。
Alloys smaller than 1 or larger than 1.8 also had slightly smaller amounts of hydrogen release. Further, alloys with an atomic ratio α smaller than 0.5 have a somewhat insufficient hydrogen storage capacity, and alloys with an atomic ratio α larger than 1.5 have a relatively small hydrogen release capacity. Furthermore, the atomic ratio γ
Alloys with a value smaller than 0.4 had insufficient hydrogen storage/release cycle durability, and alloys with a value larger than 2 or 5 had a slightly small amount of hydrogen storage. Alloys with a value of (γ+δ) smaller than 1.2 had a relatively small hydrogen release amount, and alloys with a value larger than 3 or 7 had a relatively small hydrogen storage amount. The reason for these is that the Zr content α is particularly related to the hydrogen storage capacity, and the Zr content α
The larger the number of l, the larger the amount of hydrogen storage, but since a stable hydride is formed, the hydrogen release rate is lower, and as a result, the amount of hydrogen released is smaller. Further, the amount of N1 is particularly related to storage/desorption cycle characteristics (durability), and the larger the amount of N1, the longer the life span, but there is a tendency for the amount of hydrogen storage to decrease. In particular, the M element content δ is particularly involved in the storage/desorption cycle characteristics and the desorption pressure, and as the amount of M increases, these characteristics improve, but the hydrogen absorption capacity decreases. In addition, the effect of making Sn an essential element is 9
Because the alloy has excellent solubility and homogeneity, and is inexpensive,
It has great advantages industrially and economically.

また前記一般式ZrαN、γMδで表される合金を用い
て形成したアルカリ蓄電池用水素吸蔵合金負極は第3表
に示すように、電気容量が大きく良好であった。
Further, as shown in Table 3, the hydrogen storage alloy negative electrodes for alkaline storage batteries formed using the alloys represented by the general formulas ZrαN and γMδ had large and good electric capacities.

第3表 発明の効果 本発明の製造法になる合金および電極は、均質性、再現
性がよく、ロット間のバラツキが少ないため品質が安定
で、信頼性が高く、しかも原材料コストが低く、製造工
程が簡便であるため2合金価格が安く、その結果、水素
吸蔵・放出量やサイクル寿命などの緒特性が優れた合金
を供給し得、しかも耐酸化性の点でも好ましい。
Table 3 Effects of the Invention The alloys and electrodes manufactured by the manufacturing method of the present invention have good homogeneity, reproducibility, and little variation between lots, resulting in stable quality and high reliability.Moreover, the cost of raw materials is low, and the manufacturing method is Since the process is simple, the price of the two alloys is low, and as a result, it is possible to supply an alloy with excellent properties such as hydrogen absorption/release amount and cycle life, and is also preferable in terms of oxidation resistance.

Claims (5)

【特許請求の範囲】[Claims] (1)出発原材料として、少なくともジルカロイ(Zr
−Sn合金)を使用することを特徴とする水素吸蔵合金
の製造法。
(1) At least Zircaloy (Zr
-Sn alloy) A method for producing a hydrogen storage alloy.
(2)出発原材料として、少なくともジルカロイ(Zr
−Sn合金)を使用し、一般式ABα(ただし、AはZ
r、Ti、Hr、Ta、Y、Ca、Mg、La、Ce、
Pr、Mm、Nb、Nd、Mo、Al、Siから選んだ
1種または2種以上の元素、BはSn単独またはSnお
よびFe、V、Ni、Cr、Mn、Co、Cu、Zn、
Al、Si、Nb、Mo、W、Mg、Ca、Y、Ta、
Pd、Ag、Au、Cd、In、Bi、La、Ce、P
r、Nd、Th、Sm、Mm(ここでMmは希土類元素
の混合物を示す)から選んだ1種または2種以上の元素
、α=1.5〜2.5、またAとBは異種元素)で表さ
れ、合金相が実質的に金属間化合物のラーベス相に属し
、その結晶構造が6方対称のC14型または立方対称の
C15型で、特に6方対称のC14型については結晶格
子定数a、cがそれぞれa=4.8〜5.2A(オング
ストローム)、c=7.9〜8.3A(オングストロー
ム)また、立方対称のC15型については結晶格子定数
aが6.92〜7.70A(オングストローム)である
合金またはその水素化物を製造することを特徴とする水
素吸蔵合金の製造法。
(2) At least Zircaloy (Zr
-Sn alloy) using the general formula ABα (where A is Z
r, Ti, Hr, Ta, Y, Ca, Mg, La, Ce,
One or more elements selected from Pr, Mm, Nb, Nd, Mo, Al, Si, B is Sn alone or Sn and Fe, V, Ni, Cr, Mn, Co, Cu, Zn,
Al, Si, Nb, Mo, W, Mg, Ca, Y, Ta,
Pd, Ag, Au, Cd, In, Bi, La, Ce, P
One or more elements selected from r, Nd, Th, Sm, Mm (here Mm indicates a mixture of rare earth elements), α = 1.5 to 2.5, and A and B are different elements ), the alloy phase substantially belongs to the Laves phase of an intermetallic compound, and its crystal structure is the C14 type with hexagonal symmetry or the C15 type with cubic symmetry, and especially the crystal lattice constant of the C14 type with hexagonal symmetry. a and c are respectively a=4.8-5.2A (angstrom) and c=7.9-8.3A (angstrom). Also, for the cubic symmetric C15 type, the crystal lattice constant a is 6.92-7. A method for producing a hydrogen storage alloy, the method comprising producing an alloy having a diameter of 70A (angstroms) or a hydride thereof.
(3)合金またはその水素化物が、Aとして、少なくと
も30原子%以上のZrを含有することを特徴とする請
求項2記載の水素吸蔵合金の製造法。
(3) The method for producing a hydrogen storage alloy according to claim 2, wherein the alloy or its hydride contains Zr as A in an amount of at least 30 atom %.
(4)合金またはその水素化物が、実質的に、一般式Z
rαNiγMδ(ただし、α、γ、δは、それぞれZr
、Ni、M元素の原子比で、α=0.5〜1.5、γ=
0.4〜2、5、δ=0.01〜1.8で、かつγ+δ
=1.2〜3.7、M:Sn単独またはSnおよびFe
、V、Mg、Ca、Y、Hf、Nb、Ta、Cr、Mo
、W、Mn、Co、Pd、Cu、Ag、Au、Zn、C
d、Al、Si、In、Bi、La、Ce、Mm、Pr
、Nd、Th、Smから選んだ1種以上の元素)で表さ
れる請求項1、2、または3記載の水素吸蔵合金の製造
法。
(4) The alloy or its hydride substantially has the general formula Z
rαNiγMδ (however, α, γ, δ are each Zr
, Ni, M element atomic ratio, α=0.5 to 1.5, γ=
0.4-2,5, δ=0.01-1.8, and γ+δ
=1.2-3.7, M: Sn alone or Sn and Fe
, V, Mg, Ca, Y, Hf, Nb, Ta, Cr, Mo
, W, Mn, Co, Pd, Cu, Ag, Au, Zn, C
d, Al, Si, In, Bi, La, Ce, Mm, Pr
, Nd, Th, and Sm).
(5)出発原材料として、少なくともジルカロイ(Zr
−Sn合金)を使用することを特徴とする水素吸蔵合金
電極。
(5) At least Zircaloy (Zr
-Sn alloy).
JP63333228A 1988-06-28 1988-12-29 Manufacture of hydrogen storage alloy and electrode Pending JPH02179837A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63333228A JPH02179837A (en) 1988-12-29 1988-12-29 Manufacture of hydrogen storage alloy and electrode
PCT/JP1989/001319 WO1990007585A1 (en) 1988-12-29 1989-12-28 Method of producing hydrogen-occlusion alloy and electrode using the alloy
US07/870,224 US5281390A (en) 1988-06-28 1989-12-28 Method of producing hydrogen-storing alloy and electrode making use of the alloy
EP90901007A EP0413029B1 (en) 1988-12-29 1989-12-28 Method of producing hydrogen-occlusion alloy and electrode using the alloy
DE68924346T DE68924346T2 (en) 1988-12-29 1989-12-28 METHOD FOR PRODUCING AN ALLOY WITH HYDROGEN STORAGE AND ELECTRODE FROM SUCH AN ALLOY.
US07/796,819 US5268143A (en) 1988-06-28 1991-11-25 Method of producing hydrogen-storing alloy from a zirconium-tin starting material
US08/261,305 US5490970A (en) 1988-06-28 1994-06-16 Method of producing hydrogen-storing alloy and electrode making use of the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333228A JPH02179837A (en) 1988-12-29 1988-12-29 Manufacture of hydrogen storage alloy and electrode

Publications (1)

Publication Number Publication Date
JPH02179837A true JPH02179837A (en) 1990-07-12

Family

ID=18263755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333228A Pending JPH02179837A (en) 1988-06-28 1988-12-29 Manufacture of hydrogen storage alloy and electrode

Country Status (1)

Country Link
JP (1) JPH02179837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175721B2 (en) * 2001-04-27 2007-02-13 Santoku Corporation Method for preparing Cr-Ti-V type hydrogen occlusion alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108016A (en) * 1977-03-04 1978-09-20 Nippon Mining Co Ltd Zirconium hydride alloy
JPS6152336A (en) * 1984-08-18 1986-03-15 Matsushita Electric Ind Co Ltd Hydrogen occluding alloy
JPS6316552A (en) * 1986-07-09 1988-01-23 Hitachi Metals Ltd Hydrogen storage electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108016A (en) * 1977-03-04 1978-09-20 Nippon Mining Co Ltd Zirconium hydride alloy
JPS6152336A (en) * 1984-08-18 1986-03-15 Matsushita Electric Ind Co Ltd Hydrogen occluding alloy
JPS6316552A (en) * 1986-07-09 1988-01-23 Hitachi Metals Ltd Hydrogen storage electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175721B2 (en) * 2001-04-27 2007-02-13 Santoku Corporation Method for preparing Cr-Ti-V type hydrogen occlusion alloy

Similar Documents

Publication Publication Date Title
US4195989A (en) Hydrogen storage material
WO1998014627A1 (en) Hydrogen absorbing alloy and process for preparing the same
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
CA2394375A1 (en) Method for preparing hydrogen storage alloy
JP2834165B2 (en) Production method and electrode for hydrogen storage alloy
US5281390A (en) Method of producing hydrogen-storing alloy and electrode making use of the alloy
US4259110A (en) Process for storing of hydrogen and the use thereof, particularly in engines
WO1990007585A1 (en) Method of producing hydrogen-occlusion alloy and electrode using the alloy
US4359396A (en) Hydride of beryllium-based intermetallic compound
JPH0210659A (en) Manufacture of hydrogen storage alloy
JPH02179837A (en) Manufacture of hydrogen storage alloy and electrode
US5268143A (en) Method of producing hydrogen-storing alloy from a zirconium-tin starting material
JP2743123B2 (en) Materials for hydrogen storage
US4576639A (en) Hydrogen storage metal material
JPS5848481B2 (en) Hydrogen storage materials
JPH0949034A (en) Production of hydrogen storage alloy
US5028389A (en) Hydrogen storage materials of Zr-Ti-Cr-Fe
JPH0570693B2 (en)
JPH05163511A (en) Production of alloy powder
JP2896433B2 (en) Magnesium hydrogen storage alloy
Blazina et al. Crystal structure, thermal expansion and hydrogen sorption properties of the alloys
JPS6141975B2 (en)
JPH10298681A (en) Hydrogen storage alloy
CN1438342A (en) High hydrogen-storage quantity titanium-manganese base hydrogen-storage alloy and preparation method
JP3338176B2 (en) Hydrogen storage material