JPH05163511A - Production of alloy powder - Google Patents

Production of alloy powder

Info

Publication number
JPH05163511A
JPH05163511A JP3350961A JP35096191A JPH05163511A JP H05163511 A JPH05163511 A JP H05163511A JP 3350961 A JP3350961 A JP 3350961A JP 35096191 A JP35096191 A JP 35096191A JP H05163511 A JPH05163511 A JP H05163511A
Authority
JP
Japan
Prior art keywords
component
powder
alloy powder
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3350961A
Other languages
Japanese (ja)
Inventor
Shigeo Hirayama
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3350961A priority Critical patent/JPH05163511A/en
Publication of JPH05163511A publication Critical patent/JPH05163511A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce a highly reliable and reproducible hydrogen storage alloy powder excellent in characteristic and with the grain size easily controlled by the production process remarkably reduced with the productivity and economical efficiency improved. CONSTITUTION:The powder of the oxides of Zr and/or Ti and the powder of at least one kind of metal selected from Mn, Fe and Co or the powder of the oxides are mixed, Ca and/or Mg are further added, and the mixture is heat-treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はラベス相構造をもつ水素
吸蔵合金用の合金粉末の製造方法に関し、特にZrおよ
び/またはTiの酸化物粉末とその他の金属またはその
酸化物粉末を出発材料とし、これを加熱処理するもの
で、生産性、経済性および再現性に優れ、しかも粒度調
整も容易で製品特性も良好な合金粉末の製造方法に関
し、水素吸蔵合金として電池、触媒、ヒートポンプ等に
利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy powder for a hydrogen storage alloy having a Laves phase structure, and particularly using Zr and / or Ti oxide powder and another metal or its oxide powder as a starting material. , Which is heat-treated, has excellent productivity, economic efficiency and reproducibility, and is easy to control grain size and has good product characteristics. It is used as a hydrogen storage alloy in batteries, catalysts, heat pumps, etc. Is done.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金として知られている
主なものは、結晶構造がCaCu5のLaNi5に代表さ
れる希土類合金やラベス相構造を持つZrMn2等の合
金であるが、水素吸蔵能力から考えるとZrMn2等の
ラベス相合金がCaCu5型合金よりも一般に優れてい
るにも拘らず、高価であり、組成の調整が難しく、再現
性良く同じ特性を持った合金を作るのが難しい等の理由
から、CaCu5型の合金に比べラベス相合金は実用化
されるのが遅れている。
2. Description of the Related Art Conventionally, the main known hydrogen storage alloys are rare earth alloys represented by LaNi 5 of CaCu 5 and alloys such as ZrMn 2 having a Laves phase structure. Considering the storage capacity, although Laves phase alloys such as ZrMn 2 are generally superior to CaCu 5 type alloys, they are expensive, composition adjustment is difficult, and alloys having the same characteristics with good reproducibility are produced. However, the Laves phase alloy has been delayed from being put to practical use as compared with the CaCu 5 type alloy.

【0003】このラベス相構造を持つ合金粉末を製造す
る方法としては、Zr、Ti等の酸化物等よりなる原料
を還元することによって各金属とした後、特開平2−1
94140号公報に提案されているように、各種原料金
属を高周波真空溶解炉中、あるいはアーク溶解炉にて溶
融し、合金化する。次いで、鋳造等によって得られた合
金塊を熱処理後、あるいは未熱処理のまま粉砕し、粉体
化する方法が採られている。
As a method for producing the alloy powder having the Laves phase structure, a raw material made of an oxide such as Zr or Ti is reduced to form each metal, and then, Japanese Patent Laid-Open No. 2-1 is used.
As proposed in Japanese Patent No. 94140, various raw material metals are melted in a high-frequency vacuum melting furnace or in an arc melting furnace to be alloyed. Then, a method of pulverizing the alloy ingot obtained by casting or the like after heat treatment or crushing in an unheated state is used.

【0004】また、従来から、一般に原料金属として
は、特開平2−10659号公報、特開平2−1798
36号公報に記載されているように、単体金属のZr、
Ti、Mo、V、Co、Ni等を出発材料として用いて
いた。
Conventionally, as a raw material metal, in general, JP-A-2-10659 and JP-A-2-1798 have been used.
As described in Japanese Patent Publication No. 36-36, Zr of a single metal,
Ti, Mo, V, Co, Ni, etc. were used as starting materials.

【0005】しかしながら、上述のように、これまでの
Zr、Ti、Ni、Co、Cr、Al、V、Fe、C
u、Moのいずれかを主体とした水素吸蔵合金であるラ
ベス相構造をもつ合金粉末の製造では、(1)Zr、T
i、Mo、V、Cr等の酸化物等からなる原料を還元す
ることによる各種単体金属の製造工程、(2)各種原料
金属の真空、あるいは不活性雰囲気中での溶解、合金化
工程、(3)鋳造工程、(4)合金塊の粉砕工程と4段
階の工程が必要となる。
However, as described above, Zr, Ti, Ni, Co, Cr, Al, V, Fe and C have been used so far.
In the production of an alloy powder having a Laves phase structure, which is a hydrogen storage alloy mainly containing either u or Mo, (1) Zr, T
a process for producing various elemental metals by reducing a raw material composed of oxides such as i, Mo, V, and Cr, (2) melting and alloying steps of various raw material metals in a vacuum or an inert atmosphere, ( 4 steps of 3) casting process, (4) crushing of alloy lump, and 4 steps are required.

【0006】このため、それぞれの工程に設備や運転に
コストがかかり、生産性や経済性に劣ったものとなる。
また、これらの合金は非常に酸化し易いばかりでなく、
同じ水素吸蔵合金である希土類系の合金に比べて堅く、
粉砕工程として機械粉砕を用いる場合には粉砕性が悪い
ばかりでなく、合金粉末が多少なりとも酸化されてしま
い合金特性に影響を及ぼすことがある。一方、水素粉砕
では合金酸化は抑えられるが、可燃性ガスである水素を
用いる危険性、もしくは安全性を確保した設備の導入に
は多大な投資が必要である等の課題がある。
[0006] Therefore, the cost for equipment and operation for each process becomes low, and the productivity and the economical efficiency are deteriorated.
Also, not only are these alloys very susceptible to oxidation,
Harder than rare earth alloys, which are the same hydrogen storage alloy,
When mechanical pulverization is used as the pulverization step, not only the pulverizability is poor, but also the alloy powder is oxidized to some extent, which may affect the alloy properties. On the other hand, although alloy oxidization can be suppressed by hydrogen pulverization, there is a problem that the risk of using hydrogen as a flammable gas or the introduction of equipment ensuring safety requires a large investment.

【0007】また、一般に、水素吸蔵合金を利用する場
合、合金を粉砕して使用するが、このときの合金粉末の
粒度および粒度分布が特性に大きく影響をするのが知ら
れている。特に電池材料として使用する場合等は、粒径
が粗い場合は容量が取れず、細かければ寿命が悪いた
め、いかに適切な粒径で粒度の揃った合金粉末を得られ
るかが重要となっているが、機械粉砕では粒度を揃える
ことは難しいという問題がある。
In general, when a hydrogen storage alloy is used, the alloy is crushed before use, and it is known that the particle size and particle size distribution of the alloy powder at this time have a great influence on the characteristics. Especially when it is used as a battery material, the capacity cannot be taken if the particle size is coarse, and the life is poor if the particle size is fine, so it is important how to obtain an alloy powder with an appropriate particle size and a uniform particle size. However, there is a problem that it is difficult to make the particle size uniform by mechanical grinding.

【0008】さらには、これらの合金製造に用いる単体
金属の価格は高価であるほか、Zr、Vは溶液状態でル
ツボと反応したり、高温で、他元素との蒸気圧との違い
から組成のずれを起こしやすく、望ましい組成の均質な
合金を得ることは難しいという課題もある。
Furthermore, the prices of the elemental metals used for the production of these alloys are expensive, and Zr and V react with the crucible in a solution state, and at high temperatures, they have different compositions due to the difference in vapor pressure with other elements. There is also a problem that it is difficult to obtain a homogenous alloy having a desired composition because it is likely to cause deviation.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、かか
る従来技術の課題に鑑みてなされたもので、大幅に製造
工程を短縮でき、生産性や経済性を向上させるのみなら
ず、信頼性、再現性が高く、粒度調整が容易で、しかも
製品特性も優れた水素吸蔵合金粉末の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION The object of the present invention was made in view of the problems of the prior arts described above, and the manufacturing process can be greatly shortened, and not only the productivity and the economical efficiency are improved but also the reliability is improved. Another object of the present invention is to provide a method for producing a hydrogen storage alloy powder having high reproducibility, easy particle size adjustment, and excellent product characteristics.

【0010】[0010]

【課題を解決するための手段】本発明の上記目的は、Z
rおよび/またはTiの酸化物粉末やその他の金属の酸
化物粉末の還元工程と、これら金属の合金化工程および
粉体化工程を一段の工程において行なうことにより達成
される。
The above object of the present invention is Z
This can be achieved by performing the reduction step of the oxide powder of r and / or Ti and the oxide powder of other metal, and the alloying step and the pulverizing step of these metals in one step.

【0011】すなわち本発明は、Zrおよび/またはT
iの酸化物粉末と、Mn、Fe、Niから選択される少
なくとも1種の金属粉末またはその酸化物粉末とを混合
し、さらにCaおよび/またはMgを添加して加熱処理
することを特徴とする合金粉末の製造方法にある。
That is, the present invention relates to Zr and / or T
The oxide powder of i is mixed with at least one metal powder selected from Mn, Fe and Ni or an oxide powder thereof, and Ca and / or Mg is further added for heat treatment. It is in the method of manufacturing the alloy powder.

【0012】本発明では、Zrおよび/またはTiの酸
化物粉末(A成分)と、Mn、Fe、Niから選択され
る少なくとも1種の金属粉末またはその酸化物粉末(B
成分)とを混合する。このうち、B成分は加熱反応の際
の核となり、合金粉末の母体金る属となるものである。
In the present invention, an oxide powder of Zr and / or Ti (component A) and at least one metal powder selected from Mn, Fe and Ni or an oxide powder thereof (B).
Ingredients) and mix. Of these, the B component serves as a nucleus during the heating reaction and serves as a base metal of the alloy powder.

【0013】この際に、Co、Cr、Al、V、Cu、
Moから選択される少なくとも1種の金属粉末またはそ
の酸化物粉末(C成分)を任意成分として加えても良
い。このC成分を加えることによって得られる金属粉末
の保存特性が向上する。
At this time, Co, Cr, Al, V, Cu,
At least one metal powder selected from Mo or its oxide powder (C component) may be added as an optional component. The storage characteristics of the metal powder obtained by adding this C component are improved.

【0014】これらA成分、B成分、またはこれに加え
てC成分の混合割合は、最終的に得られる水素吸蔵合金
粉末が水素吸蔵性能を発揮する化学理論当量(組成)が
適宜選択される。一般的には水素吸蔵合金粉末が下記の
化学理論当量となるように配合される。
As for the mixing ratio of these A component, B component, or C component in addition to these, a stoichiometric equivalent (composition) that the hydrogen storage alloy powder finally obtained exhibits hydrogen storage performance is appropriately selected. Generally, the hydrogen storage alloy powder is blended so as to have the following stoichiometric equivalent.

【0015】すなわち、A〜Cの各成分がAB1+a、A
2+a、AB1-XX+a、AB2-XX+a(−0.1≦a
≦0.2)と最終的になるような割合で原料を混合する
ことが望ましい。
That is, each of the components A to C is AB 1 + a , A
B 2 + a , AB 1-X C X + a , AB 2-X C X + a (−0.1 ≦ a
It is desirable to mix the raw materials in a ratio such that ≦ 0.2) is finally obtained.

【0016】本発明では、これらのA成分、B成分、ま
たはこれに加えてC成分の混合物に、Caおよび/また
はMg(D成分)を添加する。D成分は、粉末状、粒
状、角片状で用いられ、上記の金属酸化物粉末を還元す
るもので、その添加量は金属酸化物粉末を還元するのに
要する化学理論当量以上であることが少なくとも必要で
あり、好ましくは化学理論当量の1.2〜2.0倍の量
を添加する。
In the present invention, Ca and / or Mg (D component) is added to these A component, B component, or a mixture of C component in addition to these. The component D is used in the form of powder, granules, and pieces, and reduces the above metal oxide powder, and the addition amount thereof is equal to or more than the stoichiometric equivalent equivalent required to reduce the metal oxide powder. It is necessary at least, and preferably 1.2 to 2.0 times the stoichiometric equivalent is added.

【0017】この際、D成分が1.2倍当量よりも少な
い場合は反応が不十分となり、酸化物が残る恐れがあ
る。また、2.0倍よりも多い場合はD成分またはその
化合物が合金粉中に残存する可能性がある。
At this time, if the D component is less than 1.2 times equivalent, the reaction becomes insufficient and the oxide may remain. If it is more than 2.0 times, the component D or its compound may remain in the alloy powder.

【0018】次に、本発明では、これらA成分、B成
分、D成分、またはこれに加えてC成分を加熱処理す
る。
Next, in the present invention, these A component, B component, D component, or C component in addition to this is heat treated.

【0019】加熱温度は、D成分の融点よりも高く、か
つ各酸化物およびB成分の融点よりも低いことが必要で
あり、一般的には900〜1450℃の範囲で加熱処理
を行なう。加熱温度が900℃未満では反応の核となる
Mn、Fe、Niから選択される少なくとも1種の金属
粉末(B成分)へのA成分の拡散が進みにくく、145
0℃を越えると反応の核となるB成分が溶融する恐れが
ある。
It is necessary that the heating temperature is higher than the melting point of the D component and lower than the melting points of the respective oxides and the B component, and the heat treatment is generally carried out in the range of 900 to 1450 ° C. If the heating temperature is lower than 900 ° C., it is difficult for the A component to diffuse into at least one metal powder (B component) selected from Mn, Fe and Ni, which becomes the nucleus of the reaction.
If it exceeds 0 ° C, the component B, which is the nucleus of the reaction, may be melted.

【0020】また、反応の核となるB成分の粒径は、小
さすぎると溶融、溶着の恐れがあり、また、大きすぎる
とB成分の内部までA成分の拡散が進みにくいため、1
0〜100μmの範囲が望ましく、この際の加熱時間は
1〜10時間が好ましい。さらには、ここにおける加熱
雰囲気はアルゴンガス等の不活性ガス雰囲気が採用され
る。
If the particle size of the B component, which is the core of the reaction, is too small, there is a risk of melting and welding, and if it is too large, the diffusion of the A component into the inside of the B component is difficult to proceed.
The range of 0 to 100 μm is desirable, and the heating time at this time is preferably 1 to 10 hours. Further, as the heating atmosphere here, an inert gas atmosphere such as argon gas is adopted.

【0021】このようにして得られた合金粉末は、例え
ばAB1+a、AB2+a、AB1-XX+a、AB2-XX+a(−
0.1≦a≦0.2)といった化学理論当量を有する。
また、合金粉末の粒径は、特にB成分の粒径に影響され
るが、B成分、C成分の粒径を調整することによって所
望の粒径を有するものが得られる。
The alloy powder thus obtained is, for example, AB 1 + a , AB 2 + a , AB 1-X C X + a , AB 2-X C X + a (-
0.1 ≦ a ≦ 0.2).
Further, the grain size of the alloy powder is affected by the grain size of the B component, but by adjusting the grain sizes of the B component and the C component, those having a desired grain size can be obtained.

【0022】[0022]

【作用】A成分、B成分、またはこれに加えてC成分を
最終的に上記の化学理論当量(組成)となるような割合
で配合し、これにD成分を金属酸化物が還元するに要す
る化学理論当量以上、好ましくは1.2倍以上添加し、
所定の温度、雰囲気中で加熱することにより、A成分、
またはこれらに加えてB成分、C成分は還元される。
The A component, the B component, or the C component in addition to this is blended in such a ratio that the above stoichiometric equivalent (composition) is finally obtained, and the D component is necessary for the reduction of the metal oxide. Add more than the stoichiometric equivalent, preferably 1.2 times or more,
By heating in a predetermined temperature and atmosphere, the A component,
Alternatively, in addition to these, the B component and the C component are reduced.

【0023】次いで、固体状態のB成分の周囲にA+B
成分またはA+B+C成分の合金層が形成され、逐次B
成分の内部に拡散されていき、合金粉末が得られる。
Next, A + B is added around the B component in the solid state.
A component or an alloy layer of A + B + C components is formed, and sequentially B
The alloy powder is obtained by being diffused inside the components.

【0024】[0024]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples and the like.

【0025】実施例1 最終的な化学理論当量(組成)が表2に示すZrMn2
となるように、表1に示したような酸化ジルコニウム粉
末(A成分)と平均粒径20μmの金属マンガン粉末
(B成分)を混合し、これにカルシウム粉末(D成分)
を酸化ジルコニウムを還元するのに必要な化学理論当量
の1.5倍添加し、更に混合後、加圧成形し、ペレット
を調製した。
Example 1 ZrMn 2 whose final chemical theoretical equivalent (composition) is shown in Table 2
As shown in Table 1, zirconium oxide powder (A component) and metallic manganese powder having an average particle size of 20 μm (B component) are mixed, and calcium powder (D component) is added to the mixture.
Was added in an amount 1.5 times the stoichiometric equivalent required to reduce zirconium oxide, further mixed, and then pressure-molded to prepare pellets.

【0026】次に、水冷キャップ付きの反応管に、前記
ペレットを入れた容器を挿入し、反応管内をアルゴンガ
スにて十分に不活性雰囲気とした後、1000℃で10
時間加熱処理した。
Then, the vessel containing the pellets was inserted into a reaction tube having a water-cooled cap, and the inside of the reaction tube was sufficiently inertized with argon gas.
Heat treated for hours.

【0027】加熱処理後のペレットを純水中にて解砕、
洗浄後、得られた合金粉末について、ICP分析、X線
回折、粒度分布測定、電子顕微鏡観察を行なった結果、
得られた合金粉末は平均粒径23μmのZrMn2であ
ることが判明した。また、一定の水素圧力下で水素を吸
蔵させたときおよび放出させたときの圧力変化を測定す
ることによって水素吸蔵量を測定した。それらの結果を
表2に示す。なお、ここにおける測定温度は45℃、水
素導入圧力は30atmで行なった。
Pellet after heat treatment is crushed in pure water,
After washing, the obtained alloy powder was subjected to ICP analysis, X-ray diffraction, particle size distribution measurement, and electron microscope observation.
The obtained alloy powder was found to be ZrMn 2 having an average particle size of 23 μm. Further, the hydrogen storage amount was measured by measuring the pressure change when hydrogen was absorbed and released under a constant hydrogen pressure. The results are shown in Table 2. The measurement temperature was 45 ° C. and the hydrogen introduction pressure was 30 atm.

【0028】実施例2〜12 表1に示されるような最終的な化学理論当量となるよう
に、表1に示されるようなA成分、B成分、およびこれ
に加えてC成分を加え、さらににD成分を金属酸化物を
還元するのに必要な化学理論当量の1.2〜2.0倍添
加し、更に混合後、加圧成形し、ペレットを調製した。
Examples 2 to 12 Component A, component B as shown in Table 1, and component C in addition to this are added so that the final chemical theoretical equivalents as shown in Table 1 are obtained, and The component D was added to 1.2 to 2.0 times the stoichiometric equivalent amount necessary for reducing the metal oxide, further mixed, and then pressure-molded to prepare pellets.

【0029】次に、実施例1と同様に水冷キャップ付き
の反応管に、前記ペレットを入れた容器を挿入し、反応
管内をアルゴンガスにて十分に不活性雰囲気とした後、
表1に示すように900〜1400℃で1〜20時間加
熱処理した。
Then, as in Example 1, the vessel containing the pellets was inserted into a reaction tube with a water-cooled cap, and the inside of the reaction tube was sufficiently inertized with argon gas.
As shown in Table 1, heat treatment was performed at 900 to 1400 ° C. for 1 to 20 hours.

【0030】得られた合金粉末について、実施例1と同
様の方法にてIPC分析、X線回折、粒度分布測定、電
子顕微鏡観察、水素吸蔵量測定を行った。その結果を表
2に示す。
The obtained alloy powder was subjected to IPC analysis, X-ray diffraction, particle size distribution measurement, electron microscope observation, and hydrogen storage amount measurement in the same manner as in Example 1. The results are shown in Table 2.

【0031】比較例1〜4 表2に示されるような最終的な化学理論当量となるよう
に、表1に示すように金属ジルコニウムあるいはチタニ
ウムとニッケル、さらにはコバルト、マンガン、バナジ
ウムを秤量、調整し、これらを高周波真空溶解炉中にて
溶融し、得られた合金インゴットをアルゴンガス気流中
にて粉砕し、所定の合金粉末を得た。得られた合金粉末
について、実施例1と同様の測定を行なった。その結果
を表2に示す。
Comparative Examples 1 to 4 Metal zirconium or titanium and nickel and cobalt, manganese and vanadium as shown in Table 1 are weighed and adjusted so that the final chemical theoretical equivalents shown in Table 2 are obtained. Then, these were melted in a high frequency vacuum melting furnace, and the obtained alloy ingot was crushed in an argon gas stream to obtain a predetermined alloy powder. The same measurement as in Example 1 was performed on the obtained alloy powder. The results are shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上のような本発明の合金粉末の製造方
法では、ジルコニウムおよび/またはチタニウムの酸化
物粉末(A成分)と合金化材料(B成分、またはこれに
加えてC成分)とを用い、これに所定量の還元剤(D成
分)を加えて、還元と合金化を同一工程にて行なうこと
により、酸化やルツボ材からの汚染、組成のずれ等によ
る特性低下のないラベス相型合金粉末が、直接、多段の
工程を経ずして製造することができる。従って、従来の
合金粉末の製造方法に対比して大幅に製造コストを低減
させ、生産性や経済性を向上させるのみならず、信頼
性、再現性が高く、粉砕する際の合金粉末の酸化の発生
や危険性を防止することができ、また、所望の粒径の合
金粉末が製造できるため、本発明の合金粉末の製造方法
は工業的価値のあるものである。
As described above, in the method for producing the alloy powder of the present invention, the zirconium and / or titanium oxide powder (A component) and the alloying material (B component, or C component in addition to this) are used. By using a predetermined amount of reducing agent (D component) and performing reduction and alloying in the same process, the Laves phase type does not deteriorate due to oxidation, contamination from the crucible material, composition shift, etc. The alloy powder can be produced directly without going through multiple steps. Therefore, compared with the conventional alloy powder manufacturing method, the manufacturing cost is significantly reduced, and not only the productivity and the economical efficiency are improved, but also the reliability and the reproducibility are high, and the oxidation of the alloy powder at the time of grinding is performed. Generation and risk can be prevented, and an alloy powder having a desired particle size can be produced, so that the method for producing an alloy powder of the present invention has industrial value.

【0035】そして、このようにして得られた合金粉末
は、例えば水素吸蔵合金として、電池、触媒、ヒートポ
ンプ等の広範な用途に用いられる。
The alloy powder thus obtained is used as a hydrogen storage alloy in a wide range of applications such as batteries, catalysts and heat pumps.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月24日[Submission date] December 24, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】本発明では、Zrおよび/またはTiの酸
化物粉末(A成分)と、Mn、Fe、Niから選択され
る少なくとも1種の金属粉末またはその酸化物粉末(B
成分)とを混合する。このうち、B成分は加熱反応の際
の核となり、合金粉末の母体金属となるものである。
In the present invention, an oxide powder of Zr and / or Ti (component A) and at least one metal powder selected from Mn, Fe and Ni or an oxide powder thereof (B).
Ingredients) and mix. Of these, the B component serves as a nucleus during the heating reaction and serves as a base metal of the alloy powder.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】この際に、Co、Cr、Al、V、Cu、
Moから選択される少なくとも1種の金属粉末またはそ
の酸化物粉末(C成分)を任意成分として加えても良
い。このC成分を加えることによって得られる金属粉末
の特性が向上する。
At this time, Co, Cr, Al, V, Cu,
At least one metal powder selected from Mo or its oxide powder (C component) may be added as an optional component. The characteristics of the metal powder obtained by adding this C component are improved.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】また、反応の核となるB成分の粒径は、小
さすぎると溶融、溶着の恐れがあり、また、大きすぎる
とB成分の内部までA成分の拡散が進みにくいため、1
0〜100μmの範囲が望ましく、この際の加熱時間は
1〜20時間が好ましい。さらには、ここにおける加熱
雰囲気はアルゴンガス等の不活性ガス雰囲気が採用され
る。
If the particle size of the B component, which is the core of the reaction, is too small, there is a risk of melting and welding, and if it is too large, the diffusion of the A component into the inside of the B component is difficult to proceed.
The range of 0 to 100 μm is desirable, and the heating time at this time is preferably 1 to 20 hours. Further, as the heating atmosphere here, an inert gas atmosphere such as argon gas is adopted.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】比較例1〜4 表2に示されるような最終的な化学理論当量となるよう
に、表1に示すように金属ジルコニウムあるいはチタニ
ウムとニッケル、さらにはコバルト、マンガン、バナジ
ウム、銅、クロムを秤量、調整し、これらを高周波真空
溶解炉中にて溶融し、得られた合金インゴットをアルゴ
ンガス気流中にて粉砕し、所定の合金粉末を得た。得ら
れた合金粉末について、実施例1と同様の測定を行なっ
た。その結果を表2に示す。
Comparative Examples 1 to 4 Metal zirconium or titanium and nickel as shown in Table 1, and further cobalt, manganese, vanadium, copper and chromium so that the final chemical theoretical equivalents shown in Table 2 are obtained. Were weighed and adjusted, these were melted in a high frequency vacuum melting furnace, and the obtained alloy ingot was crushed in an argon gas stream to obtain a predetermined alloy powder. The same measurement as in Example 1 was performed on the obtained alloy powder. The results are shown in Table 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Zrおよび/またはTiの酸化物粉末
と、Mn、Fe、Niから選択される少なくとも1種の
金属粉末またはその酸化物粉末とを混合し、さらにCa
および/またはMgを添加して加熱処理することを特徴
とする合金粉末の製造方法。
1. A Zr and / or Ti oxide powder is mixed with at least one metal powder selected from Mn, Fe and Ni or an oxide powder thereof, and Ca is further mixed.
And / or Mg is added and heat-treated, a method for producing an alloy powder.
【請求項2】 前記Caおよび/またはMgの添加量
が、金属酸化物を還元するのに要する化学理論当量の
1.2〜2.0である請求項1に記載の合金粉末の製造
方法。
2. The method for producing an alloy powder according to claim 1, wherein the addition amount of Ca and / or Mg is 1.2 to 2.0, which is the stoichiometric equivalent required to reduce the metal oxide.
【請求項3】 ニッケル−水素電池の負極材に用いられ
る請求項1または2に記載の合金粉末の製造方法。
3. The method for producing an alloy powder according to claim 1, which is used as a negative electrode material of a nickel-hydrogen battery.
JP3350961A 1991-12-10 1991-12-10 Production of alloy powder Pending JPH05163511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3350961A JPH05163511A (en) 1991-12-10 1991-12-10 Production of alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3350961A JPH05163511A (en) 1991-12-10 1991-12-10 Production of alloy powder

Publications (1)

Publication Number Publication Date
JPH05163511A true JPH05163511A (en) 1993-06-29

Family

ID=18414093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3350961A Pending JPH05163511A (en) 1991-12-10 1991-12-10 Production of alloy powder

Country Status (1)

Country Link
JP (1) JPH05163511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614236A2 (en) * 1993-03-01 1994-09-07 Matsushita Electric Industrial Co., Ltd. Method for producing hydrogen storage alloy
JP2009513819A (en) * 2003-07-15 2009-04-02 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing metal powder or metal hydride powder of elements Ti, Zr, Hf, V, Nb, Ta and Cr
JP2011513587A (en) * 2008-02-28 2011-04-28 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for producing alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os and Ir
JP2011514435A (en) * 2008-01-23 2011-05-06 トラディウム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Blunt metal powder or alloy powder and method and / or reaction vessel for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614236A2 (en) * 1993-03-01 1994-09-07 Matsushita Electric Industrial Co., Ltd. Method for producing hydrogen storage alloy
EP0614236A3 (en) * 1993-03-01 1994-09-21 Matsushita Electric Ind Co Ltd Method for producing hydrogen storage alloy.
US5575831A (en) * 1993-03-01 1996-11-19 Matsushita Electric Industrial Co., Ltd. Method for producing hydrogen storage alloy
JP2009513819A (en) * 2003-07-15 2009-04-02 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing metal powder or metal hydride powder of elements Ti, Zr, Hf, V, Nb, Ta and Cr
JP2012107337A (en) * 2003-07-15 2012-06-07 Chemetall Gmbh METHOD FOR PRODUCING METAL POWDER OR METAL HYDRIDE POWDER OF ELEMENTS Ti, Zr, Hf, V, Nb, Ta AND Cr
JP2011514435A (en) * 2008-01-23 2011-05-06 トラディウム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Blunt metal powder or alloy powder and method and / or reaction vessel for producing the same
US8821610B2 (en) 2008-01-23 2014-09-02 Tradium Gmbh Phlegmatized metal powder or alloy powder and method and reaction vessel for the production thereof
JP2011513587A (en) * 2008-02-28 2011-04-28 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for producing alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os and Ir
JP2015052169A (en) * 2008-02-28 2015-03-19 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH METHOD FOR MANUFACTURING ALLOY POWDER BASED ON TITANIUM, ZIRCONIUM AND HAFNIUM ALLOYED WITH ELEMENTS Ni, Cu, Ta, W, Re, Os AND Ir

Similar Documents

Publication Publication Date Title
US10435770B2 (en) Method for producing La/Ce/MM/Y base alloys, resulting alloys, and battery electrodes
CN113186443A (en) Aluminum-cobalt-chromium-iron-nickel high-entropy alloy containing nano strengthening phase gamma' phase and preparation method thereof
US20020189723A1 (en) Method for preparing hydrogen storage alloy
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
WO2007023901A1 (en) Hydrogen storing alloy, process for producing the same and secondary battery
CN114231794A (en) A2B7 type hydrogen storage alloy for nickel-metal hydride battery and preparation method thereof
US8257464B2 (en) Pulverulent intermetallic materials for the reversible storage of hydrogen
JPH05163511A (en) Production of alloy powder
JP4601755B2 (en) Method for producing hydrogen storage alloy
US5277998A (en) Hydrogen-absorbing alloy electrode
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
JPH03281710A (en) Manufacture of alloy powder
CN114672740B (en) Yttrium-iron-based hydrogen storage alloy, battery and preparation method
JPS6256939B2 (en)
JPH0949034A (en) Production of hydrogen storage alloy
JPS6358802A (en) Manufacture of rare earth magnet
JPH11106847A (en) Production of hydrogen storage alloy, alloy thereof and electrode using the alloy
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JPH01240629A (en) Hydrogen storage alloy thin film body and its manufacture
JP3360916B2 (en) Manufacturing method of hydrogen storage alloy
JP3984802B2 (en) Hydrogen storage alloy
JPS5836657B2 (en) Manufacturing method of titanium-manganese alloy