JPH03281710A - Manufacture of alloy powder - Google Patents

Manufacture of alloy powder

Info

Publication number
JPH03281710A
JPH03281710A JP8181790A JP8181790A JPH03281710A JP H03281710 A JPH03281710 A JP H03281710A JP 8181790 A JP8181790 A JP 8181790A JP 8181790 A JP8181790 A JP 8181790A JP H03281710 A JPH03281710 A JP H03281710A
Authority
JP
Japan
Prior art keywords
component
metal
alloy
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8181790A
Other languages
Japanese (ja)
Inventor
Tomio Itagaki
板垣 乙未生
Kazuhiko Nakade
中出 和彦
Shigeo Hirayama
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP8181790A priority Critical patent/JPH03281710A/en
Publication of JPH03281710A publication Critical patent/JPH03281710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To safely manufacture hydrogen occlusion alloy powder at a low cost by mixing oxide powder of rare earth metal or this alloy to metal or this oxide powder of Co, Ni, etc., adding Ca, Mg, Li, etc., to this and executing heat treatment to it. CONSTITUTION:To the metal or this oxide powder of at least one kind of Co and Ni, the oxide powder of rare earth metal or this alloy of at least one kind of La and mish metal is mixed at the prescribed ratio and if necessary, further the metal or this oxide powder of at least one kind of Mn, Cu and Al is mixed. Successively, to this mixed material, the metal or the oxide powder of at least one kind of Ca, Mg and Li is added at the prescribed ratio. After that, the heating treatment is executed to this. It is desirable that this treatment is executed at about 900 - 1,450 deg.C under vacuum or inert gas atmosphere. By this method, the hydrogen occlusion alloy powder containing the rare earth metal is easily obtd. at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類金属を含む合金粉末の製造方法に関し、
特に希土類金属または合金の酸化物粉末とその他の金属
またはその酸化物原料を出発材料とし、これを加熱処理
するもので、生産性、経済性および安全性に優れ、しか
も製品特性も良好な合金粉末の製造方法に関し、水素吸
蔵合金として電池、ヒートバイブ等に利用されるもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing alloy powder containing rare earth metals,
In particular, oxide powder of rare earth metals or alloys and other metals or their oxide raw materials are used as starting materials, and these are heat-treated.Alloy powder is excellent in productivity, economy, and safety, and also has good product characteristics. Regarding the manufacturing method, it is used as a hydrogen storage alloy in batteries, heat vibrators, etc.

[従来の技術] 従来、希土類金属を含む水素吸蔵合金粉末を製造する方
法としては、希土類金属の酸化物等よりなる原料を還元
することによって希土類金属とした後、特開昭80−2
4337号公報に提案されているように、希土類金属を
高周波真空溶解炉中にて溶融し、これに合金化するため
にNl、Co、Mn。
[Prior Art] Conventionally, as a method for producing hydrogen storage alloy powder containing rare earth metals, a raw material consisting of a rare earth metal oxide or the like is reduced to a rare earth metal, and then a rare earth metal is produced.
As proposed in Japanese Patent No. 4337, rare earth metals are melted in a high frequency vacuum melting furnace and Nl, Co, and Mn are alloyed therewith.

AJ等の金属を投入して両者を合金化する。次いで、鋳
造後、合金塊を得て、これを粉砕機等を用いて粉砕し粉
体化するか、合金中に水素を吸放出させることによって
合金塊を粉砕し粉体化する方法が採られている。
A metal such as AJ is added to alloy the two. Next, after casting, an alloy ingot is obtained, and this is crushed and powdered using a crusher, or a method is adopted in which the alloy ingot is crushed and powdered by absorbing and releasing hydrogen into the alloy. ing.

[発明が解決しようとする課題] しかしながら、上述のように、これまでの希土類金属を
含む水素吸蔵合金粉末の製造では、(1)希土類金属の
酸化物等からなる原料を還元することによる希土類金属
の製造工程、(2)希土類金属と他の金属との真空、あ
るいは不活性雰囲気中での溶解合金化工程、(3)鋳造
工程、(4)合金塊の粉砕工程と4段階の工程が必要と
なる。
[Problems to be Solved by the Invention] However, as described above, in the conventional production of hydrogen storage alloy powder containing rare earth metals, (1) production of rare earth metals by reducing raw materials made of rare earth metal oxides, etc. A four-step process is required: (2) melting and alloying of rare earth metals and other metals in a vacuum or inert atmosphere, (3) casting process, and (4) pulverizing the alloy ingot. becomes.

このため、それぞれの工程に設備や運転にコストがかか
り、生産性や経済性に劣ったものとなる。
For this reason, each process requires equipment and operation costs, resulting in poor productivity and economic efficiency.

また、希土類金属を含む合金は非常に酸化しやすいため
、粉砕工程として機械粉砕を用いる場合には多少なりと
も酸化されてしまい合金特性に影響を及ぼすことがある
。一方、水素粉砕では合金の酸化は抑えられるが、可燃
性ガスである水素を用いる危険性、もしくは安全性を確
保した設備の導入には多大な投資が必要である等の課題
がある。
In addition, since alloys containing rare earth metals are highly susceptible to oxidation, when mechanical pulverization is used as a pulverization process, oxidation may occur to some extent, which may affect the properties of the alloy. On the other hand, although hydrogen pulverization can suppress oxidation of the alloy, there are problems such as the danger of using hydrogen, which is a flammable gas, and the need for a large amount of investment to install safety equipment.

本発明の目的は、かかる従来技術の課題に鑑みなされた
もので、大幅に製造コストを低減させ生産性や経済性を
向上させるのみならず、粉砕する際の合金粉末の酸化の
発生や危険性を防止した希土類金属を含む水素吸蔵合金
粉末の製造方法を提供することにある。
The purpose of the present invention was made in view of the problems of the prior art, and it is not only to significantly reduce manufacturing costs and improve productivity and economic efficiency, but also to reduce the risk of oxidation and danger of alloy powder during pulverization. An object of the present invention is to provide a method for producing hydrogen storage alloy powder containing rare earth metals that prevents the above.

[課題を解決するための手段] 本発明の上記目的は、希土類金属または合金の酸化物お
よびこれに加え他の金属酸化物の還元工程と希土類金属
と他の金属との合金化工程および粉体化工程を一段の工
程において行なうことにより達成される。
[Means for Solving the Problems] The above object of the present invention is to reduce a rare earth metal or an alloy oxide and other metal oxides, an alloying process of a rare earth metal and other metals, and a powder. This is achieved by carrying out the oxidation step in one step.

すなわち本発明は、Co、Niから選択される少なくと
も 1種の金属またはその酸化物粉末に、La、  ミ
ツシュメタルから選択される少なくとも1種の希土類金
属または合金の酸化物粉末、またはこれに加えてMn、
Cu、AUから選択される少なくとも 1種の金属また
は酸化物粉末を混合し、これにCa、Mg、Llから選
択される少な(とも 1種の金属を添加し、加熱処理す
ることを特徴とする合金粉末の製造方法にある。
That is, the present invention provides at least one metal selected from Co and Ni or an oxide powder thereof, and an oxide powder of at least one rare earth metal or alloy selected from La and Mitshu metal, or in addition to Mn. ,
It is characterized by mixing at least one metal or oxide powder selected from Cu and AU, adding at least one metal selected from Ca, Mg, and Ll, and heat-treating the mixture. In the method for producing alloy powder.

本発明では、Co,Niから選択される少なくとも 1
種の金属粉末(B成分ンまたはその酸化物粉末(B+成
分)を用いる。これらは加熱反応の隙の核となり、合金
粉末の母体金属となるものである。
In the present invention, at least 1 selected from Co, Ni
A seed metal powder (B component) or its oxide powder (B+ component) is used. These become the core of the gap in the heating reaction and become the base metal of the alloy powder.

本発明では、これらの金属またはその酸化物粉末に、L
a、  ミツシュメタル(以下、Mllと略する)から
選択される少なくとも 1種の希土類金属または合金(
A成分)の酸化物粉末(A+酸成分を混合する。この際
に、Mn、Cu,Alから選択される少なくとも 1種
の金属粉末(C成分)またはその酸化物粉末(C+酸成
分を加えてもよい。
In the present invention, L is added to these metals or their oxide powders.
a, at least one rare earth metal or alloy selected from Mitsushi metal (hereinafter abbreviated as Mll);
Component A) oxide powder (A + acid component is mixed. At this time, at least one metal powder selected from Mn, Cu, Al (C component) or its oxide powder (C + acid component is mixed. Good too.

これらB (B+ )成分、A1成分またはこれに加え
てC(C+ )成分の混合割合は、最終的に得られる水
素吸蔵合金粉末が水素吸蔵性能を発揮し得る化学理論当
量(組成)が適宜選択される。−般的には水素吸蔵合金
粉末が下記の化学理論当量となるように配合される。
The mixing ratio of the B (B+) component, the A1 component, or the C (C+) component in addition to these components is selected as appropriate to the chemical theoretical equivalent (composition) that allows the finally obtained hydrogen storage alloy powder to exhibit hydrogen storage performance. be done. - Generally, the hydrogen storage alloy powder is blended to have the following chemical theoretical equivalents.

すなわちA−Cの各成分が、A B 5. A B 、
−08と最終的になるような割合で原料を混合する。
That is, each component of A-C is A B 5. AB,
The raw materials are mixed in such a proportion that the final result is -08.

ことが好ましい。It is preferable.

本発明では、これらのB (B+ )成分、A、成分、
またはこれに加えてC(C+ )成分の混合物に、Ca
、Mg、Llから選択される少なくとも1種の金属(D
成分)を添加する。D成分は、粉末状、粒状、角片状で
用いられ、上記した希土類金属または合金の酸化物粉末
(A+酸成分、もしくはこれに加えてその他の金属酸化
物粉末(B+成分、C1成分)を還元し、希土類金属ま
たは合金粉末(A成分) もしくはその他の金属粉末(
B成分、C成分)とするもので、その添加量は希土類金
属または合金の酸化物粉末やその他の金属酸化物粉末を
還元するに要する化学理論当量以上であることが少なく
とも必要であり、好ましくは化学理論当量の1.3倍以
上の量添加する。
In the present invention, these B (B+) components, A, components,
Or in addition to this, Ca
, Mg, Ll (D
ingredients). Component D is used in the form of powder, granules, or square pieces, and contains the above-mentioned rare earth metal or alloy oxide powder (A+acid component, or in addition to this, other metal oxide powders (B+ component, C1 component). Reduce rare earth metal or alloy powder (component A) or other metal powder (
The amount added must be at least the chemical theoretical equivalent required to reduce rare earth metal or alloy oxide powder and other metal oxide powder, and preferably Add at least 1.3 times the chemical theoretical equivalent.

次に、本発明では、これらB (B+ )成分、A1成
分、D成分、またはこれに加えてC(C1)成分を加熱
処理する。
Next, in the present invention, the B (B+) component, the A1 component, the D component, or in addition to these, the C (C1) component is heat-treated.

加熱温度は、A、C,Dの各成分の融点より高く、かつ
A、、B、B、、C,の各成分の融点より低いことが必
要であり、これら各成分の融点から所望の温度が選択さ
れる。一般的な加熱温度は900〜1450℃である。
The heating temperature needs to be higher than the melting point of each component A, C, D, and lower than the melting point of each component A, B, B, C, and the desired temperature is determined from the melting point of each component. is selected. A typical heating temperature is 900-1450°C.

加熱温度が900℃未満では反応の核となるco,Ni
から選択される少なくとも 1種の金属粉末(B成分)
への希土類金属または合金粉末(A成分)の拡散が進み
にくく、1450℃を超えると反応の核となる上記B成
分が溶融する恐れがある。この際の加熱時間は1〜6時
間が好ましい。
If the heating temperature is less than 900°C, co, Ni, which becomes the nucleus of the reaction,
At least one kind of metal powder (B component) selected from
Diffusion of the rare earth metal or alloy powder (component A) into the reactor is difficult, and if the temperature exceeds 1450° C., the component B, which is the core of the reaction, may melt. The heating time at this time is preferably 1 to 6 hours.

また、ここにおける加熱雰囲気は真空または不活性ガス
雰囲気が採用される。
Further, the heating atmosphere here is a vacuum or an inert gas atmosphere.

このようにして得られた合金粉末は、例えばAB、、A
Bs−m C,といった化学理論当量を有する。ここに
おいて、Xは0〜5の範囲が好ましい。
The alloy powder thus obtained is, for example, AB, , A
It has a chemical theoretical equivalent such as Bs-m C. Here, X preferably has a range of 0 to 5.

また、合金粉末の粒径は、B (B+ )成分、C(C
1)成分の粒径を調整することによって所望の粒径分布
を有するものが得られる。
In addition, the particle size of the alloy powder is determined by the B (B+) component, C (C
1) A product having a desired particle size distribution can be obtained by adjusting the particle size of the components.

[作用] B (B+ )成分、A1成分またはこれに加えて、C
(C+ )成分を上記した化学理論当量(組成)に最終
的になるような割合で配合し、これにD成分を酸化物を
還元する化学理論当量以上、好ましくは1.3倍以上添
加し、所定温度、雰囲気中で加熱することにより、A1
成分またはこれら加えてB、成分、CI酸成分還元され
、またB成分、C成分は溶融する。
[Action] B (B+) component, A1 component, or in addition to this, C
The (C+) component is blended in a proportion that will finally have the chemical theoretical equivalent (composition) described above, and the D component is added to this in a chemical theoretical equivalent equivalent to reduce the oxide, preferably 1.3 times or more, By heating in an atmosphere at a predetermined temperature, A1
The components or in addition B, component, and CI acid component are reduced, and the B component and C component are melted.

次いで、固体状態のB成分の周囲にA+B成分またはA
+B十C十分成分体合金層が形成され、逐次B成分の内
部にA成分またはA+C成分が拡散されていき、合金粉
末が得られる。
Next, A+B component or A is placed around the B component in a solid state.
A +B+C sufficient component alloy layer is formed, and the A component or A+C component is successively diffused into the B component to obtain an alloy powder.

[実施例] 以下、実施例等に基づき本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples and the like.

実施例1 第1表に示されるように、最終的な化学理論当量(組成
)がLaNIとなるように、酸化ランタン粉末(A、成
分)とニッケル粉末(B成分)を混合し、これにカルシ
ウム粉末(D成分)を酸化ランタンを還元するのに必要
な化学理論当量の1.5倍添加し、さらに混合後、加圧
成形17、ベレットを調製した。
Example 1 As shown in Table 1, lanthanum oxide powder (component A) and nickel powder (component B) were mixed so that the final chemical equivalent (composition) was LaNI, and calcium Powder (component D) was added 1.5 times the chemical theoretical equivalent required to reduce lanthanum oxide, and after further mixing, pressure molding 17 and pellets were prepared.

次に、水冷キャップ付きの石英製反応管に、前記ベレッ
トを入れたルツボを挿入し、反応管内をアルゴンガスに
て充分に不活性雰囲気とした後、第1表に示す温度で1
8時間加熱処理した。
Next, the crucible containing the pellet was inserted into a quartz reaction tube equipped with a water-cooled cap, and the inside of the reaction tube was made into a sufficiently inert atmosphere with argon gas.
Heat treatment was performed for 8 hours.

得られた合金粉末について、一定の水素を吸蔵させた時
および放出させた時の圧力変化を測定することによって
水素吸蔵量を測定し、その結果を第1表に示す。なお、
ここにおけるflPI定温度は45℃、水素導入圧力は
so atmで行なった。
The hydrogen storage amount of the obtained alloy powder was measured by measuring the pressure change when a certain amount of hydrogen was stored and when it was released.Table 1 shows the results. In addition,
The flPI constant temperature here was 45° C., and the hydrogen introduction pressure was SO ATM.

実施例2〜13 第1表に示されるような最終的な化学理論当量となるよ
うに、B (B+ )成分、A、成分およびこれに加え
てC(C+ )成分を加え、さらにD成分をB、成分ま
たはA1成分、C1成分を還元するのに必要な化学理論
当量の1.5倍添加し、さらに混合後、加圧成形し、ペ
レットを調製した。
Examples 2 to 13 In order to obtain the final chemical equivalents as shown in Table 1, component B (B+), component A, component C (C+) was added, and component D was added. Component B, component A1, and component C1 were added in an amount 1.5 times the chemical theoretical equivalent required to reduce the components, and after further mixing, the mixture was press-molded to prepare pellets.

次に、実施例1と同様に水冷キャップ付きの石英製反応
管に、前記ペレットを入れたルツボを挿入17、反応管
内をアルゴンガスにて充分に不活性雰囲気とした後、1
000〜1200℃で1〜6時間加熱処理した。
Next, as in Example 1, the crucible containing the pellets was inserted into a quartz reaction tube equipped with a water-cooled cap (17), and the inside of the reaction tube was made into a sufficiently inert atmosphere with argon gas.
Heat treatment was performed at 000 to 1200°C for 1 to 6 hours.

得られた合金粉末について、実施例1と同様の方法によ
って水素吸蔵量を測定し、その結果を第1表に示す。
The hydrogen storage capacity of the obtained alloy powder was measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例1〜5 第1表に示されるような最終的な化学理論当量になるよ
うに、金属ランタンあるいはミツシュメタルとニッケル
、さらにはコバルト、マンガン、アルミニウムを秤量、
調製し、これらを高周波真空溶解炉中にて溶融し、得ら
れた合金インゴットをアルゴンガスにて置換した真空グ
ローブボックス中にて破砕し、1cm角程度となった合
金を水素粉砕をijない、所定の水素吸蔵合金粉末を得
た。
Comparative Examples 1 to 5 Metallic lanthanum or Mitsushi metal and nickel, as well as cobalt, manganese, and aluminum were weighed to give the final chemical theoretical equivalents as shown in Table 1.
These are prepared and melted in a high frequency vacuum melting furnace, the obtained alloy ingot is crushed in a vacuum glove box substituted with argon gas, and the alloy is about 1 cm square. A predetermined hydrogen storage alloy powder was obtained.

得られた合金粉末について、実施例1と同様の方法によ
って水素吸蔵;を測定し、その結果を第1表に示す。
The hydrogen storage capacity of the obtained alloy powder was measured in the same manner as in Example 1, and the results are shown in Table 1.

[発明の効果] 以−1−のような本発明の合金粉末の製造方法では、希
土類金属または合金の酸化物粉末(A+酸成分と合金化
月$4[B(Bl)成分またはこれに加えてC(C+ 
)成分]とを用い、これに所定量の還元剤(D成分)を
加えて、還元と合金化を同一工程にて行なうことにより
、多段の工程を経ずして直接希土類金属を含む合金粉末
を製造することができる。従って、従来の合金粉末の製
造方法に対比して大幅に製造コストを低減させ、生産性
や経済性を向上させるのみならず、従来のように合金を
機械粉砕する際に生じる合金粉末の酸化の発生や水素粉
砕する際の危険性を抑止することができるため、本発明
の製造方法は、工業的価値のあるものである。
[Effects of the Invention] In the method for producing alloy powder of the present invention as described in -1- below, rare earth metal or alloy oxide powder (alloyed with A + acid component [B (Bl) component or in addition to this)] teC(C+
) component], add a predetermined amount of reducing agent (component D), and perform reduction and alloying in the same process to directly produce alloy powder containing rare earth metals without going through multiple steps. can be manufactured. Therefore, compared to the conventional method of manufacturing alloy powder, it not only significantly reduces the manufacturing cost and improves productivity and economy, but also reduces the oxidation of the alloy powder that occurs when grinding the alloy mechanically as in the past. The production method of the present invention has industrial value because it is possible to suppress the generation and dangers during hydrogen pulverization.

そして、このようにして得られた合金粉末は、例えば水
素吸蔵合金として電池、ヒートバイブ等の広範な用途に
用いられる。
The alloy powder thus obtained is used, for example, as a hydrogen storage alloy in a wide range of applications such as batteries and heat vibrators.

手続補正書0.え、 平成2年5月21日 81817号Procedural amendment 0. picture, May 21, 1990 No. 81817

Claims (1)

【特許請求の範囲】 1、Co,Niから選択される少なくとも1種の金属ま
たはその酸化物粉末に、La,ミッシュメタルから選択
される少なくとも1種の希土類金属または合金の酸化物
粉末を混合し、これにCa,Mg,Liから選択される
少なくとも1種の金属を添加し、加熱処理することを特
徴とする合金粉末の製造方法。 2、希土類金属または合金の酸化物粉末に加えて、Mn
,Cu,Alから選択される少なくとも1種の金属また
はその酸化物粉末を混合する請求項1に記載の合金粉末
の製造方法。
[Claims] 1. At least one metal selected from Co and Ni or an oxide powder thereof is mixed with an oxide powder of at least one rare earth metal or alloy selected from La and misch metal. A method for producing an alloy powder, which comprises adding thereto at least one metal selected from Ca, Mg, and Li, and heat-treating the mixture. 2. In addition to rare earth metal or alloy oxide powder, Mn
2. The method for producing an alloy powder according to claim 1, wherein at least one metal selected from , Cu, and Al or an oxide powder thereof is mixed.
JP8181790A 1990-03-29 1990-03-29 Manufacture of alloy powder Pending JPH03281710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8181790A JPH03281710A (en) 1990-03-29 1990-03-29 Manufacture of alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8181790A JPH03281710A (en) 1990-03-29 1990-03-29 Manufacture of alloy powder

Publications (1)

Publication Number Publication Date
JPH03281710A true JPH03281710A (en) 1991-12-12

Family

ID=13757047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8181790A Pending JPH03281710A (en) 1990-03-29 1990-03-29 Manufacture of alloy powder

Country Status (1)

Country Link
JP (1) JPH03281710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752881B2 (en) * 1999-03-26 2004-06-22 Gkss-Forschungszentrum Geesthacht Gmbh Metalliferous storage material for hydrogen and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752881B2 (en) * 1999-03-26 2004-06-22 Gkss-Forschungszentrum Geesthacht Gmbh Metalliferous storage material for hydrogen and method for producing same

Similar Documents

Publication Publication Date Title
WO1998043763A1 (en) A method for producing a non-evaporable getter and a getter produced by said method
JPH0517293B2 (en)
KR101904499B1 (en) PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY
US5470404A (en) Rare earth metal-nickel hydrogen occlusive alloy ingot
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
CN108588521A (en) A kind of high capacity Mg-Cu-Ni ternary hydrogen-storage alloys and preparation method thereof
JPH03281710A (en) Manufacture of alloy powder
CN111411262B (en) A5B19 type gadolinium-containing hydrogen storage alloy, negative electrode and preparation method
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
US5338333A (en) Production of powdery intermetallic compound having very fine particle size
JPH05163511A (en) Production of alloy powder
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JPS6256939B2 (en)
CN115490519B (en) AgMnSbTe 3 Base high-entropy semiconductor material and preparation thereof
JP2002535495A (en) AB5-type rare earth-transition intermetallic compound for secondary battery negative electrode
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
JP4235721B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy
JPS60125338A (en) Production of permanent magnet alloy
JP2627302B2 (en) Method for producing hydrogen storage alloy molded product
JPH01129936A (en) Manufacture of hydrogen occlusion alloy
JP3984802B2 (en) Hydrogen storage alloy
JPS60106930A (en) Manufacture of permanent magnet alloy
CN117089749A (en) Nanometer K 2 MgF 4 Catalytic high-capacity Mg-Cu-Sr-based hydrogen storage alloy and preparation method thereof
JPH06228613A (en) Production of granular hydrogen storage alloy
CN118143256A (en) Nanometer Na3AlF6Catalytic high-capacity Mg-Y-Al-Ti-Sc-based hydrogen storage alloy and preparation method thereof