JPH06251769A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH06251769A
JPH06251769A JP5057872A JP5787293A JPH06251769A JP H06251769 A JPH06251769 A JP H06251769A JP 5057872 A JP5057872 A JP 5057872A JP 5787293 A JP5787293 A JP 5787293A JP H06251769 A JPH06251769 A JP H06251769A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5057872A
Other languages
Japanese (ja)
Inventor
Hajime Seri
肇 世利
Koji Yamamura
康治 山村
Yoichiro Tsuji
庸一郎 辻
Naoko Maekawa
奈緒子 前川
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5057872A priority Critical patent/JPH06251769A/en
Priority to US08/197,432 priority patent/US5480740A/en
Priority to DE69412664T priority patent/DE69412664T2/en
Priority to EP94102439A priority patent/EP0612856B1/en
Publication of JPH06251769A publication Critical patent/JPH06251769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve an initial discharge characteristic without spoiling high capacity by solving a problem that discharge capacity is very small in the initial stage of a charging and discharging cycle when conventional Zr-Mn- Mo-Cr-Ni type alloy is used in an electrode in a hydrogen storage alloy electrode to store and release electrochemical hydrogen reversibly. CONSTITUTION:A general equation of hydrogen storage alloy or the hydride is expressed by ZrMnwMoxMyNiz [provided that, M is at least a single kind of element selected from a group composed of Fe and Co, and (0.4<=w<=0.8, 0.1<=x<=0.35, 0<=y<=0.2, 1.0<=z<=1.5 and 2.0<=w+x+y+z<=2.4) is realized]. A main component of an allay phase is a C15 type lavas phase, and the crystal lattice constant (a) is (7.04 angstrom<=a<=7.13 angstrom).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵−放出を可逆的に行える水素吸蔵合金電極およびその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen and a method for producing the same.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池として鉛電池とアルカリ電池がある。このうちアルカ
リ電池は、高信頼性が期待でき、小形軽量化も可能であ
るなどの理由から、小型電池は各種ポ−タブル機器用
に、また大型電池は産業用にそれぞれ使われてきた。こ
のアルカリ蓄電池において、正極としては一部空気極や
酸化銀極なども取り上げられているが、ほとんどの場合
ニッケル極である。ニッケル極は、ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。一方、負極としてはカドミウ
ムの他に亜鉛、鉄、水素などが対象となっているが、現
在のところカドミウム極が主体である。ところが、一層
の高エネルギー密度を達成するために金属水素化物、つ
まり水素吸蔵合金を負極として使ったニッケル−水素蓄
電池が注目され、製法などに多くの提案がされている。
水素を可逆的に吸収・放出しうる水素吸蔵合金を負極に
使用するアルカリ蓄電池の水素吸蔵合金電極は、理論容
量密度がカドミウム極より大きく、亜鉛極のような変形
やデンドライトの形成などもないことから、長寿命・無
公害であり、しかも高エネルギー密度を有するアルカリ
蓄電池用負極として期待されている。
2. Description of the Related Art Lead batteries and alkaline batteries are widely used as storage batteries for various power sources. Among them, the alkaline battery has been used for various portable devices, and the large battery has been used for industrial purposes because it can be expected to have high reliability and can be made compact and lightweight. In this alkaline storage battery, an air electrode, a silver oxide electrode, and the like have been taken up as a positive electrode, but in most cases, it is a nickel electrode. Nickel electrode has improved characteristics instead of the pocket type instead of the sintered type, and has become possible to be hermetically sealed and expanded its applications. On the other hand, as the negative electrode, in addition to cadmium, zinc, iron, hydrogen, etc. are targeted, but at the present time, the cadmium electrode is mainly used. However, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy, as a negative electrode has attracted attention in order to achieve a higher energy density, and many proposals have been made for a manufacturing method and the like.
The hydrogen storage alloy electrode of an alkaline storage battery, which uses a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen for the negative electrode, has a theoretical capacity density larger than that of the cadmium electrode and does not have deformation such as zinc electrode or dendrite formation. Therefore, it is expected as a negative electrode for an alkaline storage battery that has a long life, is pollution-free, and has a high energy density.

【0003】このような水素吸蔵合金電極に用いられる
合金として、一般的にはTi−Ni系およびLa(又は
Mm)−Ni系の多元系合金がよく知られている。Ti
−Ni系の多元系合金は、ABタイプ(A:La,Z
r,Tiなどの水素との親和性の大きい元素、B:N
i,Mn,Crなどの遷移元素)として分類できるが、
このタイプのものは、特徴として充放電サイクルの初期
には比較的大きな放電容量を示す。しかし、充放電を繰
り返すと、その容量を長く維持することが困難であると
いう問題がある。また、AB5タイプのLa(またはM
m)−Ni系の多元系合金は、近年電極材料として多く
の開発が進められ、特にMm−Ni系の多元系合金はす
でに実用化されているが、この合金も比較的放電容量が
小さく、電池電極としての寿命性能が不十分であり、材
料コストが高いなどの問題を有している。したがって、
さらに放電容量が大きく長寿命である新規水素吸蔵合金
材料が望まれている。これに対して、AB2タイプのラ
ーバス(Laves)相合金は水素吸蔵能が比較的高
く、高容量かつ長寿命の電極として有望である。すでに
この合金系については、例えばZrMoαNiβ系合金
(特開昭64−48370号公報)やAxByNiz系
合金(特開平1−102855号公報)、ZrαMnβ
MoγCrδNiε(特開平4−63240号公報)な
どが提案されている。
As an alloy used for such a hydrogen storage alloy electrode, generally, a Ti-Ni-based and La (or Mm) -Ni-based multi-component alloy is well known. Ti
-Ni-based multi-component alloys are AB type (A: La, Z
Elements with a high affinity for hydrogen, such as r and Ti, B: N
i, Mn, Cr and other transition elements)
This type characteristically exhibits a relatively large discharge capacity early in the charge / discharge cycle. However, when charging and discharging are repeated, it is difficult to maintain the capacity for a long time. Also, AB 5 type La (or M
The m) -Ni-based multi-component alloy has been extensively developed in recent years as an electrode material, and in particular, the Mm-Ni-based multi-component alloy has already been put into practical use, but this alloy also has a relatively small discharge capacity. It has problems such as insufficient life performance as a battery electrode and high material cost. Therefore,
Further, a new hydrogen storage alloy material having a large discharge capacity and a long life is desired. On the other hand, the AB 2 type Laves phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode having a high capacity and a long life. As for this alloy system, for example, ZrMoαNiβ system alloy (JP-A-64-48370), AxByNiz system alloy (JP-A-1-102855), ZrαMnβ.
MoγCrδNiε (Japanese Patent Laid-Open No. 4-63240) and the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、AB2
タイプのラーバス相合金を電極に用いた場合、Ti−N
i系やLa(またはMm)−Ni系の多元系合金に比べ
て放電容量が大きく、長寿命化が可能なものの、さらに
一層の性能の向上が望まれている。そして、合金系をZ
r−Mn−Mo−Cr−Ni系に限定し組成を調整する
ことにより、0.35Ah/g前後の放電容量をもつ水
素吸蔵合金電極が得られた(特開平4−63240号公
報)。さらに、もっとMn量を増やしCr量を制限する
ことにより、合金の均質性が向上し放電容量がさらに増
大する。
However, AB 2
When a type Lavas phase alloy is used for the electrode, Ti-N
Although the discharge capacity is large and the life can be extended as compared with the i-based or La (or Mm) -Ni-based multi-component alloy, further improvement in performance is desired. And the alloy system is Z
By limiting the composition to the r-Mn-Mo-Cr-Ni system and adjusting the composition, a hydrogen storage alloy electrode having a discharge capacity of about 0.35 Ah / g was obtained (JP-A-4-63240). Furthermore, by increasing the amount of Mn and limiting the amount of Cr, the homogeneity of the alloy is improved and the discharge capacity is further increased.

【0005】このようなZr−Mn−Mo−Cr−Ni
系水素吸蔵合金電極は、高容量であるが、充放電サイク
ルの初期での放電容量が非常に小さいという問題があっ
た。本発明は、上記従来の課題を解決するものであり、
水素吸蔵合金を改善することにより、高容量を損なうこ
となく初期放電特性を向上させることができる水素吸蔵
合金電極を提供することを目的とする。
Such Zr-Mn-Mo-Cr-Ni
Although the hydrogen-storing alloy-based electrode has a high capacity, it has a problem that the discharge capacity at the beginning of the charge / discharge cycle is very small. The present invention is to solve the above conventional problems,
An object of the present invention is to provide a hydrogen storage alloy electrode which can improve initial discharge characteristics without impairing high capacity by improving the hydrogen storage alloy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、一般式がZrMnwMoxyNiz(ただ
し、MはFeおよびCoよりなる群から選ばれた少なく
とも1種の元素であり、0.4≦w≦0.8、0.1≦
x≦0.35、0≦y≦0.2、1.0≦z≦1.5、
かつ2.0≦w+x+y+z≦2.4)で示され、合金
相の主成分がC15(MgCu2)型ラーバス(Lav
es)相であり、かつその結晶格子定数(a)が、7.
04オングストローム≦a≦7.13オングストローム
である水素吸蔵合金またはその水素化物を用いるもので
ある。
In order to achieve the above object, the present invention has a general formula of ZrMn w Mo x M y Ni z (where M is at least one selected from the group consisting of Fe and Co). Element, 0.4 ≦ w ≦ 0.8, 0.1 ≦
x ≦ 0.35, 0 ≦ y ≦ 0.2, 1.0 ≦ z ≦ 1.5,
And 2.0 ≦ w + x + y + z ≦ 2.4), and the main component of the alloy phase is C15 (MgCu 2 ) type Lavas (Lav).
es) phase, and its crystal lattice constant (a) is 7.
A hydrogen storage alloy or a hydride thereof having a thickness of 04 Å ≦ a ≦ 7.13 Å is used.

【0007】[0007]

【作用】本発明の水素吸蔵合金電極は、従来のZr−M
n−Mo−Cr−Ni系ラーバス相合金を改善したもの
である。すなわち、従来の合金は、アルカリ溶液中でC
rの不働態被膜を形成するため、充放電サイクル初期で
の電気化学的な水素の吸蔵−放出を困難にしていた。本
発明においては、従来合金の組成のCrをM(MはFe
およびCoよりなる群から選ばれた少なくとも1種の元
素)に置換したもので、これにより電気化学的な水素の
吸蔵−放出に対する活性が向上し、充放電サイクルの初
期から効率よく多量の水素を吸蔵−放出させることがで
きる。したがって、本発明の電極を用いて構成したアル
カリ蓄電池、例えばニッケル−水素蓄電池は、従来のこ
の種の蓄電池に比べて高容量を損なわずに優れた初期放
電特性を有することが可能になる。
The hydrogen storage alloy electrode of the present invention is the same as the conventional Zr-M
It is an improvement of the n-Mo-Cr-Ni-based Larvus phase alloy. That is, the conventional alloy has a C content in an alkaline solution.
Since the passive film of r is formed, it is difficult to electrochemically store and release hydrogen at the beginning of the charge and discharge cycle. In the present invention, Cr of the composition of the conventional alloy is changed to M (M is Fe
And at least one element selected from the group consisting of Co), which improves the activity for electrochemical hydrogen absorption / desorption, and efficiently produces a large amount of hydrogen from the beginning of the charge / discharge cycle. It can be occluded and released. Therefore, an alkaline storage battery constituted by using the electrode of the present invention, for example, a nickel-hydrogen storage battery can have excellent initial discharge characteristics without impairing the high capacity as compared with the conventional storage battery of this type.

【0008】次に、各組成の範囲は、主に水素吸蔵−放
出量を確保する観点から定められる。Moは水素吸蔵−
放出量増加に寄与し、Niは吸蔵−放出量の低下を引き
起こすが電気化学的な水素の吸蔵−放出に対する活性の
向上に寄与する。しかし、Mo量xが0.1より小さい
とMoの効果が小さく、Mo量xが0.35を越える
と、合金の均質性が非常に悪くなり、逆に水素吸蔵−放
出量は減少する。また、Ni量zが1.5より大きいと
水素平衡圧力が大きくなるために水素吸蔵−放出量が減
少し、Ni量zが1.0より小さいと電気化学的な水素
の吸蔵−放出に対する活性が得られず放電容量は小さく
なる。したがって、Mo量xおよびNi量zはそれぞれ
0.1≦x≦0.35、1.0≦z≦1.5が適当であ
る。しかし、MoとNiは相反する効果を及ぼすので、
Mo量xとNi量zのバランスが重要であり、z−xが
1.2以下であれば水素吸蔵−放出量は特に大きくな
る。それ故に、xおよびzが上記の範囲内で、かつz−
x≦1.2であることが 望ましい。
Next, the range of each composition is determined mainly from the viewpoint of securing the hydrogen storage-release amount. Mo is hydrogen storage
Ni contributes to the increase in the release amount, and Ni causes a decrease in the storage-release amount, but contributes to the improvement of the electrochemical activity for hydrogen storage-release. However, when the Mo amount x is less than 0.1, the effect of Mo is small, and when the Mo amount x exceeds 0.35, the homogeneity of the alloy is extremely deteriorated, and conversely the hydrogen storage-release amount decreases. Further, when the Ni content z is larger than 1.5, the hydrogen equilibrium pressure increases, so the hydrogen storage-release quantity decreases, and when the Ni content z is less than 1.0, the electrochemical activity for hydrogen storage-release is decreased. Is not obtained and the discharge capacity becomes small. Therefore, it is suitable that the Mo amount x and the Ni amount z are 0.1 ≦ x ≦ 0.35 and 1.0 ≦ z ≦ 1.5, respectively. However, since Mo and Ni have opposite effects,
The balance between the Mo amount x and the Ni amount z is important, and if z−x is 1.2 or less, the hydrogen storage-release amount becomes particularly large. Therefore, x and z are within the above range, and z-
It is desirable that x ≦ 1.2.

【0009】Mも電気化学的な水素の吸蔵−放出に対す
る活性のさらなる向上に寄与する。しかし、M量yが
0.2を越えると合金の水素吸蔵−放出能に影響を及ぼ
し水素吸蔵−放出量が小さくなる。また、y=0の時、
すなわち従来の合金組成からCrをなくした場合も電気
化学的な水素の吸蔵−放出に対する活性が向上する。し
たがって、M量yは0≦y≦0.2が適当である。なか
でも、M量yがMo量xより少ない場合は水素平衡圧力
が低くなり、放電容量が特に大きくなる。故に、M量に
関しては0≦y≦0.2、かつy≦xであることが望ま
しい。MnはP(水素圧力)C(組性)T(温度)曲線
における水素平衡圧力の平坦性に影響を及ぼし、Mn量
wが0.4以上でその平坦性が向上し、放電容量が増加
する。しかし、Mn量wが0.8を越えると、Mnの電
解液への溶出が激しくなりサイクル寿命特性が悪くな
る。したがって、Mn量wは0.4≦w≦0.8が適当
である。
M also contributes to the further improvement of the activity for electrochemical hydrogen storage-release. However, when the M amount y exceeds 0.2, the hydrogen storage-release capacity of the alloy is affected and the hydrogen storage-release amount becomes small. Also, when y = 0,
That is, even when Cr is removed from the conventional alloy composition, the electrochemical activity for hydrogen storage-release is improved. Therefore, 0 ≦ y ≦ 0.2 is appropriate for the M amount y. Above all, when the M amount y is smaller than the Mo amount x, the hydrogen equilibrium pressure becomes low and the discharge capacity becomes particularly large. Therefore, it is desirable that the amount of M be 0 ≦ y ≦ 0.2 and y ≦ x. Mn affects the flatness of the hydrogen equilibrium pressure in the P (hydrogen pressure) C (composition) T (temperature) curve, and when the Mn amount w is 0.4 or more, the flatness is improved and the discharge capacity is increased. . However, when the Mn amount w exceeds 0.8, Mn is apt to be eluted into the electrolytic solution and the cycle life characteristics deteriorate. Therefore, 0.4 ≦ w ≦ 0.8 is appropriate for the Mn amount w.

【0010】本発明の水素吸蔵合金は、合金作製後、均
質化熱処理を行うことにより合金の均質性および結晶性
が向上するので、放電容量が特に大きくなる。しかし、
熱処理温度が1000℃より低いと熱処理の効果がな
く、1300℃より高いと多量のMnが蒸発して合金組
成が大きくずれるため、逆に放電容量は小さくなる。熱
処理時間は1時間より短いと熱処理の効果が現れない。
また、合金の酸化を防ぐために、熱処理は真空中もしく
は不活性ガス雰囲気中で行う方がよい。したがって、合
金作製後、1000〜1300℃の真空中もしくは不活
性ガス雰囲気中で少なくとも1時間の均質化熱処理を行
うことが望ましい。
In the hydrogen storage alloy of the present invention, the homogeneity and crystallinity of the alloy are improved by carrying out a homogenizing heat treatment after the alloy is produced, so that the discharge capacity becomes particularly large. But,
If the heat treatment temperature is lower than 1000 ° C., the heat treatment has no effect, and if the heat treatment temperature is higher than 1300 ° C., a large amount of Mn is evaporated and the alloy composition is largely deviated, so that the discharge capacity is decreased. If the heat treatment time is shorter than 1 hour, the effect of heat treatment does not appear.
Further, in order to prevent the alloy from being oxidized, the heat treatment is preferably performed in vacuum or in an inert gas atmosphere. Therefore, it is desirable to carry out a homogenizing heat treatment for at least 1 hour in a vacuum at 1000 to 1300 ° C. or in an inert gas atmosphere after alloy production.

【0011】[0011]

【実施例】以下に本発明の一実施例について図面ととも
に説明する。市販のZr,Mn,Mo,Fe,Co,N
i金属を原料として、アルゴン雰囲気中、アーク溶解炉
で加熱溶解することにより、表1および表2に示したよ
うな組成の合金を作製した。ただし、Mn量wが0.8
以上のものはアーク炉で作製すると多量のMnが蒸発
し、目的合金を得ることが困難であるため、誘導加熱炉
で作製した。次いで、真空中、1100℃で12時間均
質化熱処理をし、合金試料とした。なお、表1中の試料
No.1および2については上記金属のFeあるいはC
oに代えてCrを使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Commercially available Zr, Mn, Mo, Fe, Co, N
Alloys having the compositions shown in Tables 1 and 2 were prepared by heating and melting an i metal as a raw material in an arc melting furnace in an argon atmosphere. However, the Mn amount w is 0.8
The above materials were produced in an induction heating furnace because a large amount of Mn evaporates and it is difficult to obtain the target alloy when produced in an arc furnace. Next, homogenization heat treatment was performed at 1100 ° C. for 12 hours in vacuum to obtain an alloy sample. In addition, the sample No. For 1 and 2, Fe or C of the above metals
Cr was used instead of o.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】これらの合金試料の一部はX線回折などの
合金分析および水素ガス雰囲気における水素吸収−放出
量測定(通常のP−C−T測定)に使用し、残りは電極
特性評価に用いた。試料No.1〜7は本発明と構成元
素または合金組成が異なる比較例であり、試料No.8
〜33は本発明の水素吸蔵合金のいくつかの実施例であ
る。まず、各合金試料についてX線回折測定を行った。
その結果、いずれの合金試料についても合金相の主成分
はC15型ラーバス相(MgCu2型面心立方構造)で
あることを確認した。また、均質化熱処理をした合金
は、熱処理前のものと比べると面心立方構造のピークが
より大きく鋭くなったので、熱処理することによりC1
5型ラーバス相の割合が増大し、合金の均質性および結
晶性も向上したことがわかった。特にMn量wが0.8
以上のものについても均一組成の目的合金が得られたこ
とを確認した。結晶格子定数については、試料No.3
は7.04オングストロームより小さかったが、それ以
外はいずれも7.04〜7.13オングストロームであ
った。以上のような試料No.1〜33の合金につい
て、電気化学的な充放電反応によるアルカリ蓄電池用負
極としての電極特性、特に、初期放電特性を評価するた
めに単電池試験を行った。
A part of these alloy samples is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P-C-T measurement) in a hydrogen gas atmosphere, and the rest is used for electrode characteristic evaluation. I was there. Sample No. Sample Nos. 1 to 7 are comparative examples having different constituent elements or alloy compositions from the present invention. 8
33 are some examples of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample.
As a result, it was confirmed that the main component of the alloy phase in all the alloy samples was a C15 type Larvus phase (MgCu 2 type face centered cubic structure). Further, the homogenized heat-treated alloy had a larger and sharper peak of the face-centered cubic structure than the one before the heat treatment.
It was found that the proportion of the type 5 Larvus phase was increased and the homogeneity and crystallinity of the alloy were also improved. Especially Mn amount w is 0.8
It was confirmed that the target alloys having a uniform composition were obtained from the above. Regarding the crystal lattice constant, Sample No. Three
Was less than 7.04 Å, but was 7.04 to 7.13 Å in all other cases. Sample No. With respect to the alloys 1 to 33, a unit cell test was conducted to evaluate electrode characteristics as an anode for an alkaline storage battery by electrochemical charging / discharging reaction, in particular, initial discharge characteristics.

【0015】試料No.1〜33の合金を400メッシ
ュ以下の粒径になるように粉砕し、この合金粉末1gと
導電剤としてのカーボニルニッケル粉末3gおよび結着
剤としてのポリエチレン微粉末0.12gを十分混合攪
拌し、プレス加工により直径24.5mm、厚さ2.5
mmの円板状に成形した。これを真空中、130℃で1
時間加熱し、結着剤を溶融させて水素吸蔵合金電極とし
た。この水素吸蔵合金電極にニッケル線のリードを取り
付けて負極とし、正極として過剰の容量を有する焼結式
ニッケル極を、セパレータとしてポリアミド不織布を用
い、比重1.30の水酸化カリウム水溶液を電解液とし
て、25℃において、一定電流で充電と放電を繰り返
し、各サイクルにおいて負極の放電容量を測定した。な
お、充電電気量は水素吸蔵合金1gあたり100mA×
5時間であり、放電は同様に1gあたり50mAで行
い、0.8Vでカットした。その結果を図1および図2
に示す。図1および図2はいずれも横軸に充放電サイク
ル数を、縦軸に合金1gあたりの放電容量を示したもの
であり、図中の番号は表1または表2の試料No.と一
致している。
Sample No. The alloys 1 to 33 were pulverized to have a particle size of 400 mesh or less, and 1 g of the alloy powder, 3 g of carbonyl nickel powder as a conductive agent and 0.12 g of polyethylene fine powder as a binder were sufficiently mixed and stirred, 24.5 mm in diameter and 2.5 by pressing
It was formed into a disk shape of mm. 1 at 130 ℃ in vacuum
It was heated for a period of time to melt the binder and form a hydrogen storage alloy electrode. A nickel wire lead was attached to the hydrogen storage alloy electrode to serve as a negative electrode, a sintered nickel electrode having an excessive capacity was used as a positive electrode, a polyamide nonwoven fabric was used as a separator, and a potassium hydroxide aqueous solution having a specific gravity of 1.30 was used as an electrolytic solution. At 25 ° C., charging and discharging were repeated at a constant current, and the discharge capacity of the negative electrode was measured in each cycle. The amount of electricity charged is 100 mA x 1 g of hydrogen storage alloy.
It was 5 hours, and the discharge was similarly performed at 50 mA / g, and cut at 0.8V. The results are shown in FIG. 1 and FIG.
Shown in. 1 and 2, the horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the discharge capacity per 1 g of the alloy. The numbers in the figures are the sample No. of Table 1 or Table 2. Is consistent with

【0016】図1および図2から試料No.1および2
(比較例)では1サイクル目の放電容量が10〜20m
Ah/g、2サイクル目が10〜50mAh/gであ
り、10サイクル以後ほぼ一定になったのに対して、本
発明実施例の水素吸蔵合金を用いると、いずれも1サイ
クル目が200〜250mAh/g、2サイクル目が2
80〜320mAh/g、3サイクル以後はほぼ一定で
340〜380mAh/gであり、従来よりも初期放電
特性が大きく向上していることがわかった。また、50
サイクルまで続けて単電池試験を行ったところ、試料N
o.3〜6(比較例)は水素吸蔵量自体が小さいため、
また、試料No.7(比較例)は電気化学的な水素の吸
蔵−放出に対する活性に乏しいため、それぞれ200〜
280mAh/gと飽和容量が小さかった。また、試料
No.1(比較例)はMn量が多いためMnのアルカリ
電解液中への溶出が激しく、充放電サイクルを繰り返す
につれて放電容量が大きく低下した。これらに対して試
料No.8〜33の本発明実施例の水素吸蔵合金電極で
は、飽和容量が340〜380mAh/gと大きく、充
放電サイクルに伴う放電容量の低下が非常に小さいこと
がわかった。
From FIG. 1 and FIG. 2, the sample No. 1 and 2
In (Comparative example), the discharge capacity in the first cycle is 10 to 20 m
Ah / g was 10 to 50 mAh / g in the second cycle, which became almost constant after 10 cycles, whereas when the hydrogen storage alloys of the examples of the present invention were used, the first cycle was 200 to 250 mAh. / G, the second cycle is 2
80 to 320 mAh / g, which was almost constant after 3 cycles and was 340 to 380 mAh / g, and it was found that the initial discharge characteristics were greatly improved as compared with the conventional case. Also, 50
When the unit cell test was conducted continuously until the cycle, sample N
o. 3 to 6 (comparative examples) have a small hydrogen storage capacity,
In addition, the sample No. 7 (Comparative Example) has poor activity for electrochemical hydrogen absorption-desorption, and thus each of 200-200
The saturation capacity was 280 mAh / g, which was small. In addition, the sample No. In Comparative Example 1 (Comparative Example), the amount of Mn was large, so that Mn was severely eluted into the alkaline electrolyte, and the discharge capacity greatly decreased as the charge and discharge cycle was repeated. For these samples No. It was found that in the hydrogen storage alloy electrodes of Examples 8 to 33 of the present invention, the saturation capacity was as large as 340 to 380 mAh / g, and the decrease in discharge capacity with charge / discharge cycles was very small.

【0017】さらに、これらの水素吸蔵合金を用いて以
下に示したような方法で密閉型ニッケル−水素蓄電池を
作製した。表1または表2に示した合金の中から試料N
o.1,2,12,16,21,26,29および33
の8種類の合金を選び、400メッシュ以下の粉末にし
た各水素吸蔵合金をそれぞれカルボキシメチルセルロー
ズ(CMC)の希水溶液と混合攪拌してペースト状に
し、電極支持体として平均ポアサイズ150ミクロン、
多孔度95%、厚さ1.0mmの発泡状ニッケルシート
に充填した。これを120℃で乾燥してローラープレス
で加圧し、さらにその表面にフッ素樹脂粉末をコーティ
ングして水素吸蔵合金電極とした。この電極をそれぞれ
幅3.3cm、長さ21cm、厚さ0.40mmに調整
し、リード板を所定の2箇所に取り付けた。そして、正
極およびセパレータと組み合わせて3層を渦巻き状に捲
回してSCサイズの電槽に収納した。このときの正極は
公知の発泡式ニッケル極を選び、幅3.3cm、長さ1
8cmとして用いた。この場合もリード板を2箇所に取
り付けた。また、セパレータは親水性を付与したポリプ
ロピレン不織布を使用し、電解液としては、比重1.2
0の水酸化カリウム水溶液に水酸化リチウムを30g/
l溶解したものを用いた。これを封口して密閉型電池と
した。この電池は正極容量規制であり理論容量は3.0
Ahにした。
Further, a sealed nickel-hydrogen storage battery was manufactured by using the above hydrogen storage alloy by the following method. Sample N from the alloys shown in Table 1 or Table 2
o. 1, 2, 12, 16, 21, 26, 29 and 33
8 kinds of alloys are selected, and each hydrogen storage alloy made into powder of 400 mesh or less is mixed and stirred with a dilute aqueous solution of carboxymethyl cellulose (CMC) to form a paste, and an average pore size of 150 μm as an electrode support,
It was filled in a foamed nickel sheet having a porosity of 95% and a thickness of 1.0 mm. This was dried at 120 ° C., pressed by a roller press, and the surface thereof was coated with a fluororesin powder to obtain a hydrogen storage alloy electrode. The electrodes were adjusted to have a width of 3.3 cm, a length of 21 cm, and a thickness of 0.40 mm, and lead plates were attached at two predetermined positions. Then, in combination with the positive electrode and the separator, the three layers were spirally wound and housed in an SC size battery case. At this time, a known foaming nickel electrode was selected as the positive electrode, and the width was 3.3 cm and the length was 1 cm.
It was used as 8 cm. Also in this case, the lead plates were attached at two positions. The separator is made of hydrophilic polypropylene non-woven fabric, and the electrolyte has a specific gravity of 1.2.
0 g of potassium hydroxide aqueous solution containing 30 g of lithium hydroxide /
1 The dissolved product was used. This was sealed to form a sealed battery. This battery has a positive electrode capacity regulation and a theoretical capacity of 3.0
It was Ah.

【0018】このようにして作製した電池を通常の充放
電サイクル試験によって評価した。すなわち、充電は
0.5C(2時間率)で150%まで、放電は0.2C
(5時間率)で終止電圧1.0Vとし、20℃において
充放電サイクルを繰り返した。その結果、試料No.1
および2では理論容量に達するのに10〜15サイクル
かかったが、それら以外ではいずれの電池も3〜5サイ
クルの充放電で理論容量の3.0Ahに到達し、その後
安定した電池性能を持続した。
The battery thus manufactured was evaluated by a usual charge / discharge cycle test. That is, charging is 0.5C (2-hour rate) up to 150%, discharging is 0.2C.
The final voltage was set to 1.0 V (at a rate of 5 hours), and the charge / discharge cycle was repeated at 20 ° C. As a result, the sample No. 1
It took 10 to 15 cycles to reach the theoretical capacity in Examples 2 and 2, but other than that, all the cells reached the theoretical capacity of 3.0 Ah in 3 to 5 cycles of charging and discharging, and then maintained stable battery performance. .

【0019】[0019]

【発明の効果】上記実施例から明らかなように、本発明
の水素吸蔵合金電極は、従来の水素吸蔵合金電極の合金
組成のCrをMに置換することにより、電気化学的な水
素の吸蔵−放出に対する活性が大きくなり、充放電サイ
クルの初期から効率よく多量の水素を吸蔵−放出させる
ことができる。したがって、これを負極とするアルカリ
蓄電池は、従来のこの種の蓄電池に比べて高容量を損な
わずに優れた初期放電特性を有することができる。
As is apparent from the above examples, the hydrogen storage alloy electrode of the present invention can be electrochemically occluded by substituting M for Cr in the alloy composition of the conventional hydrogen storage alloy electrode. The activity for release is increased, and a large amount of hydrogen can be efficiently absorbed and released from the beginning of the charge / discharge cycle. Therefore, the alkaline storage battery using this as a negative electrode can have excellent initial discharge characteristics without impairing the high capacity as compared with the conventional storage battery of this type.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および従来の水素吸蔵合金電極
を用いた単電池試験結果を示す充放電サイクル特性図。
FIG. 1 is a charge / discharge cycle characteristic diagram showing the results of a unit cell test using an example of the present invention and a conventional hydrogen storage alloy electrode.

【図2】本発明の実施例の水素吸蔵合金電極を用いた単
電池試験結果を示す充放電サイクル特性図。
FIG. 2 is a charge / discharge cycle characteristic diagram showing the results of a single cell test using the hydrogen storage alloy electrode of the example of the present invention.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/26 J 8520−4K (72)発明者 前川 奈緒子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number in the agency FI Technical indication location H01M 4/26 J 8520-4K (72) Inventor Naoko Maekawa 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Tsutomu Iwaki, 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式が、ZrMnwMoxyNiz(但
し、MはFeおよびCoよりなる群から選ばれた少なく
とも1種の元素であり、0.4≦w≦0.8、0.1≦
x≦0.35、0≦y≦0.2、1.0≦z≦1.5、
かつ2.0≦w+x+y+z≦2.4)で示され、合金
相の主成分がC15型ラ−バス相であり、かつ結晶格子
定数(a)が、7.04オングストローム≦a≦7.13オ
ングストロームである水素吸蔵合金またはその水素化物
を用いることを特徴とする水素吸蔵合金電極。
1. The general formula is ZrMn w Mo x M y Ni z (wherein M is at least one element selected from the group consisting of Fe and Co, and 0.4 ≦ w ≦ 0.8, 0.1 ≦
x ≦ 0.35, 0 ≦ y ≦ 0.2, 1.0 ≦ z ≦ 1.5,
And 2.0 ≦ w + x + y + z ≦ 2.4), the main component of the alloy phase is a C15 type Lavas phase, and the crystal lattice constant (a) is 7.04 Å ≦ a ≦ 7.13 Å. A hydrogen storage alloy electrode characterized by using a hydrogen storage alloy or a hydride thereof.
【請求項2】 y≦xであり、かつz−x≦1.2であ
る請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein y ≦ x and z−x ≦ 1.2.
【請求項3】 一般式が、ZrMnwMoxyNiz(但
し、MはFeおよびCoよりなる群から選ばれた少なく
とも1種の元素であり、0.4≦w≦0.8、0.1≦
x≦0.35、0≦y≦0.2、1.0≦z≦1.5、
かつ2.0≦w+x+y+z≦2.4)で示され、合金
相の主成分がC15型ラ−バス相であり、かつ結晶格子
定数(a)が、7.04オングストローム≦a≦7.13オ
ングストロームである水素吸蔵合金を作製後、1000
〜1300℃の真空中もしくは不活性ガス雰囲気中で少
なくとも1時間の均質化熱処理を行う工程を有すること
を特徴とする水素吸蔵合金電極の製造法。
3. The general formula is ZrMn w Mo x M y Ni z (wherein M is at least one element selected from the group consisting of Fe and Co, 0.4 ≦ w ≦ 0.8, 0.1 ≦
x ≦ 0.35, 0 ≦ y ≦ 0.2, 1.0 ≦ z ≦ 1.5,
And 2.0 ≦ w + x + y + z ≦ 2.4), the main component of the alloy phase is a C15 type Lavas phase, and the crystal lattice constant (a) is 7.04 Å ≦ a ≦ 7.13 Å. After producing a hydrogen storage alloy that is
A method for producing a hydrogen storage alloy electrode, comprising a step of performing homogenizing heat treatment for at least 1 hour in a vacuum at 1300 ° C. or in an inert gas atmosphere.
JP5057872A 1993-02-22 1993-02-22 Hydrogen storage alloy electrode and manufacture thereof Pending JPH06251769A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5057872A JPH06251769A (en) 1993-02-22 1993-02-22 Hydrogen storage alloy electrode and manufacture thereof
US08/197,432 US5480740A (en) 1993-02-22 1994-02-16 Hydrogen storage alloy and electrode therefrom
DE69412664T DE69412664T2 (en) 1993-02-22 1994-02-17 Hydrogen-storing alloy and electrode made of it
EP94102439A EP0612856B1 (en) 1993-02-22 1994-02-17 Hydrogen storage alloy and electrode therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5057872A JPH06251769A (en) 1993-02-22 1993-02-22 Hydrogen storage alloy electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06251769A true JPH06251769A (en) 1994-09-09

Family

ID=13068080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5057872A Pending JPH06251769A (en) 1993-02-22 1993-02-22 Hydrogen storage alloy electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06251769A (en)

Similar Documents

Publication Publication Date Title
US5149383A (en) Hydrogen storage alloy electrode
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
US5532076A (en) Hydrogen storage alloy and electrode therefrom
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
US5468309A (en) Hydrogen storage alloy electrodes
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH06251769A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0582125A (en) Hydrogen occluding alloy electrode
US5541018A (en) Hydrogen storing alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH06251768A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06145849A (en) Hydrogen storage alloy electrode
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05343054A (en) Hydrogen storage alloy electrode
JPH05347156A (en) Hydrogen storage alloy electrode
JPH0696763A (en) Hydrogen storage alloy electrode and its manufacture