JPH05343054A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH05343054A
JPH05343054A JP4142339A JP14233992A JPH05343054A JP H05343054 A JPH05343054 A JP H05343054A JP 4142339 A JP4142339 A JP 4142339A JP 14233992 A JP14233992 A JP 14233992A JP H05343054 A JPH05343054 A JP H05343054A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
storage alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142339A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoichiro Tsuji
庸一郎 辻
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4142339A priority Critical patent/JPH05343054A/en
Priority to EP93105939A priority patent/EP0566055B1/en
Priority to DE69326374T priority patent/DE69326374T2/en
Publication of JPH05343054A publication Critical patent/JPH05343054A/en
Priority to US08/384,809 priority patent/US5541018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve a preservation characteristic at high temperature without detracting high capacity and an initial stage discharge characteristic, by solving a problem that a preservation at 65 deg.C is very inferior when sealed battery is made by utilizing Zr-Mn-V-M-Ni system Laves phase hydrogen storage alloy electrode. CONSTITUTION:This electrode is composed of hydrogen storage alloy or its hydride, of which a general formula is shown by ZrMnvVwMxWyNiz, (wherein, M is one kind or more of elements selected from Fe and Co, and 0.4<=v<=0.8, 0.1<=w<=0.3, 0<x<=0.2, 0<y<=0.1, 1.0<=z<=1.5 and 2.0<=v+w+x+y+z<=2.4); and the main component of an alloy phase is C15 (MgCu2) type Laves phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気化学的な水素の吸蔵
・放出を可逆的に行える水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池として鉛電池とアルカリ電池がある。このうちアルカ
リ蓄電池は高信頼性が期待でき、小型軽量化も可能など
の理由で小型電池は各種ポータブル機器用に、大型は産
業用として使われてきた。
2. Description of the Related Art Lead batteries and alkaline batteries are widely used as storage batteries for various power sources. Among them, the alkaline storage battery can be expected to have high reliability and can be made compact and lightweight. For this reason, the small battery has been used for various portable devices and the large battery for industrial use.

【0003】このアルカリ蓄電池において、正極として
は一部空気極や酸化銀極なども取り上げられているが、
ほとんどの場合ニッケル極である。ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode, etc. are also taken up as a positive electrode,
In most cases it is a nickel pole. The characteristics have been improved from the pocket type to the sintered type, and it has become possible to further seal and expand the applications.

【0004】一方、負極としてはカドミウムの他に亜
鉛,鉄,水素などが対象となっているが、現在のところ
カドミウム極が主体である。ところが、一層の高エネル
ギー密度を達成するために金属水素化物つまり水素吸蔵
合金電極を使ったニッケル−水素蓄電池が注目され、製
法などに多くの提案がされている。
On the other hand, as the negative electrode, zinc, iron, hydrogen, etc. are targeted in addition to cadmium, but at present, the main component is a cadmium electrode. However, in order to achieve a higher energy density, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode has attracted attention, and many proposals have been made for its manufacturing method.

【0005】水素を可逆的に吸収・放出しうる水素吸蔵
合金を負極に使用するアルカリ蓄電池の水素吸蔵合金電
極は理論容量密度がカドミウム極より大きく、亜鉛極の
ような変形やデンドライトの形成などもないことから長
寿命かつ無公害であり、しかも高エネルギー密度を有す
るアルカリ蓄電池用負極として期待されている。
The hydrogen storage alloy electrode of an alkaline storage battery, which uses a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a negative electrode, has a theoretical capacity density larger than that of a cadmium electrode, and also causes deformation such as a zinc electrode and formation of dendrite. Since it does not exist, it is expected to be a negative electrode for alkaline storage batteries that has a long life, is pollution-free, and has a high energy density.

【0006】このような水素吸蔵合金電極に用いられる
合金として、一般的にはTi−Ni系およびLa(また
はMn)−Ni系の多元系合金がよく知られている。T
i−Ni系の多元系合金は、ABタイプ(A:La,Z
r,Tiなどの水素との親和性の大きい元素,B:N
i,Mn,Wなどの遷移元素)として分類できるが、こ
の特徴として充放電サイクルの初期には比較的大きな放
電容量を示すが、充放電を繰り返すと、その容量を長く
維持することが困難であるという問題がある。また、A
5タイプのLa(またはMn)−Ni系の多元系合金
は、近年電極材料として多くの開発が進められ、特に、
Mn−Ni系の多元系合金はすでに実用化されている
が、この合金系も比較的放電容量が小さいこと、電池電
極としての寿命性能が不十分であること、材料コストが
高いなどの問題を有している。したがって、さらに放電
容量が大きく長寿命である新規水素吸蔵合金材料が望ま
れている。
As alloys used for such a hydrogen storage alloy electrode, generally, Ti-Ni-based and La (or Mn) -Ni-based multi-component alloys are well known. T
i-Ni-based multi-component alloys are AB type (A: La, Z
Elements with a high affinity for hydrogen, such as r and Ti, B: N
i), Mn, W, and other transition elements), which has a relatively large discharge capacity at the beginning of the charging / discharging cycle, but it is difficult to maintain the capacity for a long time after repeated charging / discharging. There is a problem. Also, A
B 5 type La (or Mn) -Ni-based multi-component alloys have been developed a lot as an electrode material in recent years.
Although the Mn-Ni-based multi-component alloy has already been put into practical use, this alloy-based alloy also has problems such as a relatively small discharge capacity, insufficient life performance as a battery electrode, and high material cost. Have Therefore, a novel hydrogen storage alloy material having a large discharge capacity and a long life is desired.

【0007】これに対して、AB2タイプのLaves
相合金は水素吸蔵能が比較的高く、高容量かつ長寿命の
電極として有望である。すでにこの合金系については、
例えばZrαVβNiγMδ系合金(特開昭64−60
961号公報)やAxByNiz系合金(特開平1−1
02855号公報)などを提案している。また、充放電
サイクル初期の放電特性を改善した合金(特願平3−6
6354号,特願平3−66355号,特願平3−66
358号,特願平3−66359号)などを提案してい
る。
On the other hand, AB 2 type Laves
The phase alloy has a relatively high hydrogen storage capacity and is promising as an electrode having a high capacity and a long life. Already for this alloy system,
For example, ZrαVβNiγMδ type alloy (Japanese Patent Laid-Open No. 64-60)
961) and AxByNiz alloys (JP-A-1-1-1).
No. 02855) is proposed. Also, an alloy with improved discharge characteristics at the beginning of the charge / discharge cycle (Japanese Patent Application No. 3-6
6354, Japanese Patent Application No. 3-66355, Japanese Patent Application No. 3-66
No. 358 and Japanese Patent Application No. 3-66359).

【0008】[0008]

【発明が解決しようとする課題】しかしながらAB2
イプのLaves相合金を電極に用いた場合は、Ti−
Ni系やLa(またはMn)−Ni系の多元系合金に比
べて放電容量は大きいが、充放電サイクルの初期での放
電特性が非常に悪いという問題があった。そこでZr−
Mn−V−M−Ni系合金(MはFe,Coの中から選
ばれた1種以上の元素)で組成を調整することにより、
高容量を維持したまま初期放電特性を改善することがで
きた。しかし、密閉電池にした場合、アルカリ電解液へ
の合金組成の溶出が激しく、溶出した元素が導電性の酸
化物などの形で析出して短絡の原因となり、65℃中で
放置するとすぐに電池電圧が低下するという課題があっ
た。
However, when an AB 2 type Laves phase alloy is used for the electrode, Ti-
Although the discharge capacity is larger than that of the Ni-based or La (or Mn) -Ni-based multi-component alloy, there is a problem that the discharge characteristics at the beginning of the charge / discharge cycle are very poor. So Zr-
By adjusting the composition with an Mn-VM-Ni-based alloy (M is one or more elements selected from Fe and Co),
It was possible to improve the initial discharge characteristics while maintaining a high capacity. However, when a sealed battery is used, the alloy composition elutes violently into the alkaline electrolyte, and the eluted elements are deposited in the form of conductive oxides, which causes a short circuit. There is a problem that the voltage drops.

【0009】本発明は上記従来の課題を解決するもので
あり、水素吸蔵合金を改善することにより、高容量およ
び優れた初期放電特性を損なうことなく高温保存特性を
向上させた水素吸蔵合金電極を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned conventional problems. By improving the hydrogen storage alloy, a hydrogen storage alloy electrode having improved high temperature storage characteristics without impairing high capacity and excellent initial discharge characteristics is provided. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、一般式がZrMnvwxyNiz(ただ
し、MはFe,Coの中から選ばれた1種以上の元素で
あり、0.4≦v≦0.8,0.1≦w≦0.3,0<
x≦0.2,0<y≦0.1,1.0≦z≦1.5,
2.0≦v+w+x+y+z≦2.4)で示され、合金
相の主成分がC15(MgCu2)型Laves相であ
る水素吸蔵合金またはその水素化物を用いたものであ
る。
SUMMARY OF THE INVENTION The present invention, in order to achieve the above object, the general formula ZrMn v V w M x W y Ni z ( however, M is Fe, 1 or more selected from among Co Element of 0.4 ≦ v ≦ 0.8, 0.1 ≦ w ≦ 0.3, 0 <
x ≦ 0.2, 0 <y ≦ 0.1, 1.0 ≦ z ≦ 1.5,
2.0 ≦ v + w + x + y + z ≦ 2.4), and a hydrogen storage alloy or a hydride thereof whose main component of the alloy phase is a C15 (MgCu 2 ) type Laves phase is used.

【0011】[0011]

【作用】したがって本発明によれば、従来のZr−Mn
−V−M−Ni系Laves相合金に比較し、従来合金
にWを適量添加することにより、アルカリ電解液への合
金組成の溶出を抑制することができ、しかも電気化学的
な充放電特性において初期から効率よく多量の水素を吸
蔵−放出させることができる。
Therefore, according to the present invention, the conventional Zr--Mn
Compared with the -VM-Ni-based Laves phase alloy, by adding an appropriate amount of W to the conventional alloy, the elution of the alloy composition into the alkaline electrolyte can be suppressed, and in addition, in terms of electrochemical charge / discharge characteristics. A large amount of hydrogen can be efficiently absorbed and released from the initial stage.

【0012】したがって本発明の水素吸蔵合金電極を用
いて構成したアルカリ蓄電池、例えばニッケル−水素蓄
電池は従来のこの種の電池に比べて高容量および優れた
初期放電特性を損なわずに高温保存特性を改善すること
が可能になる。
Therefore, an alkaline storage battery constituted by using the hydrogen storage alloy electrode of the present invention, for example, a nickel-hydrogen storage battery, has a high temperature storage characteristic without impairing the high capacity and the excellent initial discharge characteristic as compared with the conventional battery of this type. It will be possible to improve.

【0013】[0013]

【実施例】以下に本発明の具体的な一実施例について図
面とともに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to the drawings.

【0014】(実施例1)市販のZr,Mn,V,C
o,W,Ni金属を原料としてアルゴン雰囲気中、アー
ク溶解炉で加熱溶解することにより、(表1)に示すZ
rMn0.60.2Co 0.1yNi1.2合金(yは0.01
〜0.3)を作製した。次いで真空中、1100℃で1
2時間熱処理し、合金試料とした。
Example 1 Commercially available Zr, Mn, V, C
o, W, Ni metal as raw material in argon atmosphere
Z shown in (Table 1) by heating and melting in a melting furnace
rMn0.6V0.2Co 0.1WyNi1.2Alloy (y is 0.01
~ 0.3) was prepared. Then in vacuum at 1100 ° C for 1
It heat-processed for 2 hours and it was set as the alloy sample.

【0015】[0015]

【表1】 [Table 1]

【0016】この合金試料の一部はX線回折などの合金
分析および水素ガス雰囲気における水素吸収−放出量測
定(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。
A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.

【0017】試料No.1は従来合金であり、Wが添加
されていない比較例である。試料No.5〜7は本発明
の特許請求の範囲よりW量yが大きい比較例であり、試
料No.2〜4は本発明の水素吸蔵合金電極の第1の実
施例である。まず、各合金試料について、X線回折測定
を行った。その結果、いずれの合金試料についても合金
相の主成分はC15型Laves相(MgCu2型fc
c構造)であることを確認した。また真空熱処理後のも
のは熱処理前と比べるとfccのピークがより大きく鋭
くなったので、熱処理することによりC15型Lave
s相の割合が増大し、合金の均質性および結晶性も向上
したことがわかった。結晶格子定数についてはW量yが
増加するにつれて小さくなったが、いずれも7.04〜
7.07Åであった。
Sample No. No. 1 is a conventional alloy and is a comparative example in which W is not added. Sample No. 5 to 7 are comparative examples in which the W amount y is larger than the claims of the present invention. 2 to 4 are the first embodiment of the hydrogen storage alloy electrode of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, in all the alloy samples, the main component of the alloy phase was the C15 type Laves phase (MgCu 2 type fc
c structure) was confirmed. Further, after the vacuum heat treatment, the fcc peak was larger and sharper than that before the heat treatment.
It was found that the proportion of s phase was increased and the homogeneity and crystallinity of the alloy were also improved. The crystal lattice constant decreased as the W amount y increased.
It was 7.07Å.

【0018】次に各合金試料について70℃においてP
CT測定を行った。いずれの合金試料についても水素化
特性はほぼ同じであるが、W量yが0.1を越えると水
素吸蔵量が少し低下した。また真空熱処理することによ
り熱処理前と比べてプラトー領域の平坦性が良くなって
おり、水素吸蔵も増大した。
Next, for each alloy sample, P at 70 ° C.
CT measurement was performed. The hydrogenation characteristics were almost the same for all the alloy samples, but the hydrogen storage amount slightly decreased when the W amount y exceeded 0.1. Further, the vacuum heat treatment improved the flatness of the plateau region as compared with that before heat treatment, and increased hydrogen storage.

【0019】以上のような合金試料について電気化学的
な充放電反応によるアルカリ蓄電池用負極としての電極
特性、特に初期の放電特性を評価するために単電池試験
を行った。
The above alloy samples were subjected to a single cell test in order to evaluate the electrode characteristics as a negative electrode for an alkaline storage battery by an electrochemical charge / discharge reaction, particularly the initial discharge characteristics.

【0020】試料No.1〜7の合金を350メッシュ
以下の粒径になるように粉砕し、この合金粉末1gと導
電剤としてのカーボニルニッケル粉末3gおよび結着剤
としてのポリエチレン微粉末0.12gを十分混合撹拌
し、プレス加工により24.5Φ×2.5mmHの円板
状に成形した。これを真空中、130℃で1時間加熱
し、結着剤を溶融させて水素吸蔵合金電極とした。
Sample No. The alloys 1 to 7 were pulverized to have a particle size of 350 mesh or less, and 1 g of the alloy powder, 3 g of carbonyl nickel powder as a conductive agent and 0.12 g of polyethylene fine powder as a binder were sufficiently mixed and stirred, It was formed into a disk shape of 24.5Φ × 2.5 mmH by pressing. This was heated in vacuum at 130 ° C. for 1 hour to melt the binder and form a hydrogen storage alloy electrode.

【0021】この水素吸蔵合金電極にニッケル線のリー
ドを取り付けて負極とし、正極として過剰の容量を有す
る焼結式ニッケル極を、セパレータとしてポリアミド不
織布を用い、比重1.30の水酸化カリウム水溶液を電
解液として、25℃において一定電流で充電と放電を繰
り返し、各サイクルでの放電容量を測定した。なお、充
電電気量は水素吸蔵合金1gあたり100mA×5.5
時間であり、放電は同様に1gあたり50mAで行い、
0.8Vでカットした。その結果を図1に示す。図1は
横軸に充放電サイクル数を、縦軸に合金1gあたりの放
電容量を示したものであり、図中の番号は(表1)の試
料No.と一致している。図1からW量yが増加するに
つれて初期の放電特性が悪くなることがわかる。しかし
1サイクル目の放電容量が試料No.5〜7ではWを添
加しない場合(試料No.1)の50%以下になったの
に対して、試料No.2〜4ではWを添加しない場合の
70%程度であり、初期の放電特性の低下があまり大き
くないことがわかった。
A nickel wire lead was attached to the hydrogen storage alloy electrode to serve as a negative electrode, a sintered nickel electrode having an excessive capacity as a positive electrode, a polyamide nonwoven fabric as a separator, and an aqueous potassium hydroxide solution having a specific gravity of 1.30. As an electrolytic solution, charging and discharging were repeated at a constant current at 25 ° C., and the discharge capacity in each cycle was measured. The amount of electricity charged is 100 mA × 5.5 per 1 g of hydrogen storage alloy.
Time, the discharge is likewise carried out at 50 mA / g,
It was cut at 0.8V. The result is shown in FIG. FIG. 1 shows the number of charge / discharge cycles on the horizontal axis and the discharge capacity per 1 g of alloy on the vertical axis. The numbers in the figure are the sample No. of (Table 1). Is consistent with From FIG. 1, it can be seen that the initial discharge characteristics deteriorate as the W amount y increases. However, the discharge capacity at the first cycle was the sample No. In Samples Nos. 5 to 7, the W content was 50% or less compared to the case where W was not added (Sample No. 1). In Nos. 2 to 4, it was about 70% of the case where W was not added, and it was found that the deterioration of the initial discharge characteristics was not so large.

【0022】さらにこれらの水素吸蔵合金電極を用いて
以下に示したような方法で密閉形ニッケル−水素蓄電池
を作製した。
Further, a sealed nickel-hydrogen storage battery was manufactured by using the above hydrogen storage alloy electrodes by the following method.

【0023】350メッシュ以下の粉末にした各水素吸
蔵合金をそれぞれカルボキシメチルセルローズ(CM
C)の希水溶液と混合撹拌してペースト状にし、電極支
持体として平均ポアサイズ150ミクロン、多孔度95
%、厚さ1.0mmの発泡状ニッケルシートに充填した。
これを130℃で真空乾燥してローラープレスで加圧
し、さらにその表面にフッ素樹脂粉末をコーティングし
て水素吸蔵合金電極とした。
Each hydrogen storage alloy made into powder of 350 mesh or less is carboxymethyl cellulose (CM).
The mixture was mixed with the dilute aqueous solution of C) and stirred to form a paste, and the electrode support had an average pore size of 150 μm and a porosity of 95.
%, And a foamed nickel sheet having a thickness of 1.0 mm was filled.
This was vacuum dried at 130 ° C., pressed by a roller press, and the surface thereof was coated with fluororesin powder to obtain a hydrogen storage alloy electrode.

【0024】この電極をそれぞれ幅3.3cm、長さ21
cm、厚さ0.40mmに調整し、リード板を所定の2ヵ所
に取り付けた。そして、正極およびセパレータと組み合
わせて円筒状3層を渦巻き状にしてSCサイズの電槽に
収納した。このときの正極は公知の発泡式ニッケル極を
選び、幅3.3cm、長さ18cmとして用いた。この場合
もリード板を2ヵ所に取り付けた。またセパレータは親
水性を付与したポリプロピレン不織布を使用し、電解液
としては比重1.25の水酸化カリウム水溶液に水酸化
リチウム30g/1溶解したものを用いた。これを封口
して密閉形電池とした。この電池は正極容量規制であり
理論容量は3.0Ahにした。
Each of these electrodes has a width of 3.3 cm and a length of 21
The thickness was adjusted to cm and the thickness was 0.40 mm, and the lead plates were attached at two predetermined places. Then, in combination with the positive electrode and the separator, the three cylindrical layers were spirally formed and housed in an SC size battery case. As the positive electrode at this time, a known foaming nickel electrode was selected and used with a width of 3.3 cm and a length of 18 cm. Also in this case, the lead plates were attached at two places. As the separator, a polypropylene non-woven fabric having hydrophilicity was used, and as the electrolytic solution, 30 g / 1 of lithium hydroxide dissolved in an aqueous solution of potassium hydroxide having a specific gravity of 1.25 was used. This was sealed to form a sealed battery. This battery has a positive electrode capacity regulation and a theoretical capacity of 3.0 Ah.

【0025】このようにして作製した電池を20℃にお
いて、充電は0.5C(2時間率)で150%まで、放
電は0.2C(5時間率)で終止電圧1.0Vとして充
放電を20サイクル行い、その後65℃中に放置した。
図2に保存日数に対する各電池電圧を示す。図中の番号
は(表1)の試料No.と一致している。従来合金であ
る試料No.1では保存日数が10日を過ぎると電池電
圧が急激に低下したのに対して、Wを添加した試料N
o.2〜7では30日の保存でも電池電圧の低下が非常
に小さいことがわかった。
The battery thus produced was charged and discharged at 20 ° C. with a charge of 0.5 C (2 hour rate) up to 150% and a discharge of 0.2 C (5 hour rate) with a final voltage of 1.0 V. Twenty cycles were carried out and then left at 65 ° C.
FIG. 2 shows each battery voltage with respect to the number of storage days. The numbers in the figure indicate the sample No. of (Table 1). Is consistent with Conventional alloy sample No. In No. 1, the battery voltage drastically dropped after 10 days of storage, while the sample N containing W was added.
o. It was found that in 2 to 7, the battery voltage drop was very small even after storage for 30 days.

【0026】これらの結果よりW量yを0.01〜0.
1すれば、Wを含まない水素吸蔵合金電極の放電容量お
よび初期放電特性を維持しつつ、高温保存特性にも優れ
た水素吸蔵合金電極が得られることがわかった。これ
は、Wを添加することによりアルカリ電解液中への合金
組成の溶出が抑えられるためである。しかし合金中のW
は合金の初期の電気化学的な活性を低下させる効果も有
しているため、Wの添加量が増加するにつれて初期の放
電特性が悪くなるが、W量yが0.1以下であればあま
り大きな影響を及ぼさないことがわかった。
From these results, the W amount y is 0.01 to 0.
It was found that, by carrying out No. 1, it was possible to obtain a hydrogen storage alloy electrode which did not contain W and which was excellent in high temperature storage characteristics while maintaining the discharge capacity and initial discharge characteristics of the hydrogen storage alloy electrode. This is because the addition of W suppresses the elution of the alloy composition into the alkaline electrolyte. But W in the alloy
Has the effect of lowering the initial electrochemical activity of the alloy, the initial discharge characteristics deteriorate as the amount of W added increases, but if the W amount y is 0.1 or less, It turns out that it doesn't have a big influence.

【0027】(実施例2)市販のZr,Mn,V,C
o,Fe,W,Ni金属を原料として、アルゴン雰囲気
中、アーク溶解炉で加熱溶解することにより、(表2)
に示すW量yを0.03とした各種ZrMnvwx
0.03Niz合金を作製した。ただし、Mn量vが0.8
以上のものはアーク炉で作製すると多量のMnが蒸発
し、目的合金を得ることが困難であるため、誘導加熱炉
で作製した。次いで真空中、1100℃で12時間熱処
理し、合金試料とした。
Example 2 Commercially available Zr, Mn, V, C
By using o, Fe, W, and Ni metals as raw materials and heating and melting in an arc melting furnace in an argon atmosphere, (Table 2)
ZrMn v V w M x W with the W amount y shown in Table 3 set to 0.03
To prepare a 0.03 Ni z alloy. However, the Mn amount v is 0.8
The above materials were produced in an induction heating furnace because a large amount of Mn evaporates and it is difficult to obtain the target alloy when produced in an arc furnace. Then, it was heat-treated in vacuum at 1100 ° C. for 12 hours to obtain an alloy sample.

【0028】[0028]

【表2】 [Table 2]

【0029】この合金試料の一部はX線回折などの合金
分析および水素ガス雰囲気における水素吸収−放出量測
定(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。
A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.

【0030】試料No.8〜13は本発明とは異なる比
較例であり、試料No.14〜26は本発明における水
素吸蔵合金の第2の実施例である。まず各合金試料につ
いてX線回折測定を行った。その結果、いずれの合金試
料についても合金相の主成分はC15型Laves相
(MgCu2型fcc構造)であることを確認した。ま
た真空熱処理後のものは熱処理前と比べるとfccのピ
ークがより大きく鋭くなったので、熱処理することによ
りC15型Laves相の割合が増大し、合金の均質性
および結晶性も向上したことがわかった。特にMn量v
が0.8以上のものについても均一組成の目的合金が得
られたことを確認した。結晶格子定数については試料N
o.9は7.03Åより小さかったが、それを除くとい
ずれも7.03〜7.10Åであった。
Sample No. Sample Nos. 8 to 13 are comparative examples different from the present invention. 14 to 26 are the second embodiment of the hydrogen storage alloy of the present invention. First, X-ray diffraction measurement was performed on each alloy sample. As a result, it was confirmed that the main component of the alloy phase of all the alloy samples was the C15 type Laves phase (MgCu 2 type fcc structure). Further, after the vacuum heat treatment, the fcc peak was larger and sharper than that before the heat treatment, so it was found that the heat treatment increased the proportion of the C15 type Laves phase and improved the homogeneity and crystallinity of the alloy. It was Especially Mn amount v
It was also confirmed that the target alloys having a uniform composition were obtained for the alloys having a value of 0.8 or more. For the crystal lattice constant, sample N
o. 9 was smaller than 7.03Å, but all were 7.03 to 7.10Å excluding it.

【0031】次に各合金試料について、70℃において
PCT測定を行った。試料No,9および13は水素平
衡圧力が大きく、試料No.10および12はプラトー
領域の平坦性が非常に悪かった。これらを除くといずれ
の合金試料についても水素化特性はそれほど大きく違い
はなく、水素吸蔵量はH/M=1.0〜1.2であり、
試料No.9,10,12,13に比べて10〜20%
大きいことがわかった。また真空熱処理することにより
熱処理前と比べてプラトー領域の平坦性が良くなってお
り、水素吸蔵量も増大した。このようなことはWを添加
しない場合と同様の傾向であり、W量yを0.03にし
てもW無添加の合金と比べて水素化特性はほぼ同じであ
ることが確認できた。
Next, PCT measurement was performed at 70 ° C. for each alloy sample. Sample Nos. 9 and 13 have a large hydrogen equilibrium pressure, and Sample No. Nos. 10 and 12 had very poor plateau region flatness. Except for these, the hydrogenation characteristics of all alloy samples were not so different, and the hydrogen storage capacity was H / M = 1.0 to 1.2.
Sample No. 10-20% compared to 9, 10, 12, 13
I found it big. Further, the vacuum heat treatment improved the flatness of the plateau region as compared with that before the heat treatment and increased the hydrogen storage amount. This has the same tendency as in the case where W is not added, and it was confirmed that even if the W amount y was 0.03, the hydrogenation characteristics were almost the same as in the alloy without W added.

【0032】以上のような合金試料について、電気化学
的な充放電反応によるアルカリ蓄電池用負極としての電
極特性を評価するために実施例1と同様の方法で単電池
試験を行った。その結果を図3に示す。図3は横軸に充
放電サイクル数を、縦軸に合金1gあたりの放電容量を
示したものであり、図中の番号は(表2)の試料No.
と一致している。いずれの試料も充放電サイクル初期の
放電特性は優れており、Wを添加しても初期活性の低下
は見られなかった。しかし試料No.9,10,12,
13は水素吸蔵量が少ないために飽和放電容量が小さ
く、試料No.8はNi量が少ないため電気化学的な活
性に乏しく初期の放電容量および飽和放電容量は少なか
った。また試料No.11はMn量が多いためMnのア
ルカリ電解液中への溶出が激しく、充放電サイクルを繰
り返すと放電容量が大きく低下した。これに対して本発
明の水素吸蔵合金電極は0.34〜0.37Ah/gの
飽和放電容量を示し、Wの添加による容量の低下は認め
られなかった。
For the alloy samples as described above, a single cell test was conducted in the same manner as in Example 1 in order to evaluate the electrode characteristics of the negative electrode for alkaline storage batteries by the electrochemical charge / discharge reaction. The result is shown in FIG. FIG. 3 shows the number of charge / discharge cycles on the horizontal axis and the discharge capacity per 1 g of alloy on the vertical axis, and the numbers in the figure are the sample numbers of (Table 2).
Is consistent with All the samples had excellent discharge characteristics at the beginning of the charge / discharge cycle, and no decrease in initial activity was observed even when W was added. However, sample No. 9, 10, 12,
Sample No. 13 has a small saturated discharge capacity because it has a small hydrogen storage capacity. In No. 8, since the amount of Ni was small, the electrochemical activity was poor and the initial discharge capacity and the saturation discharge capacity were small. In addition, sample No. Since No. 11 had a large amount of Mn, Mn was severely eluted into the alkaline electrolyte, and the discharge capacity was significantly reduced when the charge / discharge cycle was repeated. On the other hand, the hydrogen storage alloy electrode of the present invention showed a saturated discharge capacity of 0.34 to 0.37 Ah / g, and no decrease in capacity due to the addition of W was observed.

【0033】さらに、これらの水素吸蔵合金電極を用い
て実施例1と同様の方法で密閉形ニッケル−水素蓄電池
を作製し、65℃保存試験を行った。その結果を図4に
示す。図4は保存日数に対する各電池電圧を示したもの
であり、図中の番号は(表2)の試料No.と一致して
いる。試料No.8,11,12は保存日数10〜20
日で電池電圧が急激に低下した。これはそれぞれMn
量,V量が多いのでWを添加してもアルカリ電解液中へ
の溶出を抑えきれないためと思われる。しかし、それら
以外はいずれも30日の保存でも電池電圧の低下が非常
に小さいことがわかった。
Further, a sealed nickel-hydrogen storage battery was prepared by using these hydrogen storage alloy electrodes in the same manner as in Example 1, and a storage test at 65 ° C. was conducted. The result is shown in FIG. FIG. 4 shows each battery voltage with respect to the number of days of storage, and the numbers in the figure indicate the sample No. of (Table 2). Is consistent with Sample No. 8, 11, 12 are 10 to 20 days
Battery voltage dropped drastically in the day. This is Mn
It seems that the amount of V and the amount of V are so large that the addition of W cannot suppress the elution into the alkaline electrolyte. However, it was found that the battery voltage drop was extremely small even after storage for 30 days except the above.

【0034】以上のような単電池試験結果と65℃保存
試験結果より本発明の合金組成を有する水素吸蔵合金が
高容量であり、かつ初期の放電特性に優れていることが
わかった。本実施例では、M元素としてFe,Coをそ
れぞれ単独で用いた合金について述べたが、Fe,Co
をともに含んだ合金でもほぼ同様の結果が得られた。
From the above single cell test results and 65 ° C. storage test results, it was found that the hydrogen storage alloy having the alloy composition of the present invention has a high capacity and excellent initial discharge characteristics. In the present embodiment, the alloy using Fe and Co as the M elements respectively has been described.
Almost the same results were obtained with the alloy containing both.

【0035】ここで、本発明の水素吸蔵合金電極の水素
吸蔵合金の合金組成の作用について説明する。この合金
組成は高容量かつ優れた初期の放電特性を確保するため
のものである。
Here, the function of the alloy composition of the hydrogen storage alloy of the hydrogen storage alloy electrode of the present invention will be described. This alloy composition is for ensuring high capacity and excellent initial discharge characteristics.

【0036】Vは水素吸蔵−放出量の増加に寄与し、N
iは吸蔵−放出量の低下を引き起こすが電気化学的な水
素の吸蔵−放出に対する活性の向上に寄与する。しかし
V量wが0.1より小さいとVの効果が現れず、0.3
を越えると合金の均質性が悪くなり逆に吸蔵−放出量は
減少する。また、Ni量zが1.0より小さいと電気化
学的な活性に乏しく放電容量が小さくなり、1.5より
大きいと水素平衡圧力が高くなり水素吸蔵−放出量が減
少する。したがってV量wおよびNi量zはそれぞれ
0.1≦w≦0.3,1.0≦z1.5が適当である。
V contributes to an increase in hydrogen absorption-desorption amount, and N
i causes a decrease in the amount of occlusion and release, but contributes to the improvement of the electrochemical activity for occlusion and release of hydrogen. However, when the V amount w is smaller than 0.1, the effect of V does not appear and 0.3
If it exceeds, the homogeneity of the alloy deteriorates and conversely the amount of occlusion-desorption decreases. Further, when the Ni content z is less than 1.0, the electrochemical activity is poor and the discharge capacity is small, and when it is more than 1.5, the hydrogen equilibrium pressure is high and the hydrogen absorption-desorption amount is reduced. Therefore, it is suitable that the V amount w and the Ni amount z are 0.1 ≦ w ≦ 0.3 and 1.0 ≦ z1.5, respectively.

【0037】M(MはFe,Coの中から選ばれた1種
以上の元素)は合金の電気化学的な活性に寄与する。F
e,Coは合金の電気化学的な活性を向上させるが、M
量xが0.2を越えると合金の水素吸蔵−放出能に影響
を及ぼし水素吸蔵−放出量が小さくなる。したがって、
M量xは0<y≦0.2が適当である。
M (M is one or more elements selected from Fe and Co) contributes to the electrochemical activity of the alloy. F
e and Co improve the electrochemical activity of the alloy, but M
If the amount x exceeds 0.2, the hydrogen storage-release capacity of the alloy is affected and the hydrogen storage-release amount becomes small. Therefore,
It is suitable that the M amount x be 0 <y ≦ 0.2.

【0038】MnはPCT曲線における水素平衡圧力の
平坦性に影響を及ぼし、Mn量が0.4以上でその平坦
性が非常に良くなり、放電容量が増加する。しかしMn
量が0.8を越えると、Mnの電解液への溶出が激しく
なり寿命特性が悪くなる。したがってMn量は0.4≦
v≦0.8が適当である。
Mn affects the flatness of the hydrogen equilibrium pressure in the PCT curve, and when the Mn amount is 0.4 or more, the flatness becomes very good and the discharge capacity increases. But Mn
If the amount exceeds 0.8, Mn is liable to be eluted into the electrolytic solution and the life characteristics are deteriorated. Therefore, the amount of Mn is 0.4 ≦
v ≦ 0.8 is suitable.

【0039】以上のように、実施例1と実施例2の結果
から、高容量および優れた初期の放電特性を損なわずに
良好な高温保存特性を有するためには、水素吸蔵合金電
極として本発明の合金組成の条件を満たすことが必要で
あることがわかった。
As described above, from the results of Example 1 and Example 2, in order to have good high-temperature storage characteristics without impairing high capacity and excellent initial discharge characteristics, the present invention was adopted as a hydrogen storage alloy electrode. It was found that it was necessary to satisfy the conditions of the alloy composition of.

【0040】[0040]

【発明の効果】上記実施例から明らかなように本発明の
水素吸蔵合金電極は、従来のZr−Mn−V−M−Ni
系Laves相合金(MはFe,Coの中から選ばれた
1種以上の元素)にWを適量添加することにより、アル
カリ電解液への合金組成の溶出を抑制することができ、
しかも電気化学的な充放電特性において初期から効率よ
く多量の水素を吸蔵−放出させることができるため、こ
れを電極とするアルカリ蓄電池は従来のこの種の電池に
比べて高容量および優れた初期放電特性を損なわずに良
好な高温保存特性を得ることができる。
As is apparent from the above-mentioned embodiments, the hydrogen storage alloy electrode of the present invention has the conventional Zr-Mn-VM-Ni.
By adding an appropriate amount of W to the system Laves phase alloy (M is one or more elements selected from Fe and Co), the elution of the alloy composition into the alkaline electrolyte can be suppressed,
Moreover, since electrochemical charging / discharging characteristics can efficiently store and release a large amount of hydrogen from the beginning, alkaline storage batteries using this as an electrode have higher capacity and superior initial discharge than conventional batteries of this type. Good high temperature storage characteristics can be obtained without impairing the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例および比較例における単
電池試験結果を示す充放電サイクル特性図
FIG. 1 is a charge-discharge cycle characteristic diagram showing the results of unit cell tests in the first example and comparative example of the present invention.

【図2】同65℃保存試験結果を示す高温保存特性図FIG. 2 is a high temperature storage characteristic diagram showing the 65 ° C. storage test result.

【図3】本発明の第2の実施例および比較例における単
電池試験結果を示す充放電サイクル特性図
FIG. 3 is a charge / discharge cycle characteristic diagram showing the results of unit cell tests in the second example and the comparative example of the present invention.

【図4】同65℃保存試験結果を示す高温保存特性図FIG. 4 is a high temperature storage characteristic diagram showing the results of the same 65 ° C. storage test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Iwaki, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式がZrMnvwxyNiz(た
だし、MはFe,Coの中から選ばれた1種以上の元素
であり、0.4≦v≦0.8,0.1≦w≦0.3,0
<x≦0.2,0<y≦0.1,1.0≦z≦1.5,
2.0≦v+w+x+y+z≦2.4)で示され、合金
相の主成分がC15(MgCu2)型Laves相であ
る水素吸蔵合金またはその水素化物を用いたことを特徴
とする水素吸蔵合金電極。
1. A general formula ZrMn v V w M x W y Ni z ( however, M is Fe, at least one element selected from among Co, 0.4 ≦ v ≦ 0.8, 0.1 ≦ w ≦ 0.3,0
<X ≦ 0.2, 0 <y ≦ 0.1, 1.0 ≦ z ≦ 1.5,
2.0 ≦ v + w + x + y + z ≦ 2.4), and the hydrogen storage alloy electrode is characterized by using a hydrogen storage alloy having a C15 (MgCu 2 ) type Laves phase as the main component of the alloy phase or a hydride thereof.
【請求項2】 水素吸蔵合金作製後、1000〜130
0℃の真空中もしくは不活性ガス雰囲気中で均質加熱処
理を行った水素吸蔵合金を用いたことを特徴とする請求
項1記載の水素吸蔵合金電極。
2. After producing the hydrogen storage alloy, 1000 to 130
The hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy is subjected to a homogeneous heat treatment in a vacuum at 0 ° C or in an inert gas atmosphere.
JP4142339A 1992-04-13 1992-06-03 Hydrogen storage alloy electrode Pending JPH05343054A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4142339A JPH05343054A (en) 1992-06-03 1992-06-03 Hydrogen storage alloy electrode
EP93105939A EP0566055B1 (en) 1992-04-13 1993-04-13 A hydrogen storage alloy electrode
DE69326374T DE69326374T2 (en) 1992-04-13 1993-04-13 Hydrogen storage alloy electrode
US08/384,809 US5541018A (en) 1992-04-13 1995-02-06 Hydrogen storing alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142339A JPH05343054A (en) 1992-06-03 1992-06-03 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH05343054A true JPH05343054A (en) 1993-12-24

Family

ID=15313062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142339A Pending JPH05343054A (en) 1992-04-13 1992-06-03 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH05343054A (en)

Similar Documents

Publication Publication Date Title
EP0450590B1 (en) Hydrogen storage alloy electrode and process for producing the electrode
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH05343054A (en) Hydrogen storage alloy electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH05343055A (en) Hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
US5541018A (en) Hydrogen storing alloy electrode
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH05343056A (en) Hydrogen storage alloy electrode
JPH05343057A (en) Hydrogen storage alloy electrode
JPH05347156A (en) Hydrogen storage alloy electrode
JPH06140038A (en) Hydrogen storage alloy electrode
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH06251769A (en) Hydrogen storage alloy electrode and manufacture thereof