JP3092262B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JP3092262B2
JP3092262B2 JP03295483A JP29548391A JP3092262B2 JP 3092262 B2 JP3092262 B2 JP 3092262B2 JP 03295483 A JP03295483 A JP 03295483A JP 29548391 A JP29548391 A JP 29548391A JP 3092262 B2 JP3092262 B2 JP 3092262B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03295483A
Other languages
Japanese (ja)
Other versions
JPH05135765A (en
Inventor
庸一郎 辻
良夫 森脇
康治 山村
強 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03295483A priority Critical patent/JP3092262B2/en
Publication of JPH05135765A publication Critical patent/JPH05135765A/en
Application granted granted Critical
Publication of JP3092262B2 publication Critical patent/JP3092262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金を使用した
電極に関するものである。そして、この電極はニッケル
−水素蓄電池などのアルカリ蓄電池に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode using a hydrogen storage alloy. This electrode can be used for an alkaline storage battery such as a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池としては鉛蓄電池とアルカリ蓄電池がある。このうち
アルカリ蓄電池は高信頼性が期待でき、小形軽量化も可
能などの理由で小型電池は各種ポ−タブル機器用に、大
型は産業用として使われてきた。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as various power supplies. Among them, the alkaline storage battery can be expected to have high reliability, and the small battery has been used for various portable devices, and the large battery has been used for industrial use for any reason that the size and weight can be reduced.

【0003】このアルカリ蓄電池において、正極は一部
空気極や酸化銀極なども取り上げられているが、ほとん
どの場合ニッケル極である。ポケット式から焼結式に代
わって特性が向上し、さらに密閉化が可能になるととも
に用途も広がった。 一方負極としてはカドミウムの他
に亜鉛、鉄、水素などが対象となっている。
In this alkaline storage battery, the positive electrode is partially an air electrode, a silver oxide electrode or the like, but in most cases is a nickel electrode. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded. On the other hand, in addition to cadmium, zinc, iron, hydrogen and the like are targeted as the negative electrode.

【0004】最近、一層の高エネルギ−密度を達成する
ために、水素吸蔵合金電極を使ったニッケル−水素蓄電
池が注目され、製法などに多くの提案がされている。
In recent years, nickel-hydrogen storage batteries using hydrogen storage alloy electrodes have attracted attention in order to achieve even higher energy densities, and many proposals have been made for manufacturing methods and the like.

【0005】水素吸蔵合金極の製法としては合金粉末を
焼結する方式と、発泡状、繊維状、パンチングメタルな
どの多孔性支持体に充填や塗着する方式のペ−スト式と
がある。このうち製法が簡単なのがペ−スト式である。
水素吸蔵合金はカドミウム極や亜鉛極などと同様に電子
伝導性の点で比較的優れているので、非焼結式極の可能
性は大きい。すなわち結着剤とともにペ−スト状としこ
れを3次元あるいは2次元構造の多孔性導電板に充填あ
るいは塗着している。
[0005] As a method for producing a hydrogen storage alloy electrode, there are a method of sintering an alloy powder and a paste method of filling or coating a porous support such as foamed, fibrous, or punched metal. Of these, the paste method is the simplest one.
Hydrogen storage alloys are relatively excellent in terms of electron conductivity, like cadmium electrodes and zinc electrodes, so that the possibility of non-sintered electrodes is great. That is, the paste is formed into a paste shape together with a binder, and the paste is filled or coated on a porous conductive plate having a three-dimensional or two-dimensional structure.

【0006】その中で、水素吸蔵合金電極の特性を改善
するために、たとえば水素吸蔵合金粉末の粒子表面をニ
ッケルや銅でメッキして多孔性の金属層を形成する技術
が、とくに耐酸化性、利用率、成形性を改善するために
知られている。また特性向上のために合金製作後真空で
熱処理したり、アルカリ溶液に浸漬するなどの工程が提
案されている。
In order to improve the characteristics of the hydrogen storage alloy electrode, for example, a technique of forming a porous metal layer by plating the surface of the particles of the hydrogen storage alloy powder with nickel or copper has been proposed. It is known to improve the utilization rate and moldability. Further, in order to improve the characteristics, a process has been proposed in which an alloy is heat-treated in a vacuum after being manufactured or immersed in an alkaline solution.

【0007】さらに密閉形に適用する際には、とくに過
充電時に正極から発生する酸素ガスの吸収性を改良する
ために、フッソ樹脂や触媒の添加が試みられている。
[0007] Further, in the case of application to a closed type, addition of a fluorine resin or a catalyst has been attempted in order to improve the absorbability of oxygen gas generated from the positive electrode particularly during overcharge.

【0008】[0008]

【発明が解決しようとする課題】この水素吸蔵合金を用
いた電池は、充放電サイクルの初期での充放電特性、利
用率や高率放電特性の改良ということが挙げられる。特
にZr−Ni系AB2型Laves相を主体とする水素
吸蔵合金電極は、高容量であるが、充放電サイクルの初
期における放電容量が小さいことが問題であった。
A battery using this hydrogen storage alloy is improved in charge / discharge characteristics, utilization factor and high-rate discharge characteristics at the beginning of a charge / discharge cycle. In particular, a hydrogen storage alloy electrode mainly composed of a Zr—Ni-based AB 2 type Laves phase has a high capacity, but has a problem that the discharge capacity at the beginning of a charge / discharge cycle is small.

【0009】本発明は水素吸蔵合金の初期特性、利用率
の向上を図ることを目的とする。
An object of the present invention is to improve the initial characteristics and utilization of a hydrogen storage alloy.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に、本発明では水素吸蔵合金をアルカリ溶液中で合金表
面を酸化させる。この場合のアルカリ処理は従来のアル
カリ処理が合金中の完全な合金になっていない可溶性の
金属の溶解除去を目的に40〜80℃が選ばれたのに対
し、はるかに過酷な条件で行う。すなわち95℃以上、
100〜120℃程度が必要である。なお時間は0.5
〜5時間程度でよい。
In order to solve this problem, the present invention oxidizes the surface of a hydrogen storage alloy in an alkaline solution. In this case, the alkali treatment is carried out under much more severe conditions, while the temperature of 40 to 80 ° C. is selected for the purpose of dissolving and removing the soluble metal which is not completely alloyed by the conventional alkali treatment. That is, 95 ° C or more,
About 100 to 120 ° C is required. The time is 0.5
It may be about 5 hours.

【0011】そして、特に水素吸蔵合金の一般式がAB
α(α=1.5〜2.5)で表され、合金相が実質的に
金属間化合物のLaves相に属し、その結晶構造が6
方対称のC14型または(および)立方対称のC15型
である水素吸蔵合金に対してこの技術を適用する。
The general formula of the hydrogen storage alloy is AB
α (α = 1.5 to 2.5), the alloy phase substantially belongs to the Laves phase of the intermetallic compound, and its crystal structure is 6
This technique is applied to hydrogen storage alloys that are axisymmetric C14 type and / or cubic symmetry C15 type.

【0012】また、アルカリとしては比重1.20(2
0℃)以上の水酸化カリウム溶液が好ましいが水酸化ナ
トリウム、水酸化リチウムなどの苛性アルカリ溶液も有
効である。
The alkali has a specific gravity of 1.20 (2
A potassium hydroxide solution of 0 ° C. or higher is preferred, but a caustic solution such as sodium hydroxide or lithium hydroxide is also effective.

【0013】[0013]

【作用】水素吸蔵合金の容量向上、性能の安定化や寿命
向上のための手段として水素吸蔵合金をアルカリ溶液に
浸漬するアルカリ処理が行われる場合がある。これは合
金製造時に偏析等で所望の合金になっていない金属で電
池にしてから溶解する可能性のある金属を予め除去する
ためである(特開昭63−146353)。したがって
アルカリ処理は45〜80℃程度の温度で行われ、10
0℃以上ではかえって性能が劣下するとされていた。
As a means for improving the capacity, stabilizing the performance and extending the life of the hydrogen storage alloy, an alkali treatment in which the hydrogen storage alloy is immersed in an alkaline solution may be performed. This is in order to remove in advance the metal which is not formed into a desired alloy due to segregation or the like and which may be dissolved after the battery is manufactured (Japanese Patent Laid-Open No. 63-146353). Therefore, the alkali treatment is performed at a temperature of about 45 to 80 ° C.
At 0 ° C. or higher, the performance was rather inferior.

【0014】ところが、本発明のアルカリ処理は不純物
の除去よりもさらに過酷な表面の酸化処理である。した
がって合金表面は金属色から黒褐色に変化する。このこ
とにより従来のアルカリ処理ではほとんど期待できなか
った充放電サイクル初期での放電特性改善に効果があ
る。その理由として合金の表面がアルカリ処理により酸
化されアルカリ溶液に対する濡れ易さが著しく向上した
ことがあげられる。
However, the alkali treatment of the present invention is a more severe surface oxidation treatment than the removal of impurities. Therefore, the surface of the alloy changes from a metallic color to a dark brown color. This is effective in improving the discharge characteristics at the beginning of the charge / discharge cycle, which could hardly be expected by the conventional alkali treatment. The reason is that the surface of the alloy is oxidized by the alkali treatment, and the wettability to the alkali solution is remarkably improved.

【0015】また、この効果はZr−Niベースの、A
2型水素吸蔵合金において非常に顕著である。
[0015] This effect is based on Zr-Ni based A
It is very pronounced in B 2 type hydrogen storage alloy.

【0016】[0016]

【実施例】水素吸蔵合金として、主たる合金相がC15
型Laves相合金の一つであるZrMn0.6Co0.1
0.2Ni1.2合金をジェットミルで粉砕して得た平均粒径
25μmの粉末にポリエチレン粉末を1重量%加え、エ
タノールでペーストにする。ついでこのペ−ストを多孔
度95%厚さ0.8mmの発泡状ニッケル板に充填し加
圧して電極を得た。これを30重量%の水酸化カリウム
溶液中に100〜105℃で2時間浸漬した。この電極
をAとする。
EXAMPLE As a hydrogen storage alloy, the main alloy phase was C15.
ZrMn 0.6 Co 0.1 V which is one of the type Laves phase alloys
To a powder having an average particle size of 25 μm obtained by pulverizing a 0.2 Ni 1.2 alloy by a jet mill, 1% by weight of a polyethylene powder is added, and a paste is formed with ethanol. Then, the paste was filled into a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm and pressed to obtain an electrode. This was immersed in a 30% by weight potassium hydroxide solution at 100 to 105 ° C. for 2 hours. This electrode is designated as A.

【0017】また、同様に作製した電極を30重量%の
水酸化カリウム溶液に70℃で2時間浸漬したものを電
極Bとする。
Further, the electrode prepared in the same manner was immersed in a 30% by weight potassium hydroxide solution at 70 ° C. for 2 hours to obtain an electrode B.

【0018】この電極の特性を比較するために同様にZ
rMn0.6Co0.10.2Ni1.2の組成の水素吸蔵合金を
粉砕し、得た合金粉末をアルカリ処理を省略して電極に
した。これを電極Cとする。
In order to compare the characteristics of this electrode, Z
A hydrogen storage alloy having a composition of rMn 0.6 Co 0.1 V 0.2 Ni 1.2 was pulverized, and the obtained alloy powder was used as an electrode without alkali treatment. This is electrode C.

【0019】これらの電極を負極とし、対極に過剰の電
気容量を有する酸化ニッケル極を配し電解液に比重1.
30の水酸化カリウム水溶液を用い、電解液が豊富な開
放系で水素吸蔵合金負極で容量規制を行い充放電を行っ
た。正極規制の密閉電池の場合を想定し充電は水素吸蔵
合金1gあたり0.1A×2.5時間、放電は合金1g
あたり0.05Aで端子電圧が0.8Vまでとした。
These electrodes are used as a negative electrode, and a nickel oxide electrode having an excessive electric capacity is arranged at a counter electrode, and the specific gravity of the electrolyte is 1.
Using an aqueous potassium hydroxide solution of No. 30, the capacity was regulated with a hydrogen-absorbing alloy negative electrode in an open system rich in electrolyte solution, and charge / discharge was performed. Assuming the case of a sealed battery with positive electrode regulation, charging is 0.1 A x 2.5 hours per gram of hydrogen storage alloy, and discharging is 1 g of alloy.
The terminal voltage was set to 0.8 V at 0.05 A per unit.

【0020】この結果を図1に示す。電極Cでは1サイ
クル目0.1Ah/gと充放電サイクル初期での放電容
量が低く、充放電比がほぼ1.0に達するまでに4サイ
クル以上要した。しかし、電極Aの場合、1サイクル目
で0.18Ah/g、2サイクル目で0.25Ah/g
と充放電比が1.0に達した。しかし電極Bでは1サイ
クル目0.13Ah/gで充放電比が1.0に達するま
でには6サイクル以上要した。したがって100℃以上
の高温アルカリ処理は電池としての初期活性と利用率の
向上に非常に有効であったが、従来のアルカリ処理温度
である70℃でのアルカリ処理は逆に放電容量の立ち上
がりを遅らせる結果となった。
FIG. 1 shows the results. Electrode C had a low discharge capacity at the beginning of the charge / discharge cycle of 0.1 Ah / g in the first cycle, and required four or more cycles before the charge / discharge ratio reached approximately 1.0. However, in the case of electrode A, 0.18 Ah / g in the first cycle and 0.25 Ah / g in the second cycle
And the charge / discharge ratio reached 1.0. However, in the electrode B, six cycles or more were required until the charge / discharge ratio reached 1.0 at 0.13 Ah / g in the first cycle. Therefore, high-temperature alkali treatment at 100 ° C. or higher was very effective in improving the initial activity and utilization factor of the battery, whereas alkali treatment at 70 ° C., which is the conventional alkali treatment temperature, conversely delays the rise of discharge capacity. The result was.

【0021】さらにこの後充電を0.55Ah/g行
い、合金の飽和容量を調べた結果、電極Aは0.34A
h/g、電極Bは0.34Ah/g、電極Cは0.33
Ah/gとなり、合金利用率も向上させた。
Thereafter, charging was performed at 0.55 Ah / g, and the saturation capacity of the alloy was examined.
h / g, electrode B 0.34 Ah / g, electrode C 0.33
Ah / g, and the alloy utilization was also improved.

【0022】次にこの電極を使用して密閉電池を構成し
た結果について説明する。先の電極A,B,C,をそれ
ぞれ幅3.3cm、長さ21cm、厚さ0.52mmに
調整し、リード板を所定の2カ所に取り付けた。そし
て、正極、セパレータと組み合わせて円筒状に3層に渦
巻き状にしてSCサイズの電槽に収納した。このときの
正極は、公知の発泡式ニッケル極を選び、幅3.3c
m、長さ16cmとして用いた。この場合もリード板を
2カ所に取り付けた。またセパレータは、親水性を付与
したポリプロピレン不織布を用いた。電解液としては、
比重1.25の水酸化カリウム水溶液に水酸化リチウム
を25g/l溶解して用いた。これを封口して密閉形電
池とした。この電池は、正極容量規制で公称容量は3.
0Ahである。正極に対する負極の容量を150%とし
た。この密閉形電池で水素吸蔵合金電極の電極Aで構成
した電池を電池A、同様に電極Bで構成した電池を電池
B、電極Cを用いた電池を電池Cとする。
Next, the result of constructing a sealed battery using this electrode will be described. The electrodes A, B, and C were adjusted to have a width of 3.3 cm, a length of 21 cm, and a thickness of 0.52 mm, and lead plates were attached at two predetermined positions. Then, the resultant was combined with the positive electrode and the separator, spirally formed into three layers in a cylindrical shape, and stored in an SC-size battery case. As the positive electrode at this time, a known foamed nickel electrode was selected, and the width was 3.3 c.
m and a length of 16 cm. Also in this case, two lead plates were attached. In addition, a polypropylene nonwoven fabric provided with hydrophilicity was used as the separator. As the electrolyte,
Lithium hydroxide was dissolved at 25 g / l in an aqueous solution of potassium hydroxide having a specific gravity of 1.25 and used. This was sealed to obtain a sealed battery. This battery has a nominal capacity of 3.
0 Ah. The capacity of the negative electrode with respect to the positive electrode was set to 150%. In this sealed battery, a battery constituted by the electrode A of the hydrogen storage alloy electrode is referred to as a battery A, a battery constituted similarly by the electrode B is referred to as a battery B, and a battery using the electrode C is referred to as a battery C.

【0023】これらの電池をそれぞれ10コづつ作成し
充放電サイクル試験によって評価した結果を説明する。
A description will be given of the results of preparing 10 batteries each and evaluating them by a charge / discharge cycle test.

【0024】まず初期の放電電圧と容量を比較した。5
時間率で容量の150%定電流充電、同様に5時間率で
1.0Vまでの定電流放電を20℃で行なったところ、
Aは平均電圧は1.28Vであり、放電容量は1サイク
ル目からほぼ3.0Ahであった。また、電池Bは平均
電圧1.23Vで3.0Ahの放電容量に達するまでに
3サイクルを要した。電池Cでは平均放電電圧は1.2
0Vであり、放電容量は3.0Ahに達するまでに3サ
イクルを必要とした。
First, the initial discharge voltage and the capacity were compared. 5
When a constant current charge of 150% of the capacity at a time rate and a constant current discharge of up to 1.0 V at a rate of 5 hours were performed at 20 ° C.,
A had an average voltage of 1.28 V and a discharge capacity of about 3.0 Ah from the first cycle. Battery B required three cycles to reach a discharge capacity of 3.0 Ah at an average voltage of 1.23 V. In battery C, the average discharge voltage was 1.2
0 V and the discharge capacity required three cycles to reach 3.0 Ah.

【0025】同様に、充電を1時間率で150%まで、
放電は同じく1時間率で終止電圧1.0Vとし20℃で
の充放電サイクルを繰り返した結果では電池Aは平均放
電電圧1.22V、電池Bは1.17V、電池Cは1.
14Vであり、急速充放電でさらに優れた放電特性を有
していることもわかった。また、充電終了時の電池内圧
は電池Aで1.7Kg/cm2、電池Bで5.3Kg/
cm2であったのに対し、電池Cでは10Kg/cm2
上になった。
Similarly, charging is performed up to 150% at an hourly rate.
The discharge was repeated at a 1-hour rate with a final voltage of 1.0 V and a charge / discharge cycle at 20 ° C. As a result, the average discharge voltage of battery A was 1.22 V, that of battery B was 1.17 V, and that of battery C was 1.
14 V, and it was also found that the battery had more excellent discharge characteristics in rapid charge and discharge. The internal pressure of the battery at the end of charging was 1.7 kg / cm 2 for battery A, and 5.3 kg / cm 2 for battery B.
cm 2 , whereas the value for battery C was 10 kg / cm 2 or more.

【0026】次に各電池それぞれ10セルを用い、充電
1/2時間率で150%、放電1/2時間率で1.0V
までの定電流充放電で寿命特性を比較した。その結果を
図2に示す。放電容量は電池Aが300サイクルで初期
の95%、600サイクルで88%、電池Bが300サ
イクルで初期の91%、600サイクルで78%、電池
Cは300サイクルで負極律速になり初期の80%まで
容量が低下した。したがって本発明による水素吸蔵合金
電極は寿命特性も向上した。
Next, 10 cells were used for each battery, and the charging 1/2 hour rate was 150% and the discharging 1/2 hour rate was 1.0 V.
Life characteristics were compared at constant current charging and discharging up to. The result is shown in FIG. The discharge capacity of battery A was 95% in the initial stage after 300 cycles, 88% in the 600 cycles, battery B was 91% in the initial stage in 300 cycles, and 78% in the 600 cycles. %. Therefore, the hydrogen storage alloy electrode according to the present invention also has improved life characteristics.

【0027】[0027]

【発明の効果】以上のように本発明の水素吸蔵合金電極
は、従来からの問題であった初期活性を向上させ、利用
率、寿命も改善できる。
As described above, the hydrogen storage alloy electrode of the present invention can improve the initial activity, which has been a problem in the past, and can improve the utilization factor and the life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例および従来例の水素吸蔵合金
電極を用いた開放系電池での放電特性図
FIG. 1 is a discharge characteristic diagram of an open battery using a hydrogen storage alloy electrode according to one embodiment of the present invention and a conventional example.

【図2】本発明の一実施例および従来例の水素吸蔵合金
電極を用いた密閉系電池での放電特性図
FIG. 2 is a discharge characteristic diagram of a sealed battery using a hydrogen storage alloy electrode according to one embodiment of the present invention and a conventional example.

フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/38 H01M 4/38 A (72)発明者 岩城 強 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−65060(JP,A) 特開 平2−179836(JP,A) 特開 昭63−146353(JP,A) 特開 昭64−60961(JP,A) 特開 平4−277467(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 B22F 3/26,5/00 C22C 16/00,30/00 Continued on the front page (51) Int.Cl. 7 Identification code FI H01M 4/38 H01M 4/38 A (72) Inventor Tsuyoshi Iwaki 1006 Ojidoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference Document JP-A-2-65060 (JP, A) JP-A-2-17936 (JP, A) JP-A-63-146353 (JP, A) JP-A-64-60961 (JP, A) JP-A-4- 277467 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38 B22F 3 / 26,5 / 00 C22C 16 / 00,30 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主たる水素吸蔵合金がZr−Ni系で一般
式がABα(α=1.5〜2.5)で表され、合金相が
実質的に金属間化合物のLaves相に属し、その結晶
構造が六方対称のC14型または(および)立方対称の
C15型である水素吸蔵合金粉末を結着剤と共に電極と
した後、100〜120℃のアルカリ溶液に浸漬したこ
とを特徴とする水素吸蔵合金電極の製造法。
A main hydrogen storage alloy is a Zr-Ni-based alloy and the general formula is represented by ABα (α = 1.5 to 2.5), and the alloy phase substantially belongs to the Laves phase of an intermetallic compound. Hydrogen storage characterized in that a hydrogen storage alloy powder having a hexagonal symmetry C14 type and / or a cubic symmetry C15 type is used as an electrode together with a binder, and then immersed in an alkali solution at 100 to 120 ° C. Manufacturing method of alloy electrode.
【請求項2】特に主たる水素吸蔵合金の一般式がZrM
wxyNiz(ただしMはCr,Fe,Coから選ば
れた少なくとも1種あるいは混合物であり、0.4≦w
≦0.7、0.1≦x≦0.3、0≦y≦0.2、1.
0≦z≦1.5であり、かつ1.8≦w+x+y+z≦
2.4)で表される請求項1記載の水素吸蔵合金電極の
製造法。
2. The general formula of the main hydrogen storage alloy is ZrM.
n w V x M y Ni z ( where M is at least one or a mixture selected Cr, Fe, from Co, 0.4 ≦ w
≦ 0.7, 0.1 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.2, 1..
0 ≦ z ≦ 1.5, and 1.8 ≦ w + x + y + z ≦
2. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the electrode is represented by 2.4).
【請求項3】アルカリ溶液が特に比重1.20(20
℃)以上の水酸化カリウム溶液である請求項1または2
記載の水素吸蔵合金電極の製造法。
3. An alkaline solution having a specific gravity of 1.20 (20
C) or more potassium hydroxide solution.
The method for producing a hydrogen storage alloy electrode according to the above.
JP03295483A 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP3092262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03295483A JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03295483A JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH05135765A JPH05135765A (en) 1993-06-01
JP3092262B2 true JP3092262B2 (en) 2000-09-25

Family

ID=17821195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03295483A Expired - Fee Related JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3092262B2 (en)

Also Published As

Publication number Publication date
JPH05135765A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3189361B2 (en) Alkaline storage battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3370111B2 (en) Hydrogen storage alloy electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0834100B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees