JPH05135765A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH05135765A
JPH05135765A JP3295483A JP29548391A JPH05135765A JP H05135765 A JPH05135765 A JP H05135765A JP 3295483 A JP3295483 A JP 3295483A JP 29548391 A JP29548391 A JP 29548391A JP H05135765 A JPH05135765 A JP H05135765A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3295483A
Other languages
Japanese (ja)
Other versions
JP3092262B2 (en
Inventor
Yoichiro Tsuji
庸一郎 辻
Yoshio Moriwaki
良夫 森脇
Koji Yamamura
康治 山村
Tsuyoshi Iwaki
強 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03295483A priority Critical patent/JP3092262B2/en
Publication of JPH05135765A publication Critical patent/JPH05135765A/en
Application granted granted Critical
Publication of JP3092262B2 publication Critical patent/JP3092262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the initial activity, utilization factor, and life characteristic by applying high-temperature alkaline treatment to a hydrogen storage alloy electrode. CONSTITUTION:A hydrogen storage alloy expressed by ZrMn0.6Co0.1V0.2Ni1.2 which is one of C15 type Laves-phase alloys is molded into an electrode, then it is dipped in a 31%-KOH solution at 100 deg.C for 2hr, for example. This electrode is used for a negative electrode, a well-known nickel oxide electrode is used for a positive electrode to constitute a battery, the initial activity is sharply improved, and the utilization factor and life characteristic are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金を使用した
電極に関するものである。そして、この電極はニッケル
−水素蓄電池などのアルカリ蓄電池に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode using a hydrogen storage alloy. This electrode can then be used in alkaline storage batteries such as nickel-hydrogen storage batteries.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池としては鉛蓄電池とアルカリ蓄電池がある。このうち
アルカリ蓄電池は高信頼性が期待でき、小形軽量化も可
能などの理由で小型電池は各種ポ−タブル機器用に、大
型は産業用として使われてきた。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as storage batteries for various power sources. Among them, the alkaline storage battery can be expected to have high reliability and can be made compact and lightweight. For this reason, the small battery has been used for various portable devices and the large battery for industrial use.

【0003】このアルカリ蓄電池において、正極は一部
空気極や酸化銀極なども取り上げられているが、ほとん
どの場合ニッケル極である。ポケット式から焼結式に代
わって特性が向上し、さらに密閉化が可能になるととも
に用途も広がった。 一方負極としてはカドミウムの他
に亜鉛、鉄、水素などが対象となっている。
In this alkaline storage battery, most of the positive electrodes are nickel electrodes, although some of them are air electrodes or silver oxide electrodes. The characteristics have been improved from the pocket type to the sintered type, and it has become possible to further seal and expand the applications. On the other hand, as the negative electrode, in addition to cadmium, zinc, iron, hydrogen, etc. are targeted.

【0004】最近、一層の高エネルギ−密度を達成する
ために、水素吸蔵合金電極を使ったニッケル−水素蓄電
池が注目され、製法などに多くの提案がされている。
Recently, in order to achieve a higher energy density, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode has attracted attention, and many proposals have been made for its production method.

【0005】水素吸蔵合金極の製法としては合金粉末を
焼結する方式と、発泡状、繊維状、パンチングメタルな
どの多孔性支持体に充填や塗着する方式のペ−スト式と
がある。このうち製法が簡単なのがペ−スト式である。
水素吸蔵合金はカドミウム極や亜鉛極などと同様に電子
伝導性の点で比較的優れているので、非焼結式極の可能
性は大きい。すなわち結着剤とともにペ−スト状としこ
れを3次元あるいは2次元構造の多孔性導電板に充填あ
るいは塗着している。
As a method for producing a hydrogen storage alloy electrode, there are a method of sintering alloy powder and a paste method of filling or coating a porous support such as foamed, fibrous or punched metal. Of these, the simplest method is the paste method.
Since hydrogen storage alloys are relatively excellent in electron conductivity in the same manner as cadmium electrodes and zinc electrodes, the possibility of non-sintered electrodes is great. That is, it is formed into a paste with a binder and is filled or adhered to a porous conductive plate having a three-dimensional or two-dimensional structure.

【0006】その中で、水素吸蔵合金電極の特性を改善
するために、たとえば水素吸蔵合金粉末の粒子表面をニ
ッケルや銅でメッキして多孔性の金属層を形成する技術
が、とくに耐酸化性、利用率、成形性を改善するために
知られている。また特性向上のために合金製作後真空で
熱処理したり、アルカリ溶液に浸漬するなどの工程が提
案されている。
Among them, in order to improve the characteristics of the hydrogen storage alloy electrode, for example, a technique of forming a porous metal layer by plating the particle surface of the hydrogen storage alloy powder with nickel or copper is particularly resistant to oxidation. , Known to improve utilization, moldability. Further, in order to improve the characteristics, a process such as heat treatment in a vacuum after making the alloy or dipping in an alkaline solution has been proposed.

【0007】さらに密閉形に適用する際には、とくに過
充電時に正極から発生する酸素ガスの吸収性を改良する
ために、フッソ樹脂や触媒の添加が試みられている。
Further, in the case of applying it to a closed type, addition of a fluorine resin or a catalyst has been attempted in order to improve the absorption of oxygen gas generated from the positive electrode during overcharge.

【0008】[0008]

【発明が解決しようとする課題】この水素吸蔵合金を用
いた電池は、充放電サイクルの初期での充放電特性、利
用率や高率放電特性の改良ということが挙げられる。特
にZr−Ni系AB2型Laves相を主体とする水素
吸蔵合金電極は、高容量であるが、充放電サイクルの初
期における放電容量が小さいことが問題であった。
The battery using the hydrogen storage alloy is improved in charge / discharge characteristics, utilization rate and high rate discharge characteristics at the initial stage of charge / discharge cycle. In particular, a hydrogen storage alloy electrode mainly composed of a Zr—Ni type AB 2 type Laves phase has a high capacity, but there is a problem that the discharge capacity at the beginning of a charge / discharge cycle is small.

【0009】本発明は水素吸蔵合金の初期特性、利用率
の向上を図ることを目的とする。
An object of the present invention is to improve the initial characteristics and utilization of hydrogen storage alloys.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に、本発明では水素吸蔵合金をアルカリ溶液中で合金表
面を酸化させる。この場合のアルカリ処理は従来のアル
カリ処理が合金中の完全な合金になっていない可溶性の
金属の溶解除去を目的に40〜80℃が選ばれたのに対
し、はるかに過酷な条件で行う。すなわち95℃以上、
100〜120℃程度が必要である。なお時間は0.5
〜5時間程度でよい。
To solve this problem, the present invention oxidizes the surface of the hydrogen storage alloy in an alkaline solution. The alkali treatment in this case is carried out under much more severe conditions, whereas the conventional alkali treatment was selected at 40 to 80 ° C. for the purpose of dissolving and removing the soluble metal which is not a perfect alloy in the alloy. That is, 95 ° C or higher,
About 100 to 120 ° C is necessary. The time is 0.5
~ 5 hours is enough.

【0011】そして、特に水素吸蔵合金の一般式がAB
α(α=1.5〜2.5)で表され、合金相が実質的に
金属間化合物のLaves相に属し、その結晶構造が6
方対称のC14型または(および)立方対称のC15型
である水素吸蔵合金に対してこの技術を適用する。
In particular, the general formula of hydrogen storage alloy is AB
It is represented by α (α = 1.5 to 2.5), the alloy phase substantially belongs to the Laves phase of the intermetallic compound, and its crystal structure is 6
This technique is applied to hydrogen storage alloys that are C14 type with symmetry and / or C15 type with cubic symmetry.

【0012】また、アルカリとしては比重1.20(2
0℃)以上の水酸化カリウム溶液が好ましいが水酸化ナ
トリウム、水酸化リチウムなどの苛性アルカリ溶液も有
効である。
As the alkali, the specific gravity is 1.20 (2
A potassium hydroxide solution at 0 ° C. or higher is preferable, but a caustic solution such as sodium hydroxide or lithium hydroxide is also effective.

【0013】[0013]

【作用】水素吸蔵合金の容量向上、性能の安定化や寿命
向上のための手段として水素吸蔵合金をアルカリ溶液に
浸漬するアルカリ処理が行われる場合がある。これは合
金製造時に偏析等で所望の合金になっていない金属で電
池にしてから溶解する可能性のある金属を予め除去する
ためである(特開昭63−146353)。したがって
アルカリ処理は45〜80℃程度の温度で行われ、10
0℃以上ではかえって性能が劣下するとされていた。
Function As a means for improving the capacity of the hydrogen storage alloy, stabilizing the performance and extending the life of the hydrogen storage alloy, alkali treatment may be performed by immersing the hydrogen storage alloy in an alkaline solution. This is to remove in advance the metal that may dissolve after being made into a battery with a metal that does not form the desired alloy due to segregation during alloy production (Japanese Patent Laid-Open No. 63-146353). Therefore, the alkali treatment is performed at a temperature of about 45 to 80 ° C.
It was said that the performance was rather deteriorated at 0 ° C or higher.

【0014】ところが、本発明のアルカリ処理は不純物
の除去よりもさらに過酷な表面の酸化処理である。した
がって合金表面は金属色から黒褐色に変化する。このこ
とにより従来のアルカリ処理ではほとんど期待できなか
った充放電サイクル初期での放電特性改善に効果があ
る。その理由として合金の表面がアルカリ処理により酸
化されアルカリ溶液に対する濡れ易さが著しく向上した
ことがあげられる。
However, the alkali treatment of the present invention is a surface oxidation treatment which is more severe than the removal of impurities. Therefore, the alloy surface changes from metallic color to blackish brown. This has the effect of improving the discharge characteristics at the beginning of the charge / discharge cycle, which could hardly be expected with conventional alkali treatment. The reason is that the surface of the alloy was oxidized by the alkali treatment and the wettability with the alkali solution was remarkably improved.

【0015】また、この効果はZr−Niベースの、A
2型水素吸蔵合金において非常に顕著である。
Also, this effect is
It is very remarkable in the B 2 type hydrogen storage alloy.

【0016】[0016]

【実施例】水素吸蔵合金として、主たる合金相がC15
型Laves相合金の一つであるZrMn0.6Co0.1
0.2Ni1.2合金をジェットミルで粉砕して得た平均粒径
25μmの粉末にポリエチレン粉末を1重量%加え、エ
タノールでペーストにする。ついでこのペ−ストを多孔
度95%厚さ0.8mmの発泡状ニッケル板に充填し加
圧して電極を得た。これを30重量%の水酸化カリウム
溶液中に100〜105℃で2時間浸漬した。この電極
をAとする。
[Example] As a hydrogen storage alloy, the main alloy phase is C15
Type Laves phase alloy, ZrMn 0.6 Co 0.1 V
1% by weight of polyethylene powder is added to powder having an average particle size of 25 μm obtained by crushing 0.2 Ni 1.2 alloy with a jet mill, and made into a paste with ethanol. Then, this paste was filled in a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm and pressed to obtain an electrode. This was immersed in a 30 wt% potassium hydroxide solution at 100 to 105 ° C. for 2 hours. This electrode is designated as A.

【0017】また、同様に作製した電極を30重量%の
水酸化カリウム溶液に70℃で2時間浸漬したものを電
極Bとする。
Also, an electrode B prepared by immersing the electrode prepared in the same manner in a 30% by weight potassium hydroxide solution at 70 ° C. for 2 hours.

【0018】この電極の特性を比較するために同様にZ
rMn0.6Co0.10.2Ni1.2の組成の水素吸蔵合金を
粉砕し、得た合金粉末をアルカリ処理を省略して電極に
した。これを電極Cとする。
Similarly, to compare the characteristics of this electrode, Z
A hydrogen storage alloy having a composition of rMn 0.6 Co 0.1 V 0.2 Ni 1.2 was pulverized, and the obtained alloy powder was used as an electrode without alkali treatment. This is designated as electrode C.

【0019】これらの電極を負極とし、対極に過剰の電
気容量を有する酸化ニッケル極を配し電解液に比重1.
30の水酸化カリウム水溶液を用い、電解液が豊富な開
放系で水素吸蔵合金負極で容量規制を行い充放電を行っ
た。正極規制の密閉電池の場合を想定し充電は水素吸蔵
合金1gあたり0.1A×2.5時間、放電は合金1g
あたり0.05Aで端子電圧が0.8Vまでとした。
These electrodes are used as negative electrodes, and a nickel oxide electrode having an excessive electric capacity is arranged on the counter electrode, and the specific gravity of the electrolyte is 1.
The potassium hydroxide aqueous solution of 30 was used, and the capacity was regulated by the hydrogen storage alloy negative electrode in an open system rich in electrolyte solution, and charging / discharging was performed. Assuming a sealed battery with positive electrode regulation, charging is 0.1 A x 2.5 hours per 1 g of hydrogen storage alloy, discharging is 1 g of alloy
The terminal voltage was up to 0.8 V at 0.05 A.

【0020】この結果を図1に示す。電極Cでは1サイ
クル目0.1Ah/gと充放電サイクル初期での放電容
量が低く、充放電比がほぼ1.0に達するまでに4サイ
クル以上要した。しかし、電極Aの場合、1サイクル目
で0.18Ah/g、2サイクル目で0.25Ah/g
と充放電比が1.0に達した。しかし電極Bでは1サイ
クル目0.13Ah/gで充放電比が1.0に達するま
でには6サイクル以上要した。したがって100℃以上
の高温アルカリ処理は電池としての初期活性と利用率の
向上に非常に有効であったが、従来のアルカリ処理温度
である70℃でのアルカリ処理は逆に放電容量の立ち上
がりを遅らせる結果となった。
The results are shown in FIG. In the electrode C, the discharge capacity at the first cycle was 0.1 Ah / g, which was low at the beginning of the charge / discharge cycle, and it took 4 or more cycles until the charge / discharge ratio reached about 1.0. However, in the case of electrode A, 0.18 Ah / g in the first cycle and 0.25 Ah / g in the second cycle
And the charge / discharge ratio reached 1.0. However, it took 6 cycles or more for the electrode B to reach a charge / discharge ratio of 1.0 at 0.13 Ah / g in the first cycle. Therefore, the high temperature alkaline treatment at 100 ° C. or higher was very effective for improving the initial activity and utilization rate of the battery, but the conventional alkaline treatment at 70 ° C. which is the conventional alkaline treatment temperature delays the rise of discharge capacity. It was a result.

【0021】さらにこの後充電を0.55Ah/g行
い、合金の飽和容量を調べた結果、電極Aは0.34A
h/g、電極Bは0.34Ah/g、電極Cは0.33
Ah/gとなり、合金利用率も向上させた。
Further, after that, charging was carried out at 0.55 Ah / g and the saturation capacity of the alloy was examined.
h / g, electrode B 0.34 Ah / g, electrode C 0.33
It was Ah / g, and the alloy utilization rate was also improved.

【0022】次にこの電極を使用して密閉電池を構成し
た結果について説明する。先の電極A,B,C,をそれ
ぞれ幅3.3cm、長さ21cm、厚さ0.52mmに
調整し、リード板を所定の2カ所に取り付けた。そし
て、正極、セパレータと組み合わせて円筒状に3層に渦
巻き状にしてSCサイズの電槽に収納した。このときの
正極は、公知の発泡式ニッケル極を選び、幅3.3c
m、長さ16cmとして用いた。この場合もリード板を
2カ所に取り付けた。またセパレータは、親水性を付与
したポリプロピレン不織布を用いた。電解液としては、
比重1.25の水酸化カリウム水溶液に水酸化リチウム
を25g/l溶解して用いた。これを封口して密閉形電
池とした。この電池は、正極容量規制で公称容量は3.
0Ahである。正極に対する負極の容量を150%とし
た。この密閉形電池で水素吸蔵合金電極の電極Aで構成
した電池を電池A、同様に電極Bで構成した電池を電池
B、電極Cを用いた電池を電池Cとする。
Next, the results of constructing a sealed battery using this electrode will be described. The electrodes A, B, and C were adjusted to have a width of 3.3 cm, a length of 21 cm, and a thickness of 0.52 mm, and attached lead plates at predetermined two positions. Then, in combination with the positive electrode and the separator, it was made into a cylindrical three-layer spiral shape and housed in an SC size battery case. A known foaming nickel electrode was selected as the positive electrode at this time, and the width was 3.3 c.
m and length 16 cm were used. Also in this case, the lead plates were attached at two places. As the separator, a polypropylene non-woven fabric having hydrophilicity was used. As the electrolyte,
Lithium hydroxide was dissolved in an aqueous potassium hydroxide solution having a specific gravity of 1.25 at 25 g / l and used. This was sealed to form a sealed battery. This battery has a nominal capacity of 3.
It is 0 Ah. The capacity of the negative electrode with respect to the positive electrode was 150%. In this sealed battery, a battery composed of the hydrogen storage alloy electrode A is referred to as a battery A, a battery similarly composed of the electrode B is referred to as a battery B, and a battery using the electrode C is referred to as a battery C.

【0023】これらの電池をそれぞれ10コづつ作成し
充放電サイクル試験によって評価した結果を説明する。
The results of making 10 of each of these batteries and evaluating them by a charge / discharge cycle test will be described.

【0024】まず初期の放電電圧と容量を比較した。5
時間率で容量の150%定電流充電、同様に5時間率で
1.0Vまでの定電流放電を20℃で行なったところ、
Aは平均電圧は1.28Vであり、放電容量は1サイク
ル目からほぼ3.0Ahであった。また、電池Bは平均
電圧1.23Vで3.0Ahの放電容量に達するまでに
3サイクルを要した。電池Cでは平均放電電圧は1.2
0Vであり、放電容量は3.0Ahに達するまでに3サ
イクルを必要とした。
First, the initial discharge voltage and capacity were compared. 5
When constant current charge of 150% of capacity at time rate and constant current discharge up to 1.0 V at 5 hour rate were performed at 20 ° C.,
A had an average voltage of 1.28 V and a discharge capacity of approximately 3.0 Ah from the first cycle. Further, it took three cycles for the battery B to reach a discharge capacity of 3.0 Ah at an average voltage of 1.23V. Battery C has an average discharge voltage of 1.2
It was 0 V and required 3 cycles until the discharge capacity reached 3.0 Ah.

【0025】同様に、充電を1時間率で150%まで、
放電は同じく1時間率で終止電圧1.0Vとし20℃で
の充放電サイクルを繰り返した結果では電池Aは平均放
電電圧1.22V、電池Bは1.17V、電池Cは1.
14Vであり、急速充放電でさらに優れた放電特性を有
していることもわかった。また、充電終了時の電池内圧
は電池Aで1.7Kg/cm2、電池Bで5.3Kg/
cm2であったのに対し、電池Cでは10Kg/cm2
上になった。
Similarly, charging is performed up to 150% per hour,
The discharge was similarly performed at a final voltage of 1.0 V at a rate of 1 hour, and the result of repeating the charge / discharge cycle at 20 ° C. was as follows: Battery A had an average discharge voltage of 1.22 V, Battery B had 1.17 V, and Battery C had 1.
It was also found that it was 14 V, and that it had more excellent discharge characteristics in rapid charging / discharging. The battery internal pressure at the end of charging was 1.7 kg / cm 2 for battery A and 5.3 kg / cm 2 for battery B.
While it was cm 2, it was 10 Kg / cm 2 or more in the battery C.

【0026】次に各電池それぞれ10セルを用い、充電
1/2時間率で150%、放電1/2時間率で1.0V
までの定電流充放電で寿命特性を比較した。その結果を
図2に示す。放電容量は電池Aが300サイクルで初期
の95%、600サイクルで88%、電池Bが300サ
イクルで初期の91%、600サイクルで78%、電池
Cは300サイクルで負極律速になり初期の80%まで
容量が低下した。したがって本発明による水素吸蔵合金
電極は寿命特性も向上した。
Next, using 10 cells for each battery, the charge 1/2 hour rate is 150%, and the discharge 1/2 hour rate is 1.0V.
Life characteristics were compared by charging and discharging with constant current up to. The result is shown in FIG. The discharge capacity of Battery A was 95% at 300 cycles, 88% at 600 cycles, Battery B was 91% at 300 cycles, 78% at 600 cycles, and Battery C was at negative cycle rate control at 300 cycles and the initial rate was 80%. The capacity decreased to%. Therefore, the hydrogen storage alloy electrode according to the present invention has improved life characteristics.

【0027】[0027]

【発明の効果】以上のように本発明の水素吸蔵合金電極
は、従来からの問題であった初期活性を向上させ、利用
率、寿命も改善できる。
INDUSTRIAL APPLICABILITY As described above, the hydrogen storage alloy electrode of the present invention can improve the initial activity, which has been a problem in the past, and can improve the utilization rate and the life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例および従来例の水素吸蔵合金
電極を用いた開放系電池での放電特性図
FIG. 1 is a discharge characteristic diagram of an open battery using a hydrogen storage alloy electrode according to an embodiment of the present invention and a conventional example.

【図2】本発明の一実施例および従来例の水素吸蔵合金
電極を用いた密閉系電池での放電特性図
FIG. 2 is a discharge characteristic diagram of a sealed battery using a hydrogen storage alloy electrode according to an embodiment of the present invention and a conventional example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/38 A 8520−4K (72)発明者 岩城 強 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01M 4/38 A 8520-4K (72) Inventor Tsuyoshi Iwaki 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Sangyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主たる水素吸蔵合金がZr−Ni系で一般
式がABα(α=1.5〜2.5)で表され、合金相が
実質的に金属間化合物のLaves相に属し、その結晶
構造が六方対称のC14型または(および)立方対称の
C15型である水素吸蔵合金粉末を結着剤と共に電極と
した後、100〜120℃のアルカリ溶液に浸漬したこ
とを特徴とする水素吸蔵合金電極の製造法。
1. A main hydrogen storage alloy is a Zr—Ni system, a general formula is represented by ABα (α = 1.5 to 2.5), and an alloy phase substantially belongs to a Laves phase of an intermetallic compound. Hydrogen storage alloy powder having a hexagonal symmetry C14 type and / or a cubic symmetry C15 type hydrogen storage alloy powder as an electrode together with a binder and then immersed in an alkaline solution at 100 to 120 ° C. Alloy electrode manufacturing method.
【請求項2】特に主たる水素吸蔵合金の一般式がZrM
wxyNiz(ただしMはCr,Fe,Coから選ば
れた少なくとも1種あるいは混合物であり、0.4≦w
≦0.7、0.1≦x≦0.3、0≦y≦0.2、1.
0≦z≦1.5であり、かつ1.8≦w+x+y+z≦
2.4)で表される請求項1記載の水素吸蔵合金電極の
製造法。
2. A general formula of a main hydrogen storage alloy is ZrM.
n w V x M y Ni z ( where M is at least one or a mixture selected Cr, Fe, from Co, 0.4 ≦ w
≦ 0.7, 0.1 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.2, 1.
0 ≦ z ≦ 1.5 and 1.8 ≦ w + x + y + z ≦
The method for producing a hydrogen storage alloy electrode according to claim 1, which is represented by 2.4).
【請求項3】アルカリ溶液が特に比重1.20(20
℃)以上の水酸化カリウム溶液である請求項1または2
記載の水素吸蔵合金電極の製造法。
3. The alkaline solution has a specific gravity of 1.20 (20
3. A potassium hydroxide solution having a temperature of ℃) or higher.
A method for producing the hydrogen storage alloy electrode as described.
JP03295483A 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP3092262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03295483A JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03295483A JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH05135765A true JPH05135765A (en) 1993-06-01
JP3092262B2 JP3092262B2 (en) 2000-09-25

Family

ID=17821195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03295483A Expired - Fee Related JP3092262B2 (en) 1991-11-12 1991-11-12 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3092262B2 (en)

Also Published As

Publication number Publication date
JP3092262B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH01130467A (en) Hydrogen occlusive alloy electrode
JP3136688B2 (en) Nickel-hydrogen storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH0668876A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0528989A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees