JP3094618B2 - Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery - Google Patents

Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery

Info

Publication number
JP3094618B2
JP3094618B2 JP04013782A JP1378292A JP3094618B2 JP 3094618 B2 JP3094618 B2 JP 3094618B2 JP 04013782 A JP04013782 A JP 04013782A JP 1378292 A JP1378292 A JP 1378292A JP 3094618 B2 JP3094618 B2 JP 3094618B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alkaline
nickel
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04013782A
Other languages
Japanese (ja)
Other versions
JPH05205734A (en
Inventor
勉 岩城
康治 山村
庸一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04013782A priority Critical patent/JP3094618B2/en
Publication of JPH05205734A publication Critical patent/JPH05205734A/en
Application granted granted Critical
Publication of JP3094618B2 publication Critical patent/JP3094618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用水素
吸蔵合金極の製造法に関する。
The present invention relates to a method for producing a hydrogen storage alloy electrode for an alkaline storage battery.

【0002】[0002]

【従来の技術】各種の電源として広く使われているアル
カリ蓄電池は高信頼性が期待でき、小形軽量化も可能な
どの理由で小形電池は各種ポータブル機器用に、大形は
産業用として使われてきた。
2. Description of the Related Art Alkaline storage batteries widely used as various power sources can be expected to have high reliability, and small batteries can be used for various portable equipment and large batteries can be used for industrial purposes for any reason. Have been.

【0003】このアルカリ蓄電池において正極として
は、ほとんどの場合ニッケル極である。ポケット式から
焼結式に代わって特性が向上し、さらに密閉化が可能に
なるとともに用途も広がった。
In most cases, a nickel electrode is used as a positive electrode in this alkaline storage battery. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.

【0004】一方負極としては現在のところカドミウム
極が主体であるが一層の高エネルギー密度を達成するた
めに水素吸蔵合金極を使ったニッケル−水素蓄電池が注
目され製法などに多くの提案がされている。高エネルギ
ー密度の他に急速充放電性の改良が進められている。
On the other hand, at present, a cadmium electrode is mainly used as a negative electrode, but a nickel-hydrogen storage battery using a hydrogen storage alloy electrode has been attracting attention in order to achieve a higher energy density, and many proposals have been made on a manufacturing method and the like. I have. Improvements in rapid charge / discharge properties as well as high energy density are being pursued.

【0005】たとえば水素吸蔵合金粉末のとくに耐酸化
性それに利用率や成型性を改善するために粒子表面をニ
ッケルや銅でメッキして多孔性の金属層を形成する技術
が知られている。また初期特性向上のためにニッケル,
銅,オキシ水酸化ニッケル粉などの添加、アルカリ溶液
に浸漬するなどが提案されている。
For example, there is known a technique of forming a porous metal layer by plating the surface of particles with nickel or copper in order to improve the hydrogen storage alloy powder, particularly the oxidation resistance, and the utilization and moldability. Also, nickel,
Addition of copper, nickel oxyhydroxide powder, immersion in an alkaline solution, and the like have been proposed.

【0006】さらに密閉形に適用する際には、とくに充
電時の正極からの酸素ガスや過充電時に発生することが
ある水素ガスの吸収性を改良するためにふっ素樹脂や触
媒の添加が試みられている。
In addition, when applied to a sealed type, it has been attempted to add a fluororesin or a catalyst to improve the absorption of oxygen gas from the positive electrode during charging and hydrogen gas which may be generated during overcharging. ing.

【0007】[0007]

【発明が解決しようとする課題】水素吸蔵合金極の製造
法としては合金粉末を焼結する方式と合金粉末を発泡
状,繊維状,パンチングメタルなどの2次元や3次元構
造の多孔体に充填や塗着する方式のペースト式がある。
いずれにしてもとくに充放電サイクルの初期での放電特
性の上で改良の余地がある。とくに水素吸蔵合金として
Zr−NiをベースとするAB2Laves相を含む合
金では最終的には高容量になるが初期の活性化が問題で
ある。初期の充電の受け入れ性が悪いと密閉形では負極
律則の電池になり、高率放電特性,自己放電,寿命など
に問題が生ずる。
As a method of producing a hydrogen storage alloy electrode, a method of sintering an alloy powder and filling the alloy powder into a porous body having a two-dimensional or three-dimensional structure such as foamed, fibrous, or punched metal is used. And a paste type of coating.
In any case, there is room for improvement particularly in the discharge characteristics at the beginning of the charge / discharge cycle. Particularly, in the case of an alloy containing an AB 2 Laves phase based on Zr—Ni as a hydrogen storage alloy, the capacity eventually becomes high, but the initial activation is a problem. If the acceptability of the initial charge is poor, the sealed type battery becomes a battery of the negative electrode rule, causing problems in high-rate discharge characteristics, self-discharge, life, and the like.

【0008】本発明はこのような課題を解決するもの
で、初期放電特性,高率放電特性を向上したアルカリ蓄
電池用水素吸蔵合金極の製造法を提供することを目的と
する。
An object of the present invention is to provide a method for manufacturing a hydrogen storage alloy electrode for an alkaline storage battery, which has improved initial discharge characteristics and high-rate discharge characteristics.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
本発明のアルカリ蓄電池用水素吸蔵合金極の製造法は、
水素吸蔵合金とくにZr−NiをベースとするAB2
aves相粉末と、ニッケル塩溶液を混合しアルカリ溶
液に浸漬して水洗し、これを用いて水素吸蔵合金極とし
酸化方向に通電するものである。この場合酸化方向の通
電はオキシ酸化ニッケルの生成が完了する程度とする。
なおアルカリ溶液に水酸化リチウムを含むことが好まし
い。また合金のアルカリ処理が不要な金属や酸化物層の
除去や表面の改質に有効であり、本願はこの工程の中に
アルカリへの浸漬をともなうので、たとえば高温での浸
漬のようなアルカリ浸漬を併用してもよい。
In order to achieve this object, a method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to the present invention comprises:
AB 2 L based on hydrogen storage alloy, especially Zr-Ni
The aves phase powder is mixed with a nickel salt solution, immersed in an alkaline solution, washed with water, and used as a hydrogen storage alloy electrode to conduct electricity in the oxidation direction. In this case, the energization in the oxidation direction is set to the extent that the generation of nickel oxyoxide is completed.
Preferably, the alkaline solution contains lithium hydroxide. Further, the present invention is effective for removing a metal or an oxide layer which does not require an alkali treatment of an alloy or for modifying the surface. Since the present invention involves immersion in an alkali during this step, for example, alkali immersion such as immersion at a high temperature is used. May be used in combination.

【0010】[0010]

【作用】水素吸蔵合金としてとくにZr−Niをベース
とするAB2Laves相を用いた場合、初期特性がや
や悪いので改良のためには添加剤、粒子表面の改善、水
素との親和性の向上などが進められてきた。この中で添
加剤としてオキシ水酸化ニッケルがある。しかし、とく
にZr−NiをベースとするAB2Laves相を用い
た場合では合金にこの粉末を添加しても若干効果がある
程度であった。ところが本発明のようにニッケル塩溶液
から合金粒子表面にオキシ酸化ニッケルを形成すると水
素吸蔵合金の表面との接触は単なる混合よりはるかに多
くなり一種のメッキと同じように水素吸蔵合金の表面を
変化させることになる。またアルカリ溶液中に水酸化リ
チウムを含むことによりオキシ水酸化ニッケルにリチウ
ムがドープされた形になり導電性が向上する。
When an AB 2 Laves phase based on Zr—Ni is used as a hydrogen storage alloy, its initial properties are rather poor. Therefore, it is necessary to improve additives, particle surfaces, and affinity with hydrogen for improvement. And so on. Among these, there is nickel oxyhydroxide as an additive. However, particularly when the AB 2 Laves phase based on Zr—Ni was used, even if this powder was added to the alloy, the effect was somewhat to some extent. However, when nickel oxyoxide is formed on the surface of the alloy particles from a nickel salt solution as in the present invention, the contact with the surface of the hydrogen storage alloy is much more than mere mixing and changes the surface of the hydrogen storage alloy like a kind of plating Will be. When lithium hydroxide is contained in the alkaline solution, nickel oxyhydroxide is doped with lithium, so that the conductivity is improved.

【0011】つまり、単に混合でなく水素吸蔵合金粒子
の表面に形成することが重要であり、さきに提案した水
素吸蔵合金表面に水酸化ニッケルを生成させ、これを還
元剤でニッケルにすることで、単にニッケル粉を添加し
ただけではまったく得られなかった初期活性向上が達成
できたのと同様である。なお本願では還元剤は不要で酸
化方向の通電のみでよいので操作が簡単である。
In other words, it is important to form nickel hydroxide on the surface of the hydrogen storage alloy, which is proposed above, rather than simply mixing it, by forming nickel hydroxide on the surface of the hydrogen storage alloy, and converting it to nickel with a reducing agent. This is the same as the improvement in the initial activity that could not be obtained by simply adding nickel powder. In the present application, the operation is simple because a reducing agent is not required and only energization in the oxidation direction is required.

【0012】[0012]

【実施例】以下、本発明の一実施例のアルカリ蓄電池用
水素吸蔵合金極の製造法は、水素吸蔵合金としてAB2
Laves相合金の一つであるZrMn0.5Cr0.2
0.1Ni1.2の粉末に30℃飽和の硝酸ニッケル溶液を添
加混合し、60℃で乾燥後25重量%の苛性カリに45
℃10分間浸漬した。水洗乾燥した後に2重量%のポリ
ビニルアルコール溶液を加えてペーストとし、これを多
孔度95%の厚さ1.0mmの発泡状ニッケル板に充填し
た後加圧した。この電極を幅33mm、長さ210mmに裁
断し、リード板をスポット溶接により取り付けた。
EXAMPLES The following embodiment method for producing hydrogen-absorbing alloy electrode for an alkaline storage battery of the present invention, AB 2 as the hydrogen storage alloy
ZrMn 0.5 Cr 0.2 V, one of the Laves phase alloys
A nickel nitrate solution saturated at 30 ° C. was added to the powder of 0.1 Ni 1.2 , mixed and dried at 60 ° C., and then 45 wt.
C. for 10 minutes. After washing with water and drying, a 2% by weight polyvinyl alcohol solution was added to form a paste, which was filled into a foamed nickel plate having a porosity of 95% and a thickness of 1.0 mm, and then pressed. This electrode was cut into a width of 33 mm and a length of 210 mm, and a lead plate was attached by spot welding.

【0013】相手極として公知の発泡状ニッケル極、そ
れに親水処理ポリプロピレン不織布セパレータを用い
た。電解液として比重1.25の苛性カリ水溶液に25
g/リットルの水酸化リチウムを溶解して用いて密閉形
ニッケル−水素蓄電池を構成した。電池はSubC型と
した。公称容量は3.0Ahである。正極に対する負極
の容量を150%とした。
A known foamed nickel electrode and a hydrophilically treated polypropylene nonwoven fabric separator were used as counter electrodes. 25% aqueous caustic potassium solution with specific gravity of 1.25 as electrolyte
g / L of lithium hydroxide was dissolved and used to form a sealed nickel-hydrogen storage battery. The battery was a SubC type. The nominal capacity is 3.0 Ah. The capacity of the negative electrode with respect to the positive electrode was set to 150%.

【0014】このようにして得られた電池を放電方向
(酸化)に200mAで1.5時間電流を流した。この
電池をAとする。
A current was applied to the battery thus obtained in the discharge direction (oxidation) at 200 mA for 1.5 hours. This battery is designated as A.

【0015】つぎに比較のために水素吸蔵合金粉末に別
に作ったオキシ水酸化ニッケルの粉末を添加して電池構
成後の放電方向の通電(酸化)を省略した電池をBとし
て加えてA,Bとも通常の化成を行なった。
Next, for comparison, a battery prepared by adding a separately prepared nickel oxyhydroxide powder to the hydrogen storage alloy powder and omitting the energization (oxidation) in the discharge direction after the battery construction was added as B, and A and B were added. In both cases, normal formation was performed.

【0016】化成時の初期の放電電圧と容量を比較し
た。0.1C(10時間率)で容量の150%定電流充
電、2.0Aで0.9Vまでの定電流放電を繰り返した
ところ、Aは平均電圧は1.25Vであり、放電容量は
3サイクル以後ほぼ一定で2.95〜3.00Ahであ
った。ところがBでは、平均電圧は1.23Vであり放
電特性が向上してほぼ一定になるまでに10サイクルを
必要とした。
The initial discharge voltage and capacity during chemical formation were compared. When constant current charging of 150% of the capacity at 0.1 C (10 hour rate) and constant current discharging at 2.0 A to 0.9 V were repeated, A had an average voltage of 1.25 V and a discharge capacity of 3 cycles. Thereafter, it was almost constant and was 2.95 to 3.00 Ah. However, in the case of B, the average voltage was 1.23 V, and 10 cycles were required until the discharge characteristics improved and became almost constant.

【0017】化成終了後の両電池それぞれ10セルを用
い、急速放電特性を比較した。周囲温度を30℃とし容
量の135%充電後1C放電を行なったところ容量維持
率がAでは公称容量の94〜97%あったのに対してB
では87〜90%でありAが優れていた。2C放電では
容量維持率はAでは89〜91%であったのに対してB
では78〜82%であり、やはりAが優れていた。
After completion of the formation, 10 cells were used for each of the two batteries, and the rapid discharge characteristics were compared. When the ambient temperature was set to 30 ° C. and the battery was charged at 135% of capacity and then discharged at 1 C, the capacity retention ratio was 94 to 97% of the nominal capacity in A, whereas B was 94 to 97% of the nominal capacity.
Was 87 to 90%, and A was excellent. In the 2C discharge, the capacity retention ratio was 89-91% in A, whereas in B it was B
Was 78 to 82%, and A was also excellent.

【0018】[0018]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明のアルカリ蓄電池用水素吸蔵合金極の製造法に
よれば、水素吸蔵合金粉末にニッケル塩溶液を添加後、
アルカリ溶液に浸漬して水酸化ニッケル被膜の水素吸蔵
合金粉末としてから電極を製造し、電池を構成後放電
(酸化)方向に通電することにより初期特性,利用率そ
れに高放電特性の改良が可能になる。
As is apparent from the above description of the embodiment, according to the method of manufacturing a hydrogen storage alloy electrode for an alkaline storage battery of the present invention, after adding a nickel salt solution to a hydrogen storage alloy powder,
An electrode is manufactured by immersing it in an alkaline solution to form a nickel-oxide-coated hydrogen storage alloy powder. After the battery has been constructed, it can be energized in the discharge (oxidation) direction to improve the initial characteristics, utilization, and high discharge characteristics. Become.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−269953(JP,A) 特開 平2−263944(JP,A) 特開 平4−179053(JP,A) 特許2932711(JP,B2) (58)調査した分野(Int.Cl.7,DB名) N01M 4/24 - 4/26 N01M 4/38 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-269953 (JP, A) JP-A-2-263944 (JP, A) JP-A-4-1799053 (JP, A) Patent 2932711 (JP, A) B2) (58) Field surveyed (Int. Cl. 7 , DB name) N01M 4/24-4/26 N01M 4/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金粉末にニッケル塩溶液を添
加混合した後アルカリ溶液に浸漬して水洗し、これを用
いて水素吸蔵合金極とし酸化方向に通電するアルカリ蓄
電池用水素吸蔵合金極の製造法。
1. A method for manufacturing a hydrogen storage alloy electrode for an alkaline storage battery, wherein a nickel salt solution is added to and mixed with a hydrogen storage alloy powder, immersed in an alkali solution and washed with water. Law.
【請求項2】 酸化方向の通電は、オキシ酸化ニッケル
の生成が完了する程度である請求項1記載のアルカリ蓄
電池用水素吸蔵合金極の製造法。
2. The method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the energization in the oxidation direction is such that generation of nickel oxyoxide is completed.
【請求項3】 アルカリ溶液に水酸化リチウムを含む請
求項1または2記載のアルカリ蓄電池用水素吸蔵合金極
の製造法。
3. The method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the alkaline solution contains lithium hydroxide.
【請求項4】 水素吸蔵合金がとくにZr−Niをベー
スとするAB2Laves相を含む請求項1,2または
3記載のアルカリ蓄電池用水素吸蔵合金極の製造法。
4. The method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy contains an AB 2 Laves phase based on Zr—Ni.
JP04013782A 1992-01-29 1992-01-29 Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery Expired - Fee Related JP3094618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04013782A JP3094618B2 (en) 1992-01-29 1992-01-29 Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04013782A JP3094618B2 (en) 1992-01-29 1992-01-29 Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH05205734A JPH05205734A (en) 1993-08-13
JP3094618B2 true JP3094618B2 (en) 2000-10-03

Family

ID=11842821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04013782A Expired - Fee Related JP3094618B2 (en) 1992-01-29 1992-01-29 Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3094618B2 (en)

Also Published As

Publication number Publication date
JPH05205734A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPS62285360A (en) Negative electrode for alkaline storage battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JP3370111B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04126358A (en) Manufacture of hydrogen absorbing alloy electrode for alkaline battery
JPH03289046A (en) Manufacture of hydrogen storage alloy electrode for alkaline battery
JP2002260645A (en) Manufacturing method of hydrogen storage alloy electrode, and the hydrogen storage alloy electrode
JPH0521059A (en) Manufacture of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees